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Abstract. Starting from the well-known and historic eigenvalue equations describing the behavior of 3-layer
and 4-layer slab waveguides, this paper presents another specific analytical framework providing time-laws of
evolution of the effective propagation constant associated to such structures, in case of temporal variation of its
various geometrical features. So as to develop such kind of time-propagator formulation and related principles, a
temporal derivation operator is applied on the studied school case equations, considering then time varying
values of all the geometrical characteristics together with the effective propagation constant. Relevant
calculations are performed on three different cases. For example, we first investigate the variation of the height of
the guiding layer for the family of 3-layer slab waveguides: then, considering the 4-layer slab waveguide’s family,
we successively address the variation of its guiding layer and of its first upper cladding. As regards the family of
4-layer waveguides, calculations are performed for two different families of guided modes and light cones. Such
another approach yields rigorous new generic analytical relations, easily implementable and highly valuable to
obtain and trace all the family of dispersion curves by one single time-integration and one way.
1 Introduction and background

Guided optics has known a considerable evolution since the
demonstration of the possibility to guide light by refraction
in the mid-nineteenth century by Daniel Colladon [1] and
John Tyndall [2]. Both a robust theoretical framework [3,4]
and a wide range of technological applications have been
developed [5–7]. Concerning the theoretical framework,
mainly two kinds of families of waveguide geometries are
analytically described by an eigenvalue equation: the pure
cylindrical symmetry and the planar symmetry waveguide
structuresmade of several different layers.Most of the other
geometries need appropriate approximations (such as the
pure Galerkin method or equivalent [8,9], more generally
based on spectral method and minimization of residue on
approximated functions [10], the Marcatili’s method and
hybrid one [11,12]), or a step-by-step numerical resolution
with a segmentation of the space (multilayermatrixmethod
or finite difference time domain method [13–16] applied on
conformal transformation [17,18]).Theeigenvalueequations
regarding the analytically described geometries are derived
by solving the Maxwell’s equations in all regions of the
global structure, and by properly applying the continuity
runo.beche@univ-rennes1.fr
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conditions of the electro-magnetic fields. The opto-
geometrical characteristics of the waveguide entail the
emergence of a quantification of the modes (called
eigenvectors) that can exist within the structure (TE,
TM, HE, EH, LP), with indices highlighting the effective
number of space-directions being subjected to quantifica-
tion. For example, the guided modes belong to the light
cone of the guiding structure, i.e., in the geometrical optics
framework, these modes are coupled with the structure
from a region of space allowing total internal reflection
inside the structure. Each one of these modes is associated
with an effective propagation constant (eigenvalue); the
propagation constant is thus directly correlated to the
opto-geometrical characteristics of the overall structure
(excitation wavelength l, refractive index of each part of
the structure ni and various spatial geometrical dimen-
sions noted dimi, i integers, Fig. 1). This dependency
between dimension and propagation constant is entirely
summarized by the dispersion curve associated with the
structure. The dispersion curve is a tool valuable in
numerous fields of physics and represents the interdepen-
dency between two different physical magnitudes of the
studied system. In case of guided optics, this dispersion
curve provides a link between the effective propagation
constant and the previously described opto-geometrical
-p1
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Fig. 1. Generic dispersion curves in integrated photonics; each
curve is associated with a mode (eigenvector) of a fixed structure
at a fixed l-wavelength.

Fig. 2. (a) Schematic representation of the 3-layer slab
waveguides family; the guiding layer yields a refractive index
n1 and a height 2h, the upper cladding n3 and the substrate n4 are
both considered as semi-infinite layers. (b) Schematic representa-
tion of the family of 4-layer slab waveguides; the index n1 and n2
are associated with respectively the guiding layer and the first
upper cladding whose height are respectively 2h and 2e. The
upper cladding and the substrate of index n3 and n4 are considered
as semi-infinite layers.
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features of the guiding structure (Fig. 1). The correlation
between the effective propagation constant and the opto-
geometry is highlighted by the above-mentioned eigenvalue
equation (or dispersion relation) noted E.v.eq which mathe-
matically corresponds to a functional F of the different
parameters of the system: E.v.eq=F (l, ni, dimi) here, the
different dimi can be considered either as variables or as fixed
parameters). Each set of parameters is associated to a unique
family of dispersion curves (Fig. 1); any change of one of these
parameters yields a change of the shape of the dispersion
curves.Theresolutionof theseeigenvalueequations foragiven
set of opto-geometrical parameters yields the set of related
effective propagation constant b of the optical modes
propagating in the structure, which is defined by:

b ¼ k⋅neff ¼ 2p

l
⋅neff ; ð1Þ

with k the vacuum wave number, neff the effective
refractive index associated to the mode and l the vacuum
wavelength.

In this paper, we theoretically investigate the correla-
tion between the evolution of time-varying geometrical
features of families of slab guiding structures and their
associated effective propagation constant. To this end, a
temporal derivation operator d

dt is applied onto the generic
eigenvalue equation regarding the whole family of
structures, considering time-dependent values of the
studied geometrical dimension (dim≡ dim(t)) with the
effective propagation constant (b≡b(t)), and constant
values of l and optical indices. This operation is
tantamount to determining a kind of evolution propagator
on the eigenvalue equations. Such a way to proceed yields
analytical relations shaped as d dimð Þ

dt ¼ f db
dt

� �
enabling to

represent the global dynamic displacement along all the
family of dispersion curves as geometrical dimensions vary.
The time derivation operator (TDO) formulation is
performed on the eigenvalue equation of both different
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essential basic slab-structures: the 3-layer and the 4-layer
waveguides. As the eigenvalue equations are derived for
constant values of b, we assume that the time variation of
the geometrical feature is slow enough to perform an
adiabatic evolution treatment. For the 3-layer waveguide
(Fig. 2a), we consider a temporal variation of the height
noted 2h(t) of the guiding layer. As regards the 4-layer
waveguide (Fig. 2b), two cases are considered: firstly, we
consider a temporal variation of the height of the guiding
layer 2h(t) with a constant height of the first upper
cladding 2e(t) before dealing with the opposite situation.
For both of these 4-layer cases, the two families of guided
modes are investigated [19]. Such an approach should be
quite valuable in applied electromagnetism so as to
describe numerous processes: for example, while monitor-
ing; a direct layer deposition as a growth process, a
processes of sedimentation and soft matter creaming, or
etching processes. The results obtained by this model have
been compared to COMSOL numerical simulations and
show a good agreement.

2 Time derivation formulations and analytical
variational expression of eigenvalue equations

2.1 Family of 3-layer slab waveguides

Figure 2a depicts a schematic representation of the family
of 3-layer slab waveguides. We consider the layer of index
n1 (n1> n3,n4) with height 2h≡ 2h (t) as the guiding layer
of such structures. All the effective propagation constants
of guided modes thus verify the light’s cone n1> neff> n3,
n4. The generic eigenvalue equation ruling all 3-layer slab
waveguides is [3,4]:

2h tð Þq ¼ Arctg
p

q

� �
þ Arctg

r

q

� �
þmp; ð2Þ

with q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0n1ð Þ2�b2

q
, r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2� k0n3ð Þ2

q
,p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2� k0n4ð Þ2

q
,

h the half height of the guiding layer, and m the order of the
considered mode. The optical indices act in the expression of
-p2
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the projection of the wave vector perpendicular to the plane of
the layers (considering Pythagoras with a zig-zag geometric-
optical ray vision).

We consider the temporal variation of h and relate it to
the temporal variation entailed on the effective propaga-
tion constant b≡b (t). To do so, the above equation is re-
written as:

h ¼
Arctg p

q

� �
þArctg r

q

� �
þmp

2q
: ð3Þ

Then, a temporal derivation operator d
dt is applied in

order to express dh
dt in terms of db

dt. The first step of this
calculation allows to compute each derivative of param-
eters p, q and r, considering time dependent values for b and
constant values of k and each ni (i=1,3,4).

dq

dt
¼ �b

q

db

dt
;
dp

dt
¼ b

p

db

dt
;
dr

dt
¼ b

r

db

dt
: ð4Þ

Then, we can compute the derivatives regarding the
arguments as quotients of the Arctg function:

d

dt

p

q

� �
¼ q2 þ p2

pq3
b
db

dt
;
d

dt

r

q

� �
¼ q2 þ r2

rq3
b
db

dt
: ð5Þ

Both varying terms of the numerator of equation (3)
may be written as:

d

dt
Arctg

p

q

� �� �
¼ q2 þ p2

pq3 þ qp3
b
db

dt
;

d

dt
Arctg

r

q

� �� �
¼ q2 þ r2

rq3 þ qr3
b
db

dt
: ð6Þ

From these calculations, the derivative of the height of
the guiding layer comes up as:

dh

dt
¼ 1

2q

q2 þ p2

pq3 þ qp3
þ q2 þ r2

rq3 þ qr3

� �
þ 1

2q3
Arctg

p

q

� ���

þArctg
r

q

� �
þmp

��
b
db

dt
: ð7Þ

This result can be re-written and formulated as a
generic form,

dh

dt
¼

a1 þ j1 Arctg p
q

� �
þ Arctg r

q

� �
þmp

� �
s1

b
db

dt
; ð8Þ

with,

a1 ¼ rq5þq3r3 þ rp2q3 þ qp2r3 þ pq5 þ q3p3 þ pr2q3 þ qr2p3

j1= prq4+ pr3q2+ rpq4+ r3p3,
7 3 5 3 5 3 3 3
s1=2prq +2pr q +2rp q +2r p ,q and b defined in

equation (1).

2.2 Family of 4-layer slab waveguides

Considering 4-layer slab waveguides, two cases are dealt
with: first, we consider a time dependent value of the height
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of the guiding layer and a constant value of the height of the
firstuppercladding(h≡ h (t))ande= constante): conversely,
we consider the opposite case (h= constante and e≡ e (t)).
For each one of these configurations, two families of guided
modes exist: (i) a strongly confinedmodewith effective index
values verifying n1> neff > n2> n3, n4 and (ii) a weakly
confined one for which n1> n2> neff> n3, n4. Both families
may be studied in parallel thanks to a double notation in the
following equations: the upper notation j▪ corresponds to the
family ofmodes verifying condition (i) and the lower one j▪ is
related to condition (ii). The structure of a 4-layer slab
waveguide is depicted in Figure 2b. The eigenvalue equation
describing the behavior of such a waveguide is [18]:

2hq ¼Arctg
p

q

� �
þ Arctg

s

q

					
th Arcth

r

s

� �
þ 2es

� �

tg Arctg
r

s

� �
� 2es

� �
0
B@

1
CAþmp;

ð9Þ
with q, r and p defined the same way as that of the 3-layer

waveguide analysis, and s ¼
					

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � k0n2ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0n2ð Þ2 � b2

q . So as to

investigate the effect of any change regarding the height of
the guiding layer, equation (9) may be re-written:

h ¼

Arctg p
q

� �
þ Arctg

					
s

q
th Arcth

r

s

� �
þ 2es

� �
s

q
tg Arctg

r

s

� �
� 2es

� �
0
B@

1
CAþmp

2q
:

ð10Þ
The time derivative of q, r and p are given in

equation (4), and ds
dt verifies:

ds

dt
¼

		þ� b

s

db

dt
: ð11Þ

This allows us to compute the derivatives of the
different ratios:

d

dt

p

q

� �
¼ q2 þ p2

pq3
b
db

dt
;
d

dt

r

s

� �

¼
s2
		�þ r2

rs3
b
db

dt
;
d

dt

s

q

� �
¼

s2
		þ� q2

sq3
b
db

dt
; ð12Þ

as well as the derivatives of the functions Arctg and Arcth:

d

dt
Arctg

p

q

� �� �
¼ q2 þ p2

pq3 þ qp3
b
db

dt
;

d

dt

					
Arcth

r

s

� �

Arctg
r

s

� �
0
@

1
A ¼

s2
		�þ r2

rs3
		�þ sr3

b
db

dt
: ð13Þ
-p3
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To proceed further with the calculations and so as to
lighten the expressions, we define:

th ¼
					
th Arcth

r

s

� �
þ 2es

� �

tg Arctg
r

s

� �
� 2es

� � : ð14Þ

Derivating this quantity with respect to time yields:

dth
dt

¼
s2
		�þ r2

		�þ 2ers2 þ 2er3
		�þ s2

		�þ r2
		�þ 2ers2 þ 2er3

� �
t2h

rs3
		�þ sr3

�b
db

dt
: ð15Þ

Then, we can compute the derivative of the second term
of the numerator of equation (11):

d

dt
Arctg

s

q
th

� �� �
¼ Q

G
b
db

dt
; ð16Þ

with:

Q ¼ q2s3
		�þ sr2q2

		�þ 2erq2s3 þ 2esq2r3 þ ðrs4		�þ s2r3

þrs2q2
		þ
� q2r3Þth

		�
þðq2s3		�þ sr2q2

		�
þ 2erq2s3 þ 2erq2r3Þt2h;

and G ¼ rs3q3
		�þ sr3q3 þ ðrqs5		�þ qs3r3Þt2h.

Furthermore, after combining the previous results and
simplifying the expressions, the time derivative of the
height of the guiding layer is given by:

dh

dt

¼
ah þ ghth þ kht

2
h þ jh Arctg p

q

� �
þ Arctg s

q th

� �
þmp

� �
sh þ xht

2
h

�b
db

dt
ð17Þ

with,

ah¼ rs3q5
		�þ sr3q5 þ rp2s3q3

		�þ sp2r3q3 þ ps3q5
		�þ spr2q5

þ q3p3s3
		�þ sr2q3p3

		�þ 2erps3q5 þ 2espr3q5
		�þ 2erq3p3s3

þ 2esp3q3r3;

g ¼prq3s4
		� ps2r3q3 þ qrp3s4

		� qs2r3p3 � prs2q5
		þ pr3q5
h þ þ �

� rs2p3q3
		þ
� q3p3r3;
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kh ¼ rq3s5
		�þ q3s3r3 þ rqp2s5

		�þ qp2s3r3
		�þ ps3q5

þpsr2q5
		�þ q3p3s3 þ sr2p3q3 þ 2erps3q5

		�þ 2espr3q5

þ2erq3p3s3
		�þ 2esq3p3r3;

3 4
	� 3 4 3 3 2

	� 3 3 2
jh ¼ rps q 	þ spr q þ rp s q 	þ sp r q

þ rpq2s5
		�þ ps3r3q2 þ rp3s5

		�þ p3s3r3
� �

t2h;

sh ¼ 2rps3q7
		�þ 2spr3q7 þ 2rp3s3q5

		�þ 2sp3r3q5;

xh ¼ 2rpq5s5
		�þ 2ps3r3q5 þ 2rq3p3s5

		�þ 2q3p3s3r3 and b de-

fined in equation (1).
Although equation (11) suits well for the study of the

first case (h≡ h (t)) and e= constante), it comes up as
inappropriate for the second one. Then, to study the case
e≡ e (t) and h= constante, it is re-written:

e ¼

			�Arcth
Arctg

r
s
� �			þArcth

�Arctg
q
s tg 2hq�mp�Arctg p

q

� �� �� �

2s
:

ð18Þ
Here, so as to find a relation between de

dt and
db
dt the same

methodology as before is applied. We thus compute the
time-derivative of the q

s ratio:

d

dt

q

s

� �
¼

		�þ q2 � s2

qs3
b
db

dt
: ð19Þ

Then, we may define a parameter te before computing
its time derivative:

te ¼ tg 2hq�mp�Arctg
p

q

� �� �
: ð20Þ

dte
dt

¼ �2hpq2 � 2hp3 � q2 � p2 þ 2hpq2 � 2hp3 � q2 � p2ð Þt2e
pq3 þ qp3

�b
db

dt
: ð21Þ

Then comes the derivative of the second term of the
numerator of equation (18):

d

dt

			Arcth
Arctg

q

s
te

� �� �
¼ D

Z
b
db

dt
ð22Þ
-p4
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with,

D ¼ �2hps2q3 � 2hqs2p3 � s2q3 � qs2p2 þ ð		�þ pq4
		�þ

q2p3 � ps2q2 � s2p3Þte þ �2hps2q3 � 2hqs2p3 � s2q3�ð
qs2p2Þt2e and, Z ¼ pq3s3 þ qp3s3

		�þ psq5 þ sp3q3ð Þt2e.
Finally, by combining the previous different results, the

time-derivative of e is:

de

dt
¼
aeþ geteþ ket

2
e

		�þ je

			Arcth
Arctg

r
s
� ��			Arcth

Arctg
q
s te

� �� �

se þ xet
2
e

b
db

dt

ð23Þ
with,

ae¼
		�þ rq3s5

		�þ qrp2s5 þ s3q3r3 þ qp2s3r3
		�þ pq3s5

		�þ qp3s5

þ pr2q3s3 þ qr2p3s3
		�þ 2hprq3s5

		�þ 2hqrp3s5þ2hpq3r3s3

þ 2hqp3r3s3;	 	

ge ¼ 	�þ prq2s5	�þ rp3s5 � rps3q4 � rq2p3s3 þ pq2s3r3

þ p3r3s3
		�þ psr3q4

		�þ sq2p3r3;
ke ¼
		�þ rq3s5 þ q3s3r3

		�þ rqp2s5 þ qp2s3r3 þ ps3q5

þ q3p3s3
		�þ spr2q5

		�þ sr2p3q3
		�þ 2hprq3s5

		�þ 2hqrp3s5

þ 2hpq3r3s3 þ 2hqp3r3s5;

jh ¼ 		�þ rpq3s4
		�þ qrp3s4 þ pr3q3s2 þ qr3p3s2 þ ðprs2q5

þ rp3q3s2
		�þ pr3q5

		�þ r3p3rq3Þt2e;

se ¼ 2prq3s7 þ 2qrp3s7
		�þ 2pr3q3s5

		�þ 2qr3p3s5;

xe ¼
		�þ 2prs5q5

		�þ 2rp3q3s5 þ 2pr3s3q5 þ 2r3p3q3s3 and b

defined in equation (1).
This analysis provides a valuable analytical link

between the variation of geometrical features of the global
dimensions structures and the correlated changes of all the
effective propagation constants describing their associated
modes. Each case we have investigated here yields the same
generic architecture of relation, yet some significant
differences are remarkable. Differences between 3-layer
and 4-layer slab waveguides are easily identifiable; they
rely on the presence of the factor threspectively tedefined
with equation (16) (respectively (20)) also present in the
final relation (17) (respectively (23)). Considering the
expressions of the variation of the guiding layer of the
family of 4-layer slab waveguides for strongly and weakly
guided modes, the only differences concern their sign and
the expression of th. Such sign differences are partially due
to the definition of the parameter s whose time derivative
only yields unlike signs between the strongly and the
10501
weakly guided mode. The other cause of these changed
signs is due to both hyperbolic tangent and hyperbolic
arctangent functions in the strongly confined mode
configuration instead of the conventional tangent and
arctangent functions relevant with the weakly confined
mode. Naturally, the time derivation of these terms yields
only unlike signs. Eventually, the main difference between
relations describing time varying guiding layer and time
varying first upper cladding is in their dependence as
regards the order m of the considered mode. Indeed, in the
case of time varying guiding layer this dependency only
occurs with the factor noted jh conversely, considering the
time varying first upper cladding, the order m of the mode
is present in the parameter te. Hence, the influence of the
mode order is more significant in the case of time varying
first upper cladding.

3 Numerical implementation and discussion

Numerical implementations of the previous relations have
been performed through Matlab programs. These imple-
mentations aim at plotting the temporal derivative of the
effective index ðdneff

dt ¼ 1
k :

db
dtÞ against time for different sets of

opto-geometrical parameters and for different rates of
variation of the geometrical features of the structures ðdhdt
and de

dt). For all the following computations, we consider
negative values of dhdt and

de
dt, i.e. decreasing values of h and e

against time, a wavelength l=0.8mm and only the first
mode (m=0) is investigated.

First, we consider the asymptotic case. Figure 3a
represents dneff

dt against time for a 3-layer slab waveguide and
a 4-layer slab waveguide for which 2e!∞. These two
structures yields the same set of parameters (refractive
index, initial height of the guiding layer, rate of variation of
this height) in order to compare the results in a relevant
way. The relative error between these two curves is plotted
in Figure 3b. This graph shows that these two cases are
numerically equivalent with a maximum relative error
below 0.6%. The maximum of relative error occurs at the
end of the decrease of the height of the guiding layer, i.e.
when 2h is close to the cutting height of the mode.

Let us now investigate the influence of the rate
of variation of the geometrical features. To do so, we plot
dneff

dt against time (Fig. 4a) for a 4-layer structure
yielding a variation of the height 2h of the guiding
layer, for three different values of the rate
dh
dt ¼ �0:1mm:s�1;� 0:5mm:s�1;�1mm:s�1. The other pa-
rameters are the initial value of the height of the guiding
layer 2h (t=0 s) = 1mm, the height of the first upper
cladding 2e (t=0 s) = 0.4mm and the set of indices (n1; n2;
n3; n4)= (2; 1.8; 1; 1.5). The plot of Figure 4 clearly yields
that the ratio between the different values of dneff

dt is equal
to the ratio between the corresponding dh

dt which is easily
predictable from equation (17). Concerning the values of
the times at which the mode disappear, their ratio is equal
to the inverse of the ratio between the corresponding dh

dt. In
addition, a simulation under COMSOL on a specific
structure corroborates this slope, this time considering
two close structures to calculate the rate of change Dneff
(Fig. 4b and Tab. 1).
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Fig. 3. Asymptotic case. (a) Plot of dneff

dt in function of time (time
derivation operator (TDO) formulation) for two different
structures: the black curve stands for a 3-layer structure
(Eq. (8)), and the red curve for a 4-layer structure (Eq. (17))
for which the height e of the first upper cladding tends to infinity.
The other parameters are 2h (t=0s) = 1mm, dhdt ¼ �0:1mm:s�1, and
(n1;n3;n4)= (2; 1.5; 1) for the 3-layer structure and (n1;n2;n3;
n4)=(2; 1.5; 1; 1) for the 4-layer one. (b) Relative error between
the two cases depicted in (a).
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The influence of the set of indices is investigated in
Figures 5a and 5b, which represent the evolution of dneff

dt
against time for a 4-layer structure yielding varying value
of the height of the first upper cladding, for strongly and
weakly guided mode, respectively. The parameters taken
for this simulation are 2h (t=0 s)= 0.4mm, 2e (t=0 s)= 1mm,
de
dt ¼ �0:1mm:s�1 and the investigated set of indices are
(n1;n2;n3;n4)= (2; 1.5; 1; 1) ; (2; 1.8; 1; 1.5); (2; 1.8; 1.5; 1.5).
Wecansee fromthegraph that themore themode is confined
(great difference between the values of indices) the more
abrupt is the slope. Another remarkable property is that
the red curve begins to increase before the blue one,
which begins to increase before the black one. The reason is
that the evanescent part (strongly confined mode) or
the oscillating part (weakly confined mode) present in the
10501
n2 layer ismore sensitive to the index n3 in the red curve case
because the difference n2� n3 is greater. Concerning the
black curve, as the difference n1� n2 is greater than for the
other two cases, there is less energy in the n2 layer so the
influence of the n3 layer is weaker. Similarly, simulations
under COMSOL prove the correspondence in terms of
variation of the eigenvalue as the dimensions of the structure
change (Figs. 5c and 5d and Tab. 2).

The TDO formulation starts from an initial condition,
defining a starting point in the eigenvalue equation (that is
a starting opto-geometric structure), then it deploys its
evolutionary principle by giving access to the variation of
the eigenvalue when the dimensions of the structure
changes over time.
4 Conclusion

This work presents the derivation of generic and rigorous
analytical expressions evaluative in time regarding the
propagation constant for various families of slab wave-
guides in case of temporal variation of their geometrical
characteristics.

Since the theoretical framework presented in this article
hinges on analytical expressions, it provides a valuable tool,
easily implementable for numerical computation in one
way. Graphically, these expressions are interpretable as a
temporal displacement along all the family of dispersion
curves of the investigated versatile structures and modes;
computing their integral along time obviously leads to the
original and generic eigenvalue equations (2) and (9),
which gives all the families of dispersion curves (Fig. 1).
Their physical meaning, based on the link between db

dt and
d dimð Þ

dt put them up as specific evolution laws of the
propagation constant during any growth or deposition
process or during an attack or etching process as regards
shaping a given structure. Thus, a direct in situ monitoring
becomes possible during thin layer deposition processes in
ultra-high-vacuum chambers. The analysis has been
performed with 3-layer and 4-layer slab waveguides. In
the latter case, the investigation has been carried out for
both the variation of the guiding layer and of the first upper
cladding, and for the two different families of guided
modes. The results computed by the proposed TDO
method have been compared to numerical calculations
obtained via COMSOL simulations and are in good
agreement. Dynamics and therefore evolution are intrinsi-
cally contained in the TDO formulation, with the
possibility of obtaining a whole family of structures at
one time. The advantage brought by this TDO model
compared to other numerical simulations, besides that it
provides analytical expressions that contain the dynamic,
resides in the fact that the other numerical simulations can
only resolve static structures, step by step. The simulations
have thus to be performed at every time step which take a
great amount of time, whereas the proposed TDO
formulation (Eqs. (8), (17) and (23)) can be implemented
on a regular computer via Matlab or Python, for example,
and give results within a few seconds. Furthermore, in a
theoretical view, an extended and comprehensive study
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Fig. 4. (a) Plot of dneff

dt with time derivation operator (TDO) formulation, against time for the first strongly guided mode of a 4-layer
waveguide (Eq. (17)) for three different rates of variation of the height h of the core layer: dhdt ¼ �0:1mm:s�1;� 0:5mm:s�1;�1mm:s�1.
The other parameters are 2h (t=0s)= 1mm, 2efixed= 0.2mm and (n1; n2;n3; n4)= (2 ; 1.8 ; 1 ;1.5) . For example, by TDO formulation, the
slope at t=3 s (or 2h=0.4mm) is 0.100≡Dneff. (b) The COMSOL simulations associated at the specific point 2h= 0.4mm (or t=3 s) of
the previous (a) TDO formulation curves. With COMSOL, the slope is calculated by a simple rate of change Dneff, between two fixed
structures or situations 2h=0.4mm (t=3 s) and 2h=0.2mm (t=4 s): Dneff = 0.098.
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Table 1. Compared results of the variation of the eigenvalues Dneff with our variational method based on time
derivation operator (TDO), that is, equation (17) and Figure 4, and COMSOL software. As an example, this opto-
geometric guiding structure is chosen at fixed parameters: optical indices (n1;n2;n3;n4)= (2; 1.8; 1; 1.5), wavelength
l=0.8mm and 2efixed= 0.2mm, with 2h=0.4mm.

TDO (Eq. (17) � Fig. 4a) COMSOL (see Fig. 4b)

Variation of Eigenvalues Dneff 0.100 (directly by the data of coordinate) 0.098 (=1.903 � 1.805)

Fig. 5. (a) Plot of dneff

dt with time derivation operator (TDO) formulation, against time for (a) the first strongly guided mode and
(b)thefirstweaklyguidedmodeofa4-layerstructure incaseofvariationoftheheighteofthefirstuppercladding(Eq. (23))andfordifferent
sets of indices (n1;n2;n3;n4)= (2; 1.5; 1; 1) ; (2; 1.8; 1; 1.5); (2; 1.8; 1.5; 1.5). The other parameters are 2hfixed=0.4 mm, 2e (t=0s)= 1mm,
and de

dt ¼ �0:1mm:s�1: For example, by TDO formulation, the slope at t=4 s (or 2e=0.2mm) is respectively Dneff≡ 0.007 and 0.048 for
both cones of light. (c) and (d) Represent the COMSOL simulations associated at the specific point of the previous (a) and (b) TDO
formulation curves. With COMSOL, the slope is calculated by a simple rate of change Dneff, between two fixed structures or situations
2e=0.2mm (t=4 s) and 2e=0.1mm (t=4.5 s): Dneff = 0.007 and 0.045 respectively for both cones of light.
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could be performed in order to determine the overall
dynamics of the effective propagation constants in case of
the temporal variation of both the above-mentioned layers
at the same time. By considering the temporal variation of
both 2h(t) and 2e(t) in the 4-layer family waveguides, the
10501
time-derivation of equations (10) and (18) should lead to a
system of two coupled equations whose resolution should
be equivalent to the displacement associated with a set of
2D dispersion maps vision instead of a set of 1D dispersion
curves. This model is valid not only for dielectric materials,
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Table 2. Compared results of the variation of the eigenvalues Dneff with our variational method based on time
derivation operator (TDO), that is equation (23) and Figures 5a and 5b, and COMSOL software. As an example, the
opto-geometric guiding structure is chosen at fixed parameters: optical indices (n1;n2 ;n3;n4)= (2 ; 1.8 ; 1; 1.5),
wavelength l=0.8mm and 2hfixed= 0.4mm, with dimension 2e=0.2mm.

TDO (Eq. (23) � Figs. 5a and 5b) COMSOL (see Figs. 5c and 5d)

Variation of Eigenvalues Dneff
0.007 (directly by the data of coordinate) 0.007 (=1.903 � 1.896)
0.048 (directly by the data of coordinate) 0.045 (=1.640 � 1.595)
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but also in the presence of a metallic layer, as the
eigenvalue equations from which our expressions have been
derived are valid whatever the material (see Sect. 2.5 of
Ref. [3]). In the case of the presence of a metallic layer,
when plasmonic waves can establish, one must take into
account the imaginary part of the permittivity e= (n+
iK)2 of the metal. The value of n2 used in the calculations
has thus to be modified to (n2–K2) in order to describe the
physical behavior of a waveguide comprising a metallic
layer, including the propagation of plasmonic waves.
Extended studies should also be performed in order to
investigate the influence of the temporal variation of the
opto-geometrical parameters of more complex photonic
structures such as rib waveguide, optical fiber, slab
waveguide of an arbitrary large number of layers and
metal layers.
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