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Abstract

We present an adaptative method that enables
a General Game Player using Monte-Carlo Tree
Search to adapt its use of RAVE to the game
it plays. This adaptation is done with a com-
parison of the UCT and RAVE prediction for
moves, that are based on previous playout re-
sults. We show that it leads to results that are
equivalent to those obtained with a hand tuned
choice of RAVE usage and better than a fit-
for-all fixed choice on simple ad’hoc synthetic
games. This is well adapted to the domain of
General Game Playing where the player can not
be tuned for the characteristics of the game it
will play before the beginning of a match.

1 Introduction

It this introduction, we present the General Game Play-
ing (GGP) and the Monte-Carlo Tree Search with UCT
and RAVE used by the General Game player we use for
this study.

1.1 General Game Playing

Since its definition by the Logic Group of the Stanford
University in 2005 [Genesereth et al., 2005], GGP has
aroused research in the field of computer playing pro-
grams that are able to play a large class of different
games without modification.
In GGP, games are described with the General De-

scription Language (GDL); it allows the description of
any finite deterministic game with complete information
[Genesereth, 2006]. GDL is based on first order logic
with negation as failure; most notably it does not include
arithmetic that has to be defined as needed in the game
description. It is supplemented with a few keywords (see
table 1). Based on the Knowledge Interchange Format
(KIF), GDL has a syntax reminiscent of Lisp and is se-
mantically very similar to Datalog.
An extension of GDL, named GDL2, allows the

description of games with incomplete information
[Thielscher, 2010]. It adds only a keyword (sees p x) to
describe the percepts of each player. The player name
random is also reserved for a source of non-determinism.

(role p) p is a player
(legal p m) move m is legal for player p
(does p m) player p played the move m
terminal the match is finished
(goal p n) player p got n points (0 ≤ p ≤ 100)
(init x) x is true in the initial position
(true x) x is true in the current position
(next x) x will be true after the current move

Table 1: GDL keywords used to describe a game in the
context of first order logic.

These extensions to GDL have been proved to be suffi-
cient to make it universal [Thielscher, 2011].
Each year since 2005, there is an international GGP

competition hosted by the AAAI or IJCAI conferences
where different teams pit their players against each other
on new games designed by the organizers.

1.2 Monte-Carlo Tree Search

Since 2008, most of the players participating in the GGP
competition use some kind of Monte-Carlo Tree Search
(MCTS). The base of MCTS is to combine a stochastic
sampling of the search space and the buildup of a tree
of game positions linked by possible moves.
An exploration is made of four phases: selection of a

tree leaf, tree growth, playout to the end of the game
and update of the tree nodes.
The selection of a tree leaf is done with a descent in

the tree. During this descent, previous sampling results
are used to select the parts of the tree where exploration
is promising. When this descent reaches a node with
unplayed moves, a move is selected and a new leaf is
built and added to the tree, and a playout is performed:
successive moves are selected according to a given policy
and played until a terminal situation is reached. The
result, as described by the game rules, is used to update
the nodes and/or edges forming the path built during
the descent in the tree.
MCTS methods have been used with great success in

the game of Go, where they allow programs to reach the
level of the best human players on small boards. They
are now applied to many fields of Artificial Intelligence
with many variants [Browne et al., 2012]. An attrac-



tive characteristic of MCTS is that it does not rely on a
heuristic evaluation of a game situation. In GGP there
is no general method known to build a reliable heuristic.

Upper Confidence bound applied to Trees
During the descent phase, one has to make a com-
promise between exploration: the selection of less vis-
ited branches and exploitation: accumulating visits in
parts of the tree where previous samplings gave good
results. This dilemma is frequently solved using Upper
Confidence bound applied to Trees (UCT) [Kocsis and
Szepesvári, 2006].
With UCT, the move selected during the descent in

the tree is one that maximizes

µi + C ×
√

log(t)/si

where µi is the mean result of the playouts starting with
the move, t is the total number of playouts played in
the current node and si is the number of playouts start-
ing with this move. The constant C, named the UCT
constant is used to adjust the level of exploration of the
algorithm: high values favor exploration and low values
favor exploitation.

Rapid Action Value Estimates

When using bare UCT, the first move selections in a
given node of the tree have to be made according to a
statically encoded heuristic (not possible in GGP) or at
random, as long as there is not enough playout results
to guide the selection. To alleviate this inconvenience,
most Go playing program use some variant of All Moves
As First (AMAF): the back-propagation of the playout
results takes into account the move played and the sub-
sequent moves.
The currently most common variant of AMAF is Rapid

Action Value Estimates (RAVE): a node contains a table
associating legal moves with the results of all the play-
outs where these moves were selected during the playout.
This table is used to obtain a RAVE estimation that is
combined with the UCT estimation in a way that de-
pends on the number of playouts starting with this move:
the move choice is principally based on the RAVE esti-
mation when there are few playouts; the importance of
the UCT estimation grows with the number of playouts
starting with this move.

2 Implementation of RAVE in our

General Game Player

We detail here the precise implementation of RAVE in
our General Game Player that we used for the experi-
ments.
Each edge in the built part of the game tree contains

the mean result of the explorations that went through
this edge. Each node contains a RAVE table associating
each legal move with the mean result of all the playouts
that went through this node where this move was played
later on.
In the back-propagation phase, a RAVE estimation is

updated in each node with the mean playout results for
each legal move that was selected during the playout.

In the tree selection part, a move score is computed
as follows:

• if there was some playout starting with this move,
its score is the mean of the results of the playouts
that started with this move; if no playout has been
played starting with this move, it receives a default
mean score that we fixed to the maximum possible
result after informal tests. This ensures that un-
explored moves are preferred over sub-optimal ex-
plored moves.

• when the move was used at the beginning of a play-
out, the mean score is replaced by an UCT score
u using the upper confidence bound computed with
the usual UCT formula. This ensures that a move
giving always good results in a few playouts will
receive a better score than a never explored move.
As the number of experiments on this move grows,
the upper confidence bound on its mean value will
decrease and other moves will be explored. This
property is particularly desirable in GGP where the
number of playouts can remain small with the usual
time settings, due to GDL interpretation time.

• if the move was used later in some playouts, a
RAVE score r is computed as the mean of these
playout results; a RAVE influence factor α is com-
puted as α =

√

k/3t+ k and the move final score is
(1 − α)u + αr; k is the RAVE equivalence constant
balancing the weight of UCT and RAVE. RAVE
will influence the selection more when there are few
playouts while UCT will have the greatest influence
when the number of playouts grows.

Finally, the move is selected pseudo-randomly between
those having the maximum score.

3 Online adjustments of RAVE usage

Finsson et al. show in the context of General Game Play-
ing that RAVE can bring an advantage on some games
(Checkers, Othello) while it can be detrimental for some
others (Skirmish) [Finnsson and Björnsson, 2010].
What we are interested in is whether it is possible to

dynamically adapt the RAVE usage to the characteris-
tics of the game. The player has no knowledge of the
characteristics of the game and the static analysis of its
properties based on its description is difficult.
One would like to use online learning on the infor-

mation gathered in the first playouts to deduces some
properties of the game. Rave would be used only when
it is profitable.
When the tree is built and playout results are used in

the back-propagation phase to update the moves char-
acteristics in the nodes, data is accumulated on RAVE
and UCT estimations. We investigate how these data
can be used to adjust the RAVE usage.

4 Games we use

In this section, we present three games specifically de-
signed to present characteristics where RAVE gives a



significant advantage or disadvantage. They are tweaked
versions of Sum Of Switches games (SOS).
There are at least two kinds of situations where RAVE

is known to hinder the results of explorations. First when
a move is good if played as first move but bad if played
later; as the move played later leads to bad results, its
exploration as a first move is not encouraged by RAVE; it
occurs usually in Go in the context of semeai or tsumego
problems where the first move is crucial and has to be
played first to be of some value.
RAVE is detrimental in a second kind: when moves

are good when played later on but bad if played as first
moves. RAVE evaluation is so good that it favors their
exploration. It leads to bad choices of the part of the
game tree to explore. When the number of explorations
is used for the selection of the move to play actually it
can lead to the choice of a bad move. This typically
occurs in Go with ko threats: a ko threat is a good move
when played in the right time but is silly if played before
the beginning of the ko fight or when the ko can be taken
back. We are less interested by this class of games as it
does not seem to be a challenge in the current context
of GGP.
We use synthetic games to specifically embody these

situations: Blind Cashing Checks that was also stud-
ied in [Tom and Müller, 2010] under the generic name
Sum Of Switches and another tweaked version Cashing
Stale-dated Checks with characteristics of the first kind
that makes RAVE detrimental. We also present another
tweaked version of Cashing Checks that we call Cashing
Post Dated Checks that belongs to the second kind.

4.1 Sums of switches: Cashing Checks

Berlekamp and al. present the family of games named
Cashing Checks [Berlekamp et al., 1982, p. 120]. The
material is a set of bearer checks for certain amounts; a
player move consists in taking one of the checks for his
own. At the end of the game, the sum of each player
checks are summed up and the winner is the player that
holds the largest amount.
This game is a Sum Of Switches (SOS); in the context

of Combinatorial Game Theory it is a sum of sub-games
the values of which are either +n or −n depending on
the player who takes the check; these are switches, noted
±n.
The best strategy is naturally to take the check for the

largest amount that remains on the board. In a game
starting with k checks with amounts ni, the first player
will score

∑

1<2i<k
n2i and the second

∑

0<2i+1<k
n2i+1

when ni ≥ ni+1.

4.2 Blind Cashing Checks

The game becomes more interesting when the players
are innumerate, i.e. are not able to read or compare
numbers: they have to select the checks without knowl-
edge of the amount that is written on it. At the end of
the game, an arbiter sums the amounts gained by each
player and announces the winner. This final result is
the only clue the players get on the value of the checks.

We call this game Blind Cashing Checks. This game
was already used to study properties of RAVE [Tom and
Müller, 2010].
RAVE works well for a MCTS player at Blind Cashing

Checks: the player who takes the checks with the largest
amounts wins this playout, without consideration of the
turn where she took the check, so RAVE will promote
the choice of these checks in the first turns, leading to
the winning strategy.
The difficulty of the game can be adjusted by varying

either k the number of turns or N the number of checks
as long as N > k. As Tom et al., we use checks referring
to the first N non null positive integers and compensate
for the first player advantage by setting a komi of k/2.
If both players play optimally the sums of the amounts
written on checks held by both players (plus komi for
the second player) are equal and the game is declared a
draw.

4.3 Cashing Stale-Dated Checks

We tweak the game of Cashing Checks to have a game
where RAVE will be detrimental: on each check we add
a limit of validity under the form of a turn of the match;
if a player takes a check before this turn, she cashes the
amount written on the check; if she takes it after this
turn, the date is stale and it gives no point at all.
The date of each check is the turn where it is taken

when both players play the optimal strategy at Blind
Cashing Checks. The check with the biggest value
amounts to zero after the first move, the second one af-
ter the second turn and so on. This modification to the
game allows to modelize the situations where RAVE is
a disadvantage because a move is good if played as first
move but bad if played later.
The limit of validity of the checks introduces another

winning strategy: a winning move for a player is either
to take the valid check with the largest amount or to take
the check with the next amount, as the check with the
largest amount will give nothing after this move. This
way, the first player can force the second player to take
a check that amounts to nothing at the last turn if the
number of checks and the number of turns are equal. To
avoid this issue we use at least one more check than there
are turns in a match (i.e. N > k).

4.4 Cashing Post Dated Checks

Another variation is Cashing Post Dated Checks. In this
game, each check is dated with a turn; it amounts to
nothing if taken before this turn and for the sum written
on it if taken on this turn or any subsequent turn.
We set the date for each check according for this

amount: a check for a sum of N − k + i is valid only
on turn i and subsequent turns. The optimal strategy
for both players is then to take the checks in the reverse
order, starting with the one that has the least amount
and finishing with the one with the biggest amount. A
reverse komi compensates the advantage of the second
player.
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Figure 1: The percentage of matches with optimal draws
at Blind Cashing Checks as a function of the number of
playouts per move.

This allows to modelize the situation when a move is
good if played at the right time but bad if played sooner.
We did not use this game in the experiments as this does
not seem to be a crucial issue in the current common
General Game Playing settings.

5 Experimental settings

For the experiments we have used a GDL description
of Blind Cashing Check using twenty checks and ten
turns with a komi of five points. For Cashing Stale-
dated Checks the number of turns was also set to ten
but the number of checks was limited to twelve to give
comparable results.
Both players were instances of our General Game

Player Ary [Méhat and Cazenave, 2010] in its usual set-
ting: UCT with an exploration constant of 0.4 (actually
40 since the reward of a player can vary between 0 and
100) and transposition tables.
For the experiments, two players with the same pa-

rameters played together for 500 complete matches and
the percentage of draws with optimal moves by both
players (optimal draw) was counted; a larger percentage
indicates that the players played well, so the value of the
parameter is well suited to the task at hand.
To fix the number of playouts used by the players to

select a move, we studied the results obtained when this
number varies. The results are presented in figure 1: the
results are better as the number of playouts grows but
not linearly. Later on, we set the number of playouts to
2000 for the experiments, where the number of optimal
draws was over 50% in order to leave some space for
improvements when RAVE is used.
With the previous settings, the value of the RAVE

equivalence constant was made to vary for the games
Blind Cashing Checks and Cashing Stale-dated Checks
(see figure 2). As the value of the equivalence constant
becomes greater, the level of play gets better at Blind
Cashing Checks and gets worse at Cashing Stale-dated
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Figure 2: The percentage of matches with optimal moves
of both players at Blind Cashing Checks and Cashing
Stale-dated Checks as a function of the RAVE equiva-
lence constant.

Checks. Here also the influence on the results is more
obvious for the small values of the constant.
Given these results, we choose to set the RAVE equiv-

alence constant to 700 for the following experiments, as
this value appears in the floor where small modifications
of the constant do not modify significantly the results.

6 Using RAVE only for some choices

We first explore what happens when a player uses RAVE
for some choices during the descent and does not use it
for others. With the RAVE equivalence constant set to
700, we vary the percentage of children selections in the
descent phase of UCT where RAVE is used.
As it descends in the built tree, a (pseudo-)random

number is used to decide if the next edge will be chosen
using only UCT or if RAVE is to be used as described in
section 2. The results give a measure of the importance
of using RAVE or not using it systematically on every
choice.
The results are summarized in figure 3: as expected,

the level of play, reflected by the number of draws, di-
minishes for Blind Cashing Checks as RAVE is used more
often, while it gets better for Cashing Stale-dated Checks.

7 Comparing observed results and

RAVE predictions

As the tree is built, the results of the playouts are ac-
cumulated in the edges and the nodes to be used as a
basis for the predictions of UCT and RAVE. We propose
to compare observed results with the RAVE predictions
to get an evaluation of when to use RAVE. This evalu-
ation will not be precise, but as shown by the previous
experiment, one can expect to get a result that is better
than a fit for all setting and that is proportional to the
precision of the evaluation.
As a measure of the precision, we sum at the root node

the number of playouts for the moves where RAVE gave
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Figure 3: The percentage of draw games with optimal
play of both players at Cashing with Stale-dated Checks
and their mean as a a function of the RAVE usage.
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Figure 4: The percentage of optimal draws at Blind
Cashing Checks and Cashing Stale-dated Checks as a a
function of the margin used to consider RAVE move pre-
diction for to be too optimistic.

an estimation that was higher than the observed mean
result and the number of moves where it is lower, with
an error margin. When the number of playouts starting
with moves where RAVE was optimistic is greater than
the number of moves where it is pessimistic, RAVE is
used for the choices of children of the next descent in
the built tree.
The results are presented in figure 4. The level of

play at Cashing Stale-dated Checks stays about the same
when the margin augments, while it decreases at Blind
Cashing Checks.
When the margin is set to 0, the percentage of optimal

draws is 91.40 % at Blind Cashing Checks and 47.20 %
at Cashing Stale-dated Checks. This figures are to be
compared with those obtained with the best setting for
a game: 93.39 % at Blind Cashing Checks when always
using RAVE and 49.10 % at Cashing Stale-dated Checks
when never using RAVE: the player adapts successfully
its use of RAVE to the game at hand.

8 Conclusion and perspectives

We have shown that it is possible to use the compari-
son of the mean results observed during playouts with
the results predicted by RAVE. We can then the use of
RAVE to the characteristics of the game at hand and
get an overall result that is equivalent to what one can
obtain with an usage of RAVE tuned before the match
beginning.
The results presented here were obtained on synthetic

games; the observations have to be extended to real
games whose characteristics regarding RAVE are less
bold and in realistic playing situations where the num-
ber of playouts can be much smaller due to slowness of
the GDL interpretation.
There are many other ways to measure the correlation

between observed playout results and RAVE predictions
that have be explored. We intend to investigate if this
correlation can be used to adapt the value of the RAVE
equivalence constant.
The method used here would not work in another syn-

thetic game built by summing the two games used, for
example alternating a move in Blind Cashing Checks and
a move in Cashing Stale-dated Checks because the com-
parison between observed results and RAVE prediction
was always calculated on the root node. It would be
possible to observe this correlation at every node when
it stores enough playouts results.
More generally, the method presented here uses infor-

mation that is already present in the tree built by the
MCTS to determine characteristics of the game it plays.
It could also be interesting outside of GGP for games
when characteristics vary depending on the position.
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Annex: Blind Cashing Checks GDL

Description

(nstep 10) ; ten steps
(maxvalue 20) ; twenty checks
(komi 5) ; komi is 5 points

;; two players
(role left)
(role right)

;; legal moves
(<= (legal ?p ?v )

(true (control ?p))
(value ?v)
(not (true (played ?v ?s))))

(<= (legal ?p noop)
(true (notcontrol ?p)))

;; alternate play
(init (control left))
(init (notcontrol right))
(<= (next (control ?p)) (true (notcontrol ?p)))
(<= (next (notcontrol ?p)) (true (control ?p)))

;; turns
(init (step 0))
(<= (next (step ?n+1))

(true (step ?n))
(+ 1 ?n ?n+1))

(<= terminal (nstep ?nstep) (true (step ?nstep)))

;; maintain sum for each player
(init (sum left 0))
(init (sum right 0))

(<= (next (sum ?p ?n+m)) ; play valid check
(role ?p)
(true (sum ?p ?n))
(does ?p ?m)
(+ ?m ?n ?n+m))

(<= (next (sum ?p ?n))
(role ?p)
(true (sum ?p ?n))
(does ?p noop))

;; do not take the same check twice (with transpo)
(<= (next (played ?v ?s)) (true (played ?v ?s)))
(<= (next (played ?v somestep)) (does ?p ?v))

;; goal
(<= l>r

(true (sum left ?l))
(true (sum right ?r))
(komi ?k)
(+ ?k ?r ?r+k)
(gt ?l ?r+k))

(<= r>l
(true (sum left ?l))
(true (sum right ?r))
(komi ?k)
(+ ?k ?r ?r+k)
(gt ?r+k ?l))

(<= (goal left 100) l>r)
(<= (goal left 0) r>l)

(<= (goal right 0) l>r)
(<= (goal right 100) r>l)

(<= (goal ?p 50)
(role ?p)
(not l>r)
(not r>l))

; values of the checks
(<= (value ?n)

(gt ?n 0)
(maxvalue ?max)
(not (gt ?n ?max)))

;; arithmetic: addition, comparison
(<= (+ 0 ?x ?x))
(<= (+ ?a ?b ?a+b)

(++ ?a-1 ?a)
(++ ?b ?b+1)
(+ ?a-1 ?b+1 ?a+b))

(<= (gt ?a ?b) (++ ?b ?a))
(<= (gt ?a ?b) (++ ?a-1 ?a) (gt ?a-1 ?b))

;; integers
(++ 0 1) (++ 1 2) ...


