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Abstract 

 

Starting from the well-known and historic eigenvalue equations describing the behavior of 3-layer and 

4-layer slab waveguides, this paper presents another specific analytical framework providing time-

laws of evolution of the effective propagation constant associated to such structures, in case of 

temporal variation of its various geometrical features. So as to develop such kind of time-propagator 

formulation and related principles, a temporal derivation operator is applied on the studied school case 

equations, considering then time varying values of all the geometrical characteristics together with the 

effective propagation constant. Relevant calculations are performed on three different cases. For 

example, we first investigate the variation of the height of the guiding layer for the family of 3-layer 

slab waveguides: then, considering the 4-layer slab waveguide’s family, we successively address the 

variation of its guiding layer and of its first upper cladding. As regards the family of 4-layer 

waveguides, calculations are performed for two different families of guided modes and light cones. 

Such another approach yields rigorous new generic analytical relations, easily implementable and 

highly valuable to obtain and trace all the family of dispersion curves by one single time-integration 

and one way. 

 

1. Introduction and background 

 

Guided optics has known a considerable evolution since the demonstration of the possibility to guide 

light by refraction in the mid-nineteenth century by Daniel Colladon [1] and John Tyndall [2]. Both a 
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robust theoretical framework [3,4] and a wide range of technological applications have been 

developed [5-7]. Concerning the theoretical framework, mainly two kinds of families of waveguide 

geometries are analytically described by an eigenvalue equation: the pure cylindrical symmetry and 

the planar symmetry waveguide structures made of several different layers. Most of the other 

geometries need appropriate approximations (such as the pure Galerkin method or equivalent [8, 9], 

more generally based on spectral method and minimization of residu on approximated functions [10], 

the Marcatili's method and hybrid one [11, 12]), or a step-by-step numerical resolution with a 

segmentation of the space (multilayer matrix method or finite difference time domain method [13-16] 

applied on conformal transformation [17, 18]). The eigenvalue equations regarding the analytically 

described geometries are derived by solving the Maxwell's equations in all regions of the global 

structure, and by properly applying the continuity conditions of the electro-magnetic fields. The opto-

geometrical characteristics of the waveguide entail the emergence of a quantification of the modes 

(called eigenvectors) that can exist within the structure (TE, TM, HE, EH, LP), with indices 

highlighting the effective number of space-directions being subjected to quantification. For example, 

the guided modes belong to the light cone of the guiding structure, i.e., in the geometrical optics 

framework, these modes are coupled with the structure from a region of space allowing total internal 

reflection inside the structure. Each one of these modes is associated with an effective propagation 

constant (eigenvalue); the propagation constant is thus directly correlated to the opto-geometrical 

characteristics of the overall structure (excitation wavelength λ, refractive index of each part of the 

structure ni and various spatial geometrical dimensions noted dimi, i integers, Fig. 1). This dependency 

between dimension and propagation constant is entirely summarized by the dispersion curve 

associated with the structure. The dispersion curve is a tool valuable in numerous fields of physics and 

represents the interdependency between two different physical magnitudes of the studied system. In 

case of guided optics, this dispersion curve provides a link between the effective propagation constant 

and the previously described opto-geometrical features of the guiding structure (Fig. 1). The 

correlation between the effective propagation constant and the opto-geometry is highlighted by the 

above-mentioned eigenvalue equation (or dispersion relation) noted E.v.eq which mathematically 

corresponds to a functional Ƒ of the different parameters of the system: 𝐸. 𝑣. 𝑒𝑞 = Ƒ(𝜆, 𝑛𝑖, 𝑑𝑖𝑚𝑖) 

(here, the different dimi can be considered both as variables or as fixed parameters). Each set of 

parameters is associated to a unique family of dispersion curves (Fig. 1); any change of one of these 

parameters yields a change of the shape of the dispersion curves. The resolution of these eigenvalue 

equations for a given set of opto-geometrical parameters yields the set of related effective propagation 

constant β of the optical modes propagating in the structure, which is defined by: 

β = k. neff =
2π

λ
. neff (1) 

 



with 𝑘 the vacuum wave number, 𝑛𝑒𝑓𝑓 the effective refractive index associated to the mode and 𝜆 the 

vacuum wavelength. 

In this paper, we theoretically investigate the correlation between the evolution of time-varying 

geometrical features of families of slab guiding structures and their associated effective propagation 

constant. To this end, a temporal derivation operator 
𝑑

𝑑𝑡
 is applied onto the generic eigenvalue equation 

regarding the whole family of structures, considering time-dependent values of the studied geometrical 

dimension (dim≡dim(t)) with the effective propagation constant (β≡β(t)), and constant values of λ and 

optical indices. This operation is tantamount to determining a kind of evolution propagator on the 

eigenvalue equations. Such a way to proceed yields analytical relations shaped as 
𝑑(𝑑𝑖𝑚)

𝑑𝑡
= 𝑓 (

𝑑𝛽

𝑑𝑡
) 

enabling to represent the global dynamic displacement along all the family of dispersion curves as 

geometrical dimensions vary. The time derivation operator (TDO) formulation is performed on the 

eigenvalue equation of both different essential basic slab-structures: the 3-layer and the 4-layer 

waveguides. As the eigenvalue equations are derived for constant values of β, we assume that the time 

variation of the geometrical feature is slow enough to perform an adiabatic evolution treatment. For 

the 3-layer waveguide (Fig. 2(a)), we consider a temporal variation of the height noted 2h(t) of the 

guiding layer. As regards the 4-layer waveguide (Fig. 2(b)), two cases are considered: firstly, we 

consider a temporal variation of the height of the guiding layer 2h(t) with a constant height of the first 

upper cladding 2e(t) before dealing with the opposite situation. For both of these 4-layer cases, the two 

families of guided modes are investigated [19]. Such an approach should be quite valuable in applied 

electromagnetism so as to describe numerous processes: for example while monitoring; a direct layer 

deposition as a growth process, a processes of sedimentation and soft matter creaming, or etching 

processes. The results obtained by this model have been compared to COMSOL numerical simulations 

and show a good agreement. 

 

2. Time derivation formulations and analytical variational expression of 

eigenvalue equations 

 

2.1 Family of 3-layer slab waveguides 

 

Figure 2(a) depicts a schematic representation of the family of 3-layer slab waveguides. We consider 

the layer of index n1 (n1>n3 ,n4) with height 2h≡ 2ℎ(𝑡) as the guiding layer of such structures. All the 

effective propagation constants of guided modes thus verify the light’s cone n1>neff>n3, n4. The 

generic eigenvalue equation ruling all 3-layer slab waveguides is [3, 4]: 

 

2h(t)q = Arctg (
p

q
) + Arctg (

r

q
) + mπ, (2) 



  

with  𝑞 = √(𝑘0𝑛1)2 − 𝛽2 , 𝑟 = √𝛽2 − (𝑘0𝑛3)2 , 𝑝 = √𝛽2 − (𝑘0𝑛4)2 , h the half height of the 

guiding layer and m the order of the considered mode. The optical indices act in the expression of the 

projection of the wave vector perpendicular to the plane of the layers (considering Pythagore with a 

zig-zag geometric-optical ray vision). 

 

We consider the temporal variation of h and relate it to the temporal variation entailed on the effective 

propagation constant β≡ 𝛽(𝑡). To do so, the above equation is re-written as:  

 

h =
Arctg (

p
q

) + Arctg (
r
q

) + mπ

2q
 (3) 

 

Then, a temporal derivation operator 
𝑑

𝑑𝑡
 is applied in order to express 

𝑑ℎ

𝑑𝑡
 in terms of 

𝑑𝛽

𝑑𝑡
.  The first step 

of this calculation allows to compute each derivative of parameters p, q and r, considering time 

dependent values for β and constant values of k and each ni (i=1,3,4). 

 

dq

dt
=

−β

q

dβ

dt
,

dp

dt
=

β

p

dβ

dt
,

dr

dt
=

β

r

dβ

dt
 (4) 

 

Then, we can compute the derivatives regarding the arguments as quotients of the Arctg function:  

d

dt
(

p

q
) =

q2 + p2

pq3
β

dβ

dt
,

d

dt
(

r

q
) =

q2 + r2

rq3
β

dβ

dt
 (5) 

 

Both varying terms of the numerator of equation (3) may be written as: 

 

d

dt
(Arctg (

p

q
)) =

q2 + p2

pq3 + qp3
β

dβ

dt
,

d

dt
(Arctg (

r

q
)) =

q2 + r2

rq3 + qr3
β

dβ

dt
 (6) 

 

From these calculations, the derivative of the height of the guiding layer comes up as: 

 

dh

dt
= (

1

2q
(

q2 + p2

pq3 + qp3
+

q2 + r2

rq3 + qr3) +
1

2q3
(Arctg (

p

q
) + Arctg (

r

q
) + mπ)) β

dβ

dt
 (7) 

 

This result can be re-written and formulated as a generic form, 

(8) 



dh

dt
=

α1 + ξ1 (Arctg (
p
q

) + Arctg (
r
q

) + mπ)

σ1
β

dβ

dt
 

with, 

α1 = rq5 + q3r3 + rp2q3 + qp2r3 + pq5 + q3p3 + pr2q3 + qr2p3, 

ξ1 = prq4 + pr3q2 + rpq4 + r3p3, 

σ1 = 2prq7 + 2pr3q5 + 2rp3q5 + 2r3p3q3, and  defined in eq. (1). 
 

 

2.2 Family of 4-layer slab waveguides 

 

Considering 4-layer slab waveguides, two cases are dealt with: first, we consider a time dependent 

value of the height of the guiding layer and a constant value of the height of the first upper cladding 

(h≡h(t) and e=constante): conversely, we consider the opposite case (h=constant  and e≡e(t)). For 

each one of these configurations, two families of guided modes exist: (i) a strongly confined mode 

with effectiveindex values verifying n1>neff>n2>n3, n4 and (ii) a weakly confined one for which 

n1>n2>neff>n3, n4. Both families may be studied in parallel thanks to a double notation in the following 

equations: the upper notation |■
 
 corresponds to the family of modes verifying condition (i) and the 

lower one |  
■

 is related to condition (ii). The structure of a 4-layer slab waveguide is depicted in figure 

2(b). The eigenvalue equation describing the behavior of such a waveguide is [18]: 

 

2hq = Arctg (
p

q
) + Arctg (

s

q
|
th (Arcth (

r
s
) + 2es)

tg (Arctg (
r
s) − 2es)

) + mπ (9) 

 

with q, r and p defined the same way as that of the 3-layer waveguide analysis, and 

𝑠 = |
√𝛽2−(𝑘0𝑛2)2

√(𝑘0𝑛2)2−𝛽2
. So as to investigate the effect of any change regarding the height of the guiding 

layer, equation (9) may be re-written: 

h =

Arctg (
p
q) + Arctg (|

s
q

th(Arcth(
r
s

)+2es)

s
q

tg(Arctg(
r
s

)−2es)
) + mπ

2q
 

(10) 

 

The time derivative of q, r and p are given in equation (4), and 
𝑑𝑠

𝑑𝑡
 verifies: 

ds

dt
=

|+
−

β

s

dβ

dt
 (11) 

 

This allows us to compute the derivatives of the different ratios: 



d

dt
(

p

q
) =

q2 + p2

pq3
β

dβ

dt
,

d

dt
(

r

s
) =

s2|−
+

r2

rs3
β

dβ

dt
,

d

dt
(

s

q
) =

s2|+
−

q2

sq3
β

dβ

dt
, (12) 

 

as well as the derivatives of the functions Arctg and Arcth: 

d

dt
(Arctg (

p

q
)) =

q2 + p2

pq3 + qp3
β

dβ

dt
,

d

dt
(|

Arcth (
r
s
)

Arctg (
r
s
)

) =
s2|−

+
r2

rs3|−
+

sr3
β

dβ

dt
, (13) 

 

To proceed further with the calculations and so as to lighten the expressions, we define: 

τh = |
th (Arcth (

r
s
) + 2es)

tg (Arctg (
r
s
) − 2es)

 (14) 

 

Derivating this quantity with respect to time yields: 

 

dτh

dt
=

s2|−
+

r2|−
+

2ers2 + 2er3|−
+

(s2|−
+

r2|−
+

2ers2 + 2er3)τh
2

rs3|−
+

sr3
β

dβ

dt
 (15) 

 

Then, we can compute the derivative of the second term of the numerator of equation (11): 

 

(16) 

d

dt
(Arctg (

s

q
τh)) =

Θ

Γ
β

dβ

dt
 

with: 

Θ = q2s3|−
+

sr2q2|−
+

2erq2s3 + 2esq2r3 + (rs4|−
+

s2r3 + rs2q2|+
−

q2r3)τh|−
+

(q2s3|−
+

sr2q2|−
+

2erq2s3 +

2erq2r3)τh
2 ,  

and  Γ = rs3q3|−
+

sr3q3 + (rqs5|−
+

qs3r3)τh
2  . 

 

Furthermore, after combining the previous results and simplifying the expressions, the time derivative 

of the height of the guiding layer is given by: 

(17) 

dh

dt
=

αh + γhτh + κhτh
2 + ξh (Arctg (

p
q) + Arctg (

s
q τh) + mπ)

σh + χhτh
2 β

dβ

dt
 

with, 

αh = rs3q5|−
+

sr3q5 + rp2s3q3|−
+

sp2r3q3 + ps3q5|−
+

spr2q5 + q3p3s3|−
+

sr2q3p3|−
+

2erps3q5 +

2espr3q5|−
+

2erq3p3s3 + 2esp3q3r3, 
 



γh = prq3s4|−
+

ps2r3q3 + qrp3s4|−
+

qs2r3p3 − prs2q5|+
−

pr3q5 − rs2p3q3|+
−

q3p3r3, 

κh = rq3s5|−
+

q3s3r3 + rqp2s5|−
+

qp2s3r3|−
+

ps3q5 + psr2q5|−
+

q3p3s3 + sr2p3q3 +

2erps3q5|−
+

2espr3q5 + 2erq3p3s3|−
+

2esq3p3r3, 

ξh = rps3q4|−
+

spr3q4 + rp3s3q2|−
+

sp3r3q2 + (rpq2s5|−
+

ps3r3q2 + rp3s5|−
+

p3s3r3)τh
2, 

σh = 2rps3q7|−
+

2spr3q7 + 2rp3s3q5|−
+

2sp3r3q5, 

χh = 2rpq5s5|−
+

2ps3r3q5 + 2rq3p3s5|−
+

2q3p3s3r3, and  defined in eq. (1). 

 

Although equation (11) suits well for the study of the first case (h≡h(t) and e=constante), it comes up 

as inappropriate for the second one. Then, to study the case e≡e(t) and h=constante, it is re-written: 

 

e =

|−Arcth
Arctg

(
r
s
) |+Arcth

−Arctg
(

q
s

tg (2hq − mπ − Arctg (
p
q

)))

2s
 

(18) 

 

Here, so as to find a relation between 
𝑑𝑒

𝑑𝑡
 and 

𝑑𝛽

𝑑𝑡
, the same methodology as before is applied. We thus 

compute the time-derivative of the 
q

s
 ratio: 

d

dt
(

q

s
) =

|−
+

q2 − s2

qs3
β

dβ

dt
 (19) 

 

Then, we may define a parameter 𝜏𝑒 before computing its time derivative: 

τe = tg (2hq − mπ − Arctg (
p

q
)) (20) 

 

dτe

dt
=

−2hpq2 − 2hp3 − q2 − p2 + (2hpq2 − 2hp3 − q2 − p2)τe
2

pq3 + qp3
β

dβ

dt
 (21) 

 

Then comes the derivative of the second term of the numerator of equation (18): 

(22) 

d

dt
(|

Arcth

Arctg
(

q

s
τe)) =

Δ

Ζ
β

dβ

dt
 

with, 

Δ = −2hps2q3 − 2hqs2p3 − s2q3 − qs2p2 + (|−
+

pq4|−
+

q2p3 − ps2q2 − s2p3)τe + (−2hps2q3 −

2hqs2p3 − s2q3 − qs2p2)τe
2, 

and, Ζ = pq3s3 + qp3s3|−
+

(psq5 + sp3q3)τe
2. 

 



Finally, by combining the previous different results, the time-derivative of e is: 

(23) 

de

dt
=

αe + γeτe + κeτe
2|−

+
ξe (|Arcth

Arctg
(

r
s
) − |Arcth

Arctg
(

q
s

τe))

σe + χeτe
2 β

dβ

dt
 

with, 

αe = |
−

+
rq3s5 |

−

+
qrp2s5 + s3q3r3 + qp2s3r3 |

−

+
pq3s5 |

−

+
qp3s5 + pr2q3s3 + qr2p3s3 |

−

+
2hprq3s5 

|−
+

2hqrp3s5 + 2hpq3r3s3 + 2hqp3r3s3, 

γe = |−
+

prq2s5|−
+

rp3s5 − rps3q4 − rq2p3s3 + pq2s3r3 + p3r3s3|+
−

psr3q4|+
−

sq2p3r3, 

κe = |
−

+
rq3s5 + q3s3r3 |

−

+
rqp2s5 + qp2s3r3 + ps3q5 + q3p3s3 |

−

+
spr2q5 |

−

+
sr2p3q3 

|−
+

2hprq3s5|−
+

2hqrp3s5 + 2hpq3r3s3 + 2hqp3r3s3, 

ξe = |−
+

rpq3s4|−
+

qrp3s4 + pr3q3s2 + qr3p3s2 + (prs2q5 + rp3q3s2|−
+

pr3q5|−
+

r3p3q3)τe
2, 

σe = 2prq3s7 + 2qrp3s7|−
+

2pr3q3s5|−
+

2qr3p3s5, 

χe = |−
+

2prs5q5|−
+

2rp3q3s5 + 2pr3s3q5 + 2r3p3q3s3, and  defined in eq. (1). 

 

 

This analysis provides a valuable analytical link between the variation of geometrical features of the 

global dimensions structures and the correlated changes of all the effective propagation constants 

describing their associated modes. Each case we have investigated here yields the same generic 

architecture of relation, yet some significant differences are remarkable. Differences between 3-layer 

and 4-layer slab waveguides are easily identifiable; they rely on the presence of the factor 𝜏ℎ 

(respectively 𝜏𝑒) defined with equation (16) (respectively (20)) also present in the final relation (17) 

(respectively (23)). Considering the expressions of the variation of the guiding layer of the family of 

4-layer slab waveguides for strongly and weakly guided modes, the only differences concern their sign 

and the expression of 𝜏ℎ. Such sign differences are partially due to the definition of the parameter s 

whose time derivative only yields unlike signs between the strongly and the weakly guided mode. The 

other cause of these changed signs is due to both hyperbolic tangent and hyperbolic arctangent 

functions in the strongly confined mode configuration instead of the conventional tangent and 

arctangent functions relevant with the weakly confined mode. Naturally, the time derivation of these 

terms yields only unlike signs. Eventually, the main difference between relations describing time 

varying guiding layer and time varying first upper cladding is in their dependence as regards the order 

m of the considered mode. Indeed, in the case of time varying guiding layer this dependency only 

occurs with the factor noted 𝜉ℎ: conversely, considering the time varying first upper cladding, the 

order m of the mode is present in the parameter 𝜏𝑒; Hence, the influence of the mode order is more 

significant in the case of time varying first upper cladding. 

 



 

3. Numerical implementation and discussion 

 

Numerical implementations of the previous relations have been performed through Matlab programs. 

These implementations aim at plotting the temporal derivative of the effective index (
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
=

1

𝑘
.

𝑑𝛽

𝑑𝑡
) 

against time for different sets of opto-geometrical parameters and for different rates of variation of the 

geometrical features of the structures (
𝑑ℎ

𝑑𝑡
 and 

𝑑𝑒

𝑑𝑡
). For all the following computations, we consider 

negative values of  
𝑑ℎ

𝑑𝑡
 and 

𝑑𝑒

𝑑𝑡
, i.e. decreasing values of h and e against time, a wavelength 𝜆 = 0.8 µ𝑚 

and only the first mode (m=0) is investigated. 

First, we consider the asymptotic case. Figure 3.a represents 
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 against time for a 3-layer slab 

waveguide and a 4-layer slab waveguide for which 2𝑒 → ∞. These two structures yields the same set 

of parameters (refractive index, initial height of the guiding layer, rate of variation of this height) in 

order to compare the results in a relevant way. The relative error between these two curves is plotted in 

figure 3.b. This graph shows that these two cases are numerically equivalent with a maximum relative 

error below 0.6%. The maximum of relative error occurs at the end of the decrease of the height of the 

guiding layer, i.e. when 2h is close to the cutting height of the mode. 

Let us now investigate the influence of the rate of variation of the geometrical features. To do so, we 

plot 
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 against time (figure 4 (a)) for a 4-layer structure yielding a variation of the height 2h of the 

guiding layer, for three different values of the rate 
𝑑ℎ

𝑑𝑡
= −0.1 µ𝑚. 𝑠−1  ; −0.5 µ𝑚. 𝑠−1 ; −1 µ𝑚. 𝑠−1. 

The other parameters are the initial value of the height of the guiding layer 2ℎ(𝑡=0𝑠) = 1µ𝑚, the 

height of the first upper cladding 2𝑒(𝑡=0𝑠) = 0.4µ𝑚 and the set of indices (𝑛1; 𝑛2; 𝑛3; 𝑛4) =

(2; 1.8; 1; 1.5). The plot figure 4 clearly yields that the ratios between the different values of 
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 is 

equal to the ratio between the corresponding 
𝑑ℎ

𝑑𝑡
, which is easily predictable from equation (17). 

Concerning the values of the times at which the mode disappear, their ratio are equal to the inverse of 

the ratio between the corresponding 
𝑑ℎ

𝑑𝑡
. In addition, a simulation under COMSOL on a specific 

structure corroborates this slope, this time considering two close structures to calculate the rate of 

change neff (Fig. 4 (b) and Table 1). 

The influence of the set of indices is investigated in figures 5.a and 5.b, which represent the evolution 

of 
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 against time for a 4-layer structure yielding varying value of the height of the first upper 

cladding, for strongly and weakly guided mode respectively. The parameters taken for this simulation 

are 2ℎ(𝑡=0𝑠) = 0.4 µ𝑚, 2𝑒(𝑡=0𝑠) = 1 µ𝑚, 
𝑑𝑒

𝑑𝑡
= −0.1 µ𝑚. 𝑠−1 and the investigated set of indices are 



(n1; n2; n3; n4) = (2; 1.5; 1; 1) ; (2; 1.8; 1; 1.5) ; (2; 1.8; 1.5; 1.5). We can see from the graph that the 

more the mode is confined (great difference between the values of indices) the more abrupt is the 

slope. Another remarkable property is that the red curve begins to increase before the blue one, which 

begin to increase before the black one. The reason is that the evanescent part (strongly confined mode) 

or the oscillating part (weakly confined mode) present in the 𝑛2 layer is more sensitive to the index 𝑛3 

in the red curve case because the difference 𝑛2 − 𝑛3 is greater. Concerning the black curve, as the 

difference 𝑛1 − 𝑛2 is greater than for the other two cases, there is less energy in the 𝑛2 layer so the 

influence of the 𝑛3 layer is weaker. Similarly, simulations under COMSOL prove the correspondence 

in terms of variation of the eigenvalue as the dimensions of the structure change (Fig. 5 (c) and (d) 

plus Table 2). 

The TDO formulation starts from an initial condition, defining a starting point in the eigenvalue 

equation (that is a starting opto-geometric structure), then it deploys its evolutionary principle by 

giving access to the variation of the eigenvalue when the dimensions of the structure changes over 

time. 

 

4. Conclusion 

This work presents the derivation of generic and rigorous analytical expressions evolutive in time 

regarding the propagation constant for various families of slab waveguides in case of temporal 

variation of their geometrical characteristics.  

 

Since the theoretical framework presented in this article hinges on analytical expressions, it provides a 

valuable tool, easily implementable for numerical computation in one way. Graphically, these 

expressions are interpretable as a temporal displacement along all the family of dispersion curves of 

the investigated versatile structures and modes; computing their integral along time obviously leads to 

the original and generic eigenvalue equations (2) and (9), which gives all the families of dispersion 

curves (Fig. 1). Their physical meaning, based on the link between 
𝑑𝛽

𝑑𝑡
 and 

𝑑(𝑑𝑖𝑚)

𝑑𝑡
, put them up as 

specific evolution laws of the propagation constant during any growth or deposition process or during 

an attack or etching process as regards shaping a given structure: Thus, a direct in-situ monitoring 

becomes possible during thin layer deposition processes in ultra-high-vacuum chambers. The analysis 

has been performed with 3-layer and 4-layer slab waveguides. In the latter case, the investigation has 

been carried out for both the variation of the guiding layer and of the first upper cladding, and for the 

two different families of guided modes. The results computed by the proposed TDO method have been 

compared to numerical calculations obtained via COMSOL simulations and are in good agreement. 

Dynamics and therefore evolution are intrinsically contained in the TDO formulation, with the 

possibility of obtaining a whole family of structures at one time. The advantage brought by this TDO 

model compared to other numerical simulations, besides that it provides analytical expressions that 



contain the dynamic, resides in the fact that the other numerical simulations can only resolve static 

structures, step by step. The simulations have thus to be performed at every time step which take a 

great amount of time, whereas the proposed TDO formulation (eqs. (8), (17) and (23)) can be 

implemented on a regular computer via Matlab or Python for example, and give results within a few 

seconds. Furthermore, in a theoretical view, an extended and comprehensive study could be performed 

in order to determine the overall dynamics of the effective propagation constants in case of the 

temporal variation of both the above-mentioned layers at the same time. By considering the temporal 

variation of both 2h(t) and 2e(t) in the 4-layer family waveguides, the time-derivation of equations 

(10) and (18) should lead to a system of two coupled equations whose resolution should be equivalent 

to the displacement associated with a set of 2D dispersion maps vision instead of a set of 1D 

dispersion curves. This model is valid not only for dielectric materials, but also in the presence of a 

metallic layer, as the eigenvalue equations from which our expressions have been derived are valid 

whatever the material (see section 2.5 of reference [3]). In the case of the presence of a metallic layer, 

when plasmonic waves can establish, one must take into account the imaginary part of the permittivity 

ε = (n + iK)
2
 of the metal. The value of n

2
 used in the calculations has thus to be modified to (n

2
 – K

2
) 

in order to describe the physical behavior of a waveguide comprising a metallic layer, including the 

propagation of plasmonic waves. Extended studies should also be performed in order to investigate the 

influence of the temporal variation of the opto-geometrical parameters of more complex photonic 

structures such as rib waveguide, optical fiber, slab waveguide of an arbitrary large number of layers 

and metal layers. 
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Figures captions 

 

Fig. 1: Generic dispersion curves in integrated photonics; each curve is associated with a mode 

(eigenvector) of a fixed structure at a fixed -wavelength. 

 

Fig. 2: (a) Schematic representation of the 3-layer slab waveguides family; the guiding layer yields a 

refractive index n1 and a height 2h, the upper cladding n3 and the substrate n4 are both considered as 

semi-infinite layers. (b) Schematic representation of the family of 4-layer slab waveguides; the index 

n1 and n2 are associated with respectively the guiding layer and the first upper cladding whose height 

are respectively 2h and 2e. The upper cladding and the substrate of index n3 and n4 are considered as 

semi-infinite layers. 

 

Fig. 3: Asymptotic case: (a) plot of 
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 in function of time (Time Derivation Operator (TDO) 

formulation) for two different structures: the black curve stands for a 3-layer structure (eq. (8)), and 

the red curve for a 4-layer structure (eq. (17)) for which the height e of the first upper cladding tends to 

infinity. The other parameters are 2ℎ(𝑡=0𝑠) = 1 µ𝑚, 
𝑑ℎ

𝑑𝑡
= −0.1 µ𝑚. 𝑠−1 and (𝑛1; 𝑛3; 𝑛4) = (2; 1.5; 1) 

for the 3-layer structure and (𝑛1; 𝑛2; 𝑛3; 𝑛4) = (2; 1.5; 1; 1) for the 4-layer one. (b) Relative error 

between the two cases depicted in (a). 

 

Fig. 4: (a) Plot of  
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 with Time Derivation Operator (TDO) formulation, against time for the first 

strongly guided mode of a 4-layer waveguide (eq. (17)) for three different rates of variation of the 

height ℎ of the core layer: 
𝑑ℎ

𝑑𝑡
= −0.1 µ𝑚. 𝑠−1; −0.5 µ𝑚. 𝑠−1; −1 µ𝑚. 𝑠−1. The other parameters are 

2ℎ(𝑡=0𝑠) = 1 µ𝑚, 2𝑒𝑓𝑖𝑥𝑒𝑑 = 0.2 µ𝑚 and (𝑛1; 𝑛2; 𝑛3; 𝑛4) = (2; 1.8; 1; 1.5). For example, by TDO 

formulation, the slope at t = 3s (or 2h = 0.4μm) is 0.100≡ ∆𝑛𝑒𝑓𝑓. (b) The COMSOL simulations 

associated at the specific point 2h=0.4µm (or t=3s) of the previous (a) TDO formulation curves. With 

COMSOL, the slope is calculated by a simple rate of change neff, between two fixed structures or 

situations 2h=0.4µm (t=3s) and 2h=0.2µm (t=4s): ∆𝑛𝑒𝑓𝑓=0.098. 

 

Fig. 5: (a) Plot of  
𝑑𝑛𝑒𝑓𝑓

𝑑𝑡
 with Time Derivation Operator (TDO) formulation, against time for (a) the 

first strongly guided mode and (b) the first weakly guided mode of a 4-layer structure in case of 

variation of the height 𝑒 of the first upper cladding (eq. (23)) and for different sets of indices 



:(𝑛1; 𝑛2; 𝑛3; 𝑛4) = (2; 1.5; 1; 1) ; (2; 1.8; 1; 1.5) ; (2; 1.8; 1.5; 1.5). The other parameters are 

2ℎ𝑓𝑖𝑥𝑒𝑑 = 0.4 µ𝑚, 2𝑒(𝑡=0𝑠) = 1 µ𝑚 and 
𝑑𝑒

𝑑𝑡
= −0.1 µ𝑚. 𝑠−1. For example, by TDO formulation, the 

slope at t = 4s (or 2e = 0.2μm) is respectively ∆𝒏𝒆𝒇𝒇 ≡0.007 and 0.048 for both cones of light. (c) and 

(d) represent the COMSOL simulations associated at the specific point of the previous (a) and (b) 

TDO formulation curves. With COMSOL, the slope is calculated by a simple rate of change neff, 

between two fixed structures or situations 2e=0.2µm (t=4s) and 2e=0.1µm (t=4.5s): ∆𝒏𝒆𝒇𝒇=0.007 and 

0.045 respectively for both cones of light. 
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Table captions 

 

Table 1: Compared results of the variation of the eigenvalues neff with our variational method based 

on Time derivation Operator (TDO), that is eq. (17) and Fig. 4, and COMSOL software. As an 

example, this opto-geometric guiding structures is chosen at fixed parameters: optical indices 

(n1; n2; n3; n4) = (2; 1.8; 1; 1.5), wavelength =0.8µm and 2efixed=0.2µm, with 2h=0.4µm. 

 

Table 2: Compared results of the variation of the eigenvalues neff with our variational method based 

on Time Derivation Operator (TDO), that is eq. (23) and Fig. 5 (a) and (b), and COMSOL software. 

As an example, the opto-geometric guiding structures is chosen at fixed parameters: optical indices 

(n1; n2; n3; n4) = (2; 1.8; 1; 1.5), wavelength =0.8µm and 2hfixed=0.4µm, with dimension 2e=0.2µm. 

 

 

  



Table 1 

 

 

 

 

 

 

 

 
TDO 

[eq. (17) - Fig. 4 (a)] 

COMSOL 

[see Fig. 4 (b)] 

Variation of 

Eigenvalues 

neff 

0.100 
(directly by the data 

of coordinate) 

0.098 
(=1.903-1.805) 

 

  



Table 2 

 

 

 

 

 

 

 

 
TDO 

[eq. (23) - Fig. 5 (a) and (b)] 

COMSOL 

[see Fig. 5 (c) and (d)] 

Variation of 

Eigenvalues 

neff 

0.007 
(directly by the data 

of coordinate) 

0.007 
(=1.903-1.896) 

0.048 
(directly by the data 

of coordinate) 

0.045 
(=1.640-1.595) 

 

 


