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Absolute humanoid localization and mapping
based on IMU Lie group and fiducial markers

Mederic Fourmy†, Dinesh Atchuthan†, Nicolas Mansard†, Joan Solà†∗ and Thomas Flayols†

Abstract— Current locomotion algorithms in structured (in-
door) 3D environments require an accurate localization. The
several and diverse sensors typically embedded on legged robots
(IMU, coders, vision and/or LIDARS) should make it possible
if properly fused. Yet this is a difficult task due to the hetero-
geneity of these sensors and the real-time requirement of the
control. While previous works were using staggered approaches
(odometry at high frequency, sparsely corrected from vision and
LIDAR localization), the recent progress in optimal estimation,
in particular in visual-inertial localization, is paving the way to
a holistic fusion. This paper is a contribution in this direction.
We propose to quantify how a visual-inertial navigation system
can accurately localize a humanoid robot in a 3D indoor
environment tagged with fiducial markers. We introduce a the-
oretical contribution strengthening the formulation of Forster’s
IMU pre-integration, a practical contribution to avoid possible
ambiguity raised by pose estimation of fiducial markers, and an
experimental contribution on a humanoid dataset with ground
truth. Our system is able to localize the robot with less than 2 cm
errors once the environment is properly mapped. This would
naturally extend to additional measurements corresponding to
leg odometry (kinematic factors) thanks to the genericity of the
proposed pre-integration algebra.

I. INTRODUCTION

In this work, we are interested in quantifying how accu-
rately a humanoid robot can be localized in a structured 3D
environment. The seminal works on localization of legged
robots were using leg odometry, quickly followed by contri-
butions fusing the kinematics with inertial measurements [1].
Evidently, odometry measurements can only lead to a drift
of the localization. Based on leg odometry, the community
has extended the localization performances by improving the
behavior of the inertial-kinematic filter [2]–[4], the underly-
ing contact model [5], [6], and by augmenting the odometer
with exteroceptive measurements coming from cameras or
LIDAR.

The difficulty in fusing inertial, kinematics and exterocep-
tive measurements stems from the disparity in the properties
of each data source. Inertial and kinematic measurements
come at high frequency (typically 100 Hz to 1 kHz) and
are cheap to process, while images and laser scans are
obtained at some few images per second and are expensive
to process. On the other hand, inertial measurements are
quickly deprecated while images and scans provide absolute
information. This implies a rigorous synchronization between
the sensors with the risk of decreasing the performances of
the inertial estimation when images and laser scans are not
carefully merged.

These difficulties explain that the first works to merge pro-
prioceptive and exteroceptive sensors for legged localization
have been with some staggered approach, first fusing inertial

and kinematic measurements at high frequency, and then
correcting the localization drift with absolute localization
computed from camera and/or LIDAR with low bandwidth
and higher delay [7], [8].

Very recently, several concurrent approaches have been
proposed to merge all relevant data in a unique estimator.
Following the recent results in UAVs localization [9], [10],
optimal estimation structured by a factor graph is a very
nice framework to formulate the fusion. In [11], a graph-
SLAM is proposed to fuse inertial, kinematics and visual
data. Inertial measurements are considered using Forster’s
pre-integration factors [12]. Kinematics data are considered
using a 6D factor which is also pre-integrated, but taking
into account the hybrid nature of the contact dynamics using
an event-based approach. Visual factors are also expressed
as 6D constraints obtained by visual odometry. Results are
reported on some 3-meters sequences with motion-capture
ground truth. In [13], the graph-SLAM also considers inertial
measurements through pre-integration, while kinematic mea-
surements are pre-treated by the robot low-level system [2]
and integrated directly as 6D factors without further consider-
ation. As this work is applied to a quadruped robot, obtaining
this 6D information indeed requires a complex filtering in
itself. Finally, the visual information are considered as 2D
factors in the image space, obtained from feature (KLT)
matching. Impressive experimental results are demonstrated
with long outdoor sequences, using a ground-truth obtained
from off-line LIDAR reconstruction.

The pros and cons of these two approaches come from
the choice of the factors, but the similarities are possibly
more important than the differences. Both use a plain Forster
pre-integration [12]. Using either visual odometry or feature
tracking, both systems cannot natively benefit from the
information brought by loop closure, and would fail to
exploit known map information. In both cases, the kinematic
factor is straightforward to write as a 6D constraint. Finally,
both works are able to account for the very different sensor
frequencies, while providing a good estimate at the higher
frequency if needed.

In this work, we are looking for a solution to localize a
humanoid robot indoor, with sufficient accuracy to navigate
on some stairs, grasp a handrail or walk on a 30-cm wide
beam. As the robot is going to come back again and again
in the same environment, we would like to benefit from
loop-closure information and localization with respect to
some known landmarks. While our final goal is to merge
in the optimal estimator the measurements coming from all
the sensors of the robot, we focus here on contributions
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Fig. 1: A typical fraction of the factor graph, involving state blocks
corresponding to keyframes xi = (pi,vi,Ri), biases bi and
landmark poses ln. IMU factors (blue) relate consecutive keyframes
and the IMU biases. The lower branch controls bias drift along time.
Visual factors (red) relate landmarks with poses (pi,Ri).

validating the use of visual-inertial localization and mapping
on a humanoid robot navigating indoor in a 3D environment.
For the visual factor, we rely on April tags [14], [15], while
proposing a practical contribution to avoid ambiguity issues
in the pose estimation of the tags. For the inertial factor,
we build upon Forster pre-integration [12] and propose an
original and more rigorous theoretical formulation, by ex-
hibiting a Lie topology that is suitable for optimal estimation.
This formulation, although leading to very similar results for
the inertial factors, would enable an easy generalization to
the other high-frequency factors that would typically arise in
the humanoid contact (leg odometry based on coders, force
sensors, etc). Both inertial and visual factors are processed in
a factor graph resulting into a nonlinear maximum-likelihood
optimization problem, solved with Ceres [16].

II. STATE ESTIMATION FOR THE HUMANOID

In graph-based optimization, the problem is well repre-
sented as a bipartite graph, where one type of node refers
to the variables, and the other type called factors represent
the geometrical constraints between variables, produced by
the measurements. The state x is modeled as a multi-variate
Gaussian distribution. In the case of landmark-based visual-
inertial SLAM (see Fig. 1), x includes robot poses and
velocities xi = (pi,vi,Ri) and sensor biases bi, both at
selected keyframes i along the trajectory, and landmark poses
ln ∈ SE(3). Bias are considered constant between keyframes
and are taken at the i-th keyframe. In line with the recent
works on the subject, we write the MAP optimization as the
least-squares minimization (Fig. 1),

x∗ = arg min
x

∑

i

∥∥rIi (x)
∥∥2

ΣI
i

+
∑

j

∥∥rVj (x)
∥∥2

ΣV
j

, (1)

with {rI ,ΣI} and {rV ,ΣV } indicating the residuals and
covariances of respectively the inertial (IMU) and visual
factors. These residuals are computed differently depending
on the nature of the measurements and the state blocks they
relate to. They are described in the following two chapters.

III. PRE-INTEGRATED IMU FACTORS ON DEDICATED LIE
GROUP

In key-frame based optimization for SLAM, IMU pre-
integration was first proposed by Lupton in [17] as a means
to avoid repeatedly integrating all the IMU data at each
iteration of the optimizer. Lupton’s seminal work used the

Euler angles for orientation, and was improved 10 years
later by Forster [12], who proposed a formulation in the
more proper SO(3) rotation Lie group. Forster’s method is
considered the standard to this date, and it is the one used
in all major recent works in the subject, see e.g. [11], [13].

We however consider that there is room for improvement
in the following aspects. First, neither Lupton nor Forster
provide an interpretation of the IMU delta measurements,
and define them as a mere algebraic construction. Second,
the formulation in [12] is complicated, involving a number of
large sums and products along the IMU data sequence. Third,
the way Jacobians are obtained is somewhat cumbersome,
leaving the reader with insufficient intuition on what is going
on behind the proposed formulae. As a whole, it does not
appear easy to generalize such methods to other motion pre-
integration cases.

In order to give a response to these topics, our approach
to IMU pre-integration differs from [12] in the following
aspects. First, we provide a clear physical interpretation to
the IMU deltas. Second, we present a recursive formulation,
meaning that we provide equations to be applied every time
an IMU sample is acquired. Moreover, one integration step
is broken down in different distinguishable stages, which
contributes to clarity. Third, we obtain slightly more accurate
integration that stems from the exponential map of the new
proposed Lie group comprising the full IMU delta (i.e., not
only rotation). Fourth, thanks to the abstraction provided
by the Lie theory layer, our approach to Jacobians and
uncertainty propagation is more compact and intuitive. And
fifth and importantly, our Lie formulation easily generalizes
to the pre-integration on other kinds of manifold. This Lie
group generalization is exploited in [18] for an apparently
unrelated problem such as the online self-calibration of kine-
matic parameters of a differential drive robot, the abstract
formulation of the method in the SE(2) Lie group being
exactly the same as here.

A. The IMU deltas matrix Lie group D
We introduce a new matrix Lie group representation of

the IMU deltas. The complete IMU pre-integration theory,
including the computation of the residual, is based on this
new Lie structure. The theoretical material for the Lie
development in this section can be found in our report [19].
For some developments and formulae related to the particular
IMU case, please refer to the appendix.

1) Definition and interpretation of the IMU deltas: The
IMU deltas, as introduced in [12], [17] can be interpreted
[20] as the motion increments, in terms of position, ve-
locity and orientation, between the current IMU frame and
another frame, that started at the IMU state at time i,
xi = (pi,vi,Ri), and falls freely and without rotating at
the acceleration of gravity (Fig. 2),

∆pij = R>i (pj − vi∆tij − 1
2g∆t2ij)

∆vij = R>i (vj − vi − g∆tij)

∆Rij = R>i Rj

∆tij = tj − ti .

(2)
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Fig. 2: The free-falling, non-rotating frame Gt follows a parabolic
trajectory governed only by gravity g and determined by the initial
conditions pi, vi and Ri at time i (Gi = xi, blue). The IMU delta
∆ij between times i and j is defined as the state of the IMU at
time j (xj , red) expressed in the free-falling frame at time j (Gj ,
green).

2) The IMU deltas matrix Lie group D: We propose a
matrix form of the Lie group of IMU deltas as,

∆ =




∆R ∆v ∆p
0 1 ∆t
0 0 1


 ∈ D ⊂ R5×5 . (3)

Group identity, inverse and composition stem from regular
matrix identity, inverse (with ∆R−1 = ∆R>) and product,

∆E =
[

I 0 0
0 1 0
0 0 1

]
= I5×5 (4)

∆−1 =

[
∆R> −∆R>∆v −∆R>(∆p−∆v∆t)

0 1 −∆t
0 0 1

]
(5)

∆ · δ =
[

∆RδR ∆v+∆Rδv ∆p+∆vδt+∆Rδp
0 1 ∆t+δt
0 0 1

]
. (6)

3) Lie algebra d and exponential map: The Lie algebra
elements τ∧ and their isomorphic Cartesian τ have the forms

τ∧ =

[
[θ]× ρ υ

0 0 ∆t
0 0 0

]
∈ d, τ =

[
ρ
υ
θ

∆t

]
,

[
v∆t
a∆t
ω∆t
∆t

]
∈ R10, (7)

with v , ∆̇p, a , ∆̇v and [ω]× , ∆R> ˙∆R. Operators ∧
and ∨ are defined so that τ∧ = (τ )∧ and τ = (τ∧)∨.

The exponential map transfers tangent elements to the
group; the logarithmic map is its inverse,

∆ = Exp(τ ) , exp(τ∧) =
[

Exp(θ) Qυ Qρ+Pυ∆t
0 1 ∆t
0 0 1

]
(8)

τ = Log(∆) , log(∆)∨ =

[
Q−1(∆p−PQ−1∆v∆t)

Q−1∆v
Log(∆R)

∆t

]
(9)

where Log() is obtained by identifying terms in (3) and (8).
Matrices P and Q are provided in the appendix.

4) Jacobians, uncertainty: For general functions f :
M → N ; y = f(x), we propagate uncertainty normally
via the Jacobians Jyx ,

∂y
∂x , i.e., Σy = Jyx Σx Jyx

>. These
Jacobians map the tangent spaces of the mannifolds M,N
at x and y, and in case of vector spaces they resort to the
classical Jacobian. They also satisfy the chain rule, which
we use extensively in our developments. We provide ample
reference and justification of this approach in the technical
report [19].

A comment is however necessary for the present IMU
case. It relates to the uncertainty of the last component of
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Fig. 3: The pre-integrated delta ∆ij ∈ D contains all motion
increments from time i up to time j. The current delta δjk ∈ D
contains the motion from time j to k, computed from the last IMU
measurement at time k, so that ∆ik = ∆ij · δjk. Pre-integration
is complete when k = m.

the tangent space (7), which is the time ∆t. This component
has no uncertainty by definition. Having it in the covariances
would imply singularity and result in the risk of a number
of well-known numerical issues. We therefore systematically
marginalize this time component out of the covariances,
simply by removing the last row and column.

B. Pre-integrated IMU factors

An IMU factor is created between consecutive keyframes
xi and xm by integrating all IMU data from ti to tm (Fig. 3).
The factor is pre-integrated during the data acquisition phase,
and then used in a second phase to compute the motion
residuals at each iteration of the optimization solver. Both
phases are described hereafter.

1) IMU pre-integration: The following pipeline of opera-
tions is performed to recursively pre-integrate IMU data into
a unique measurement.

At the reception of each IMU measurement yk = (a,ω)k,
start by correcting it with available bias estimates bi =
(ab,ωb)i, to produce the tangent vector τ = νδt. For this,
set the velocity part of ν to zero as the IMU is by definition
at zero speed with respect to the moving frame (see comment
B.2 in the appendix). Obtain at the same time the respective
Jacobians,

τk =

[
0

a−ab
ω−ωb

1

]
δt, Jτy =

[
0 0
I 0
0 I
0 0

]
δt, Jτb = −

[
0 0
I 0
0 I
0 0

]
δt (10)

Second, use the exponential map to obtain the current delta
step δjk in the group manifold, and obtain Jacobian

δjk = Exp(τk) , Jδτ = Jr(τk) . (11)

Third, use group composition (6) to update the pre-integrated
delta; obtain Jacobians

∆ik = ∆ij · δjk , J∆ik

∆ij
= Ad−1

δjk
, J∆ik

δjk
= I , (12)

where Adδ is the adjoint and Jr is the right Jacobian —see
the appendix and [19] for reference. Fourth, propagate the
delta covariance

Σ∆
ik = J∆ik

∆ij
ΣijJ

∆ik

∆ij

>
+ J∆ik

y ΣyJ∆ik
y

>
, (13)

with Σy the covariance of the IMU measurements y, and
J∆ik

y = J∆ik

δ JδτJτy computed using the chain rule. Finally,
integrate the Jacobian of the delta with respect to the biases

J∆ik

b = J∆ik

∆ij
J

∆ij

b + J∆ik

δjk
JδτJτb . (14)

Pre-integration starts after each keyframe with ∆ii = I,
Σ∆
ii = 0 and J∆ii

b = 0, using bi = bi the current best



estimate of the bias at time i. Pre-integration is complete
(Fig. 3) when k = m, which yields ∆im, Σ∆

im and J∆im

b .
2) IMU factor residual: Computation of the residual is

done through the following steps. Use the pre-integrated
Jacobian J∆im

b to correct the pre-integrated delta ∆im to
account for the new bias estimate bi 6= bi,

∆im(bi) = ∆im · Exp(J∆im

b (bi − bi)) . (15)

Use (2) as � to compute the expected delta from xi to xm,

∆̂im(xi,xm) = xm � xi . (16)

Compute the residual in the tangent of D at ∆im,

r∆
im(xi,xm,bi) = Log(∆im(bi)

−1 · ∆̂im(xi,xm)) ∈ R9 ,
(17)

and drop the ∆t part from the residual after the Log() —see
comment in Section III-A.4.

3) Bias drift: A second part of the IMU residual concerns
bias drift (see Fig. 1). This is straightforward,

rBim = bm − bi ∈ R6 , ΣB
im ∈ R6×6 . (18)

The complete 15-DoF IMU residual can be put simply as

rIim =
[

r∆
im

rBim

]
∈ R15, ΣI

im = diag(Σ∆
im,Σ

B
im) , (19)

where it might be worth noticing, for computational aspects
in solving (1), that

∥∥rI
∥∥2

ΣI =
∥∥r∆

∥∥2

Σ∆ +
∥∥rB

∥∥2

ΣB .

C. IMU Lie group versus Forster’s method

Mathematically, and disregarding methodology, the main
difference between our method and Forster’s [12] is to be
found in the exponential map. To see it, let us consider small
rotation increments θ = ωδt captured at each single IMU
sample. In such cases, the matrices P,Q appearing in the
exponential map (8) and detailed in (30) can be approximated
by P ≈ 1

2I and Q ≈ I. The exponential becomes,

Exp

([
0
a
ω
1

]
δt

)
≈
[

Exp(ωδt) aδt
1
2aδt2

0 1 δt
0 0 1

]
, (20)

where we find the terms aδt and 1
2aδt2, which should

sound familiar from Forster’s method. In effect, with this
approximation, if we now compact all the steps (10–12) of
our integration into a cumulative expression,

∆ik =

k∏

j=i+1

Exp

([
0

(aj−abi)
(ωj−ωbi)

1

]
δt

)
, (21)

it is possible (although tedious) to show that both Forster’s
and our method are exactly equivalent when ωδt→ 0.

IV. VISUAL TAG EXTEROCEPTIVE FACTORS

A. Factor residual

The apriltag library [14] returns the four corners pixel
coordinates as well as a unique id for tags detected in a
scene which solves the otherwise hard problems of feature
association and loop closure. A relative transformation be-
tween the camera at time i and the tag n, ciTn ∈ SE(3)
is then extracted using a PnP algorithm on the four corners

w

i

n

ci

w bTi

w bTn

iTci

ciTn

Fig. 4: Kinematic chain of the reference frames involved in one tag
observation and their transforms T ∈ SE(3). w: world frame; i:
IMU frame at time i; ci: camera frame at time i; n: tag n frame.
The SE(3) tag measurement is highlighted in red.

[21]. This measurement can be used in the context of graph-
SLAM to define a 6-DoF factor between the key frame IMU
pose at time i wTi and the tag’s pose wTn, which is used
as a landmark and estimated concurrently with the trajectory
(see Figs. 1 and 4).

The factor’s residual is defined in se(3) as the discrepancy
between the expected relative pose

ci
T̂n = iT−1

ci

w
T̂−1
i

w
T̂n

and the measurement ciTn (Fig. 4):

rVin(xi, ln) = Log(ciT−1
n

iT−1
ci

w
T̂−1
i

w
T̂n) ∈ R6, (22)

where iTci is the IMU-to-camera transform.

B. Factor covariance

We associate a covariance matrix ΣV
in ∈ R6×6 to this

residual. A natural way to proceed is to consider the effects
of pixel noise on the recovered transformation which is done
as follows. Each of the four tag corners npj , j ∈ {1, 2, 3, 4}
in tag frame is projected to the image according to

uj = ph(ciTn · npj), Jj = J
uj
ciTn

, (23)

where ph : R3 → R2 is the pinhole projection function and
Jj ∈ R2×6 is the Jacobian with respect to the measured
transform, computed according to the Lie theory [19]. We
stack the four pixels uj into u ∈ R8, and the four Jacobians
Jj of into J ∈ R8×6. Through covariance propagation, we
get the relation between ΣV

in and Σu.

Σu = JΣV
inJ> (24)

Since J is full-column rank, we can compute its pseudo-
inverse J+ = (J>J)−1J> to invert (24) to find ΣV

in =
J+ΣuJ+>. Then, assuming uncorrelated pixel noises, Σu ∈
R8×8 is a diagonal matrix with terms equal to σ2 = n2,
n being a number of pixels accounting for the pixelization
noise and motion blur, as in [15] for instance. We obtain
finally,

ΣV
in = n2(J>J)−1 . (25)

C. Ambiguity in the pose estimation

It is well known that the pose extraction from planar
markers suffers from an inherent ambiguity between two
fairly different rotations as described in [22] or instance.
One solution is to define the tag factor residual as the pixel
error between the detected corners and their projection given
current tag pose estimate and let the optimizer find the most
probable tag poses given the complete set of measurements.



TABLE I: Datasets description and results

Description Duration Length MTE1 STE2

Handheld loop 62 s 20.7 m 27 10
HRP2 turns then walks 72 s 15.4 m 30 16

HRP2 climbs stairs 53 s 6.5 m 12 6
HRP2 descends stairs 19.39s 2.64m

1 Mean translation error [mm]
2 Std. dev. of translation error [mm]

However if one tag is wrongly initialized, the optimizer
is not guaranteed to leave the local minimum with new
measurements. Our solution is to bring the disambiguation
on the front-end side. [21] provides an implementation of
the PnP problem that retrieves both ambiguous poses. When
expressed in camera frame, both solutions share the tag
position and differ only in its orientation. We typically want
to select the solution with smaller error. However, if the
reprojection errors e1 and e2 are too close (we test for e2e1 < h
with e1 ≤ e2 and h an empirical threshold), we increase the
rotational part of the covariance matrix by a great factor to
prevent a potential wrong tag orientation to influence the
estimation.

D. Related works

Two Apriltag based visual-inertial SLAM systems have
been implemented in the previous years. In [23], the authors
rely on a EKF in which state propagation in naturally handled
by the IMU and each marker detection is used in an update
step where the reprojection error of its 4 corners provides
a 8D innovation vector. A closer solution to ours was very
recently proposed in [15] and is also based on graph SLAM
optimization benefiting from Forster’s IMU pre-integration
from GTSAM. As explained previously, the Apriltag factor
formulation is different from ours and the algorithm is tested
on large datasets consisting only of smooth motions.

V. RESULTS

A. Experimental setup

We have gathered several datasets in the experimental
arena of the humanoid robots at LAAS-CNRS, a 3D envi-
ronment about 10m×5m made of flat floor, stairs of various
slopes and a 30cm wide beam. The robot environment was
augmented with about 20 fiducial “April-tag” markers (about
20 cm width). The tags have been randomly dispatched in
the environment. They are fixed during a run, but may vary
significantly between two sets of data, and their locations
are not calibrated —that is, we do not have ground-truth
localization of the tags.

Each dataset is composed of 3 sequences:
• a sequence of RGB images captured at 33 Hz
• a sequence of IMU measures captured at 200 Hz
• a sequence of motion-capture (MoCap) at 200Hz mea-

surements used as ground truth.
The visual-inertial sensor (VIS) is comprised of a Memsic

IMU running at 200 Hz and an Imagine Source camera. IMU
and camera are hardware synchronized: the image acquisition
is triggered by a micro-controller (STM32) synchronized

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
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−2.0
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)

estimation
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Fig. 5: Two loops of the experimental field with camera in hand

with the IMU. We have validated that there is less than 2 ms
synchronization error by the hardware (shutter time) and that
this delay is stable. The camera and the IMU are collocated,
with less than 10 cm of distance between IMU and camera
focal. Although our implementation of the least-squares
estimator is able to calibrate the sensors, we have not tried
to calibrate the camera-to-IMU extrinsic parameters. In each
sequence, we have taken care that the camera is navigating in
a comfortably-dense field of tags, even if it may not have al-
ways a tag in its field of view. The motion-capture data have
been obtained from a calibrated 3D marker attached to the
camera and are synchronized in post-process by maximizing
the velocity norm cross-correlation between MoCap and esti-
mated state sequences. The datasets are available at https:
//gepgitlab.laas.fr/loco-3d/wolf-data/.

B. Localization precision

We consider four datasets which are summarized in table
I. They cover different tasks on which a consistent estimation
of the robot movement is necessary. The first one is a
relatively long sequence consisting of two loops with the
VIS handheld. This is used to test the long term localization
of the robot, which is interesting for navigation. Secondly, we
made the LAAS Gepetto team HRP2 walk and turn around
on a short distance to evaluate the resilience of the filter
to the vibrations of the robot. Finally, two more challeng-
ing datasets are recorded while the robot is climbing and
descending stairs. Especially on the latter, the locomotion
causes impacts that on one hand bring the IMU close to its
dynamic range saturation, and on the other hand provokes
images with motion blur. Note that during these experiments,
the estimator was not used for feedback control. In order to
compare our results with the ground truth, we used methods
described in [24] to align trajectories given that 4 DoFs are
unobservable in VI estimation. For each case, key frames
are created at a frequency of 6.6 Hz (every 5 images) if tags
are detected in the corresponding image. Figure 6 presents
a quantitative evaluation of the translational errors. In all
cases, our estimator achieves errors consistently below a few

https://gepgitlab.laas.fr/loco-3d/wolf-data/
https://gepgitlab.laas.fr/loco-3d/wolf-data/
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Fig. 6: Translation estimation error (cm) as a function of time (s). In the clock-wise sens, starting from the top-left corner, the datasets
are handheld camera, stairs climbing, stairs descending and walking on flat ground.
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Fig. 7: Descending stairs (one step): the robot first lowers its center
of mass and then touches the next step with results in vibrations
from the impact

centimeters. The biggest errors are obtained for the walking
datasets where the two humps correspond to phases where
the robot is turning on itself and sees landmarks that it will
not see again later in the trajectory.

A high rate estimation of a humanoid robot velocity and
in particular of its center of mass is critical for balance
controllers. It can be recovered from motion capture through
numerical differentiation of the positions, but this results
in a quite noisy time series. It is especially visible when
hard impacts make the robot shake at approximately 10 Hz.
The estimated velocity follows a familiar oscillatory damped
system behaviour while the mocap estimation is more erratic.
In this sense, our estimator seems to be more fit for feedback
control than the use of the MoCap.

VI. CONCLUSION

In this paper, we have proposed a visual-inertial localiza-
tion system for a humanoid robot navigating in a structured
indoor environment. We have proposed an original theoreti-
cal contribution by reformulating the Forster pre-integration
using a dedicated Lie group. While the formulation only
marginally improves the performance of the state-of-the-
art for handling inertial measurements, we believe it brings
several improvements, in particular the possibility to easily

extend the pre-integration principle to other high-frequency
sensors typically available on legged robots. We proposed to
integrate the camera using artificial landmarks. Compared to
other visual-inertial localization systems also using fiducial
markers, we have proposed a practical contribution to handle
the ambiguity in the pose estimation of the landmarks. Using
artificial landmarks is an interesting solution for humanoid
robots navigating indoor in an professional environments, in
particular a lab, that can be easily augmented with the mark-
ers. Finally, we have proposed an experimental validation,
based on 4 new datasets, that are released with the paper.
We have demonstrated unprecedented accuracy during a 3D
locomotion, with about 1cm error in average for climbing 5
steps of a stair.

While the localization is already satisfactory with respect
to the needs of the control, the proposed method is only
one step toward the final localization that we aim at. As
recently proposed by other teams, we finally want to also
fuse the information of contact in the estimator. This should
be done following the pre-integration approach to account
for the high-frequency of contact information. Thanks to
the proposed Lie approach, we should be able to finely
handle the available contact information, without the help
of a staggered kinematic estimator but by directly merging
the raw sensor values. We also hope that the released
benchmark will be exploited by the community to challenge
our estimator.

APPENDIX
ELEMENTS OF THE IMU DELTA MATRIX LIE GROUP

A. Tangent space and Lie algebra d

Following [19], the tangent space of D at the point ∆ is found
by taking the time derivative of the group constraint, ∆−1∆ = I.
Noting •̇ , ∂•

∂t
, this yields after a few manipulations

∆−1∆̇ =

[
[ω]× ∆R>a ∆R>(v−∆v)

0 0 1
0 0 0

]
, (26)

with v , ∆̇p, a , ∆̇v and [ω]× , ∆R> ˙∆R. The Lie algebra d is
the tangent space at the identity ∆ = I. Its elements ν∧ , ∆̇|∆=I



and their isomorphics ν in Cartesian space are given by,

ν∧ =

[
[ω]× a v

0 0 1
0 0 0

]
∈ d

∨−−⇀↽−−
∧

ν =

[
v
a
ω
1

]
∈ R10 . (27)

This tangent ν∧ corresponds to the ‘velocity’ of the group element.
Any point in the Lie algebra can be obtained after moving at
constant velocity during a period ∆t, that is, τ∧ = ν∧∆t ∈ d
—see (7).

B. The exponential map
1) The general case: Eq. (26) can be written as ∆̇ = ∆ ·ν∧.

This is an ordinary differential equation whose integral for constant
ν yields the exponential map [19], ∆(t) = exp (ν∧t). This gives a
direct expression of the integral of information of the type (v,a,ω)
onto the deltas manifold. See below for the (a,ω) case. The closed
form of the exponential map is obtained through Taylor expansion
(see e.g. [19] for examples). At t = ∆t we have,

∆(∆t) = exp(ν∧∆t) ,
∑
n

1

n!
(ν∧∆t)n . (28)

Exploiting the cyclic pattern of the powers of [ω]×, this results in

exp

([
[ω]× a v

0 0 1
0 0 0

]
∆t

)
=

[
exp([ω]×∆t) Qa∆t Qv∆t+Pa∆t2

0 1 ∆t
0 0 1

]
(29)

with (we skip proofs for space reasons)

Q(θ) = I +
1− cos θ

θ
[u]× +

θ − sin θ

θ2
[u]2× (30)

P(θ) =
1

2
I +

θ − sin θ

θ2
[u]× +

cos θ + 1
2
θ − 1

θ2
[u]2× , (31)

where θ = ω∆t, θ = ‖θ‖ and u = θ/θ form the angle-axis
representation of the rotation step ω∆t.

2) The IMU case of v = 0: We defined the IMU deltas
as the motion relative to the free-falling frame, which has initial
velocity vi. Thus the tangent velocity v = ∆̇p is zero at the start
of the integration step. Since the exponential Exp(ν∆t) assumes
a constant tangent vector ν = (v,a,ω, 1) during the interval ∆t,
we have that v = 0 during the full step. This gives immediately

exp

([
[ω]× a 0

0 0 1
0 0 0

]
∆t

)
=

[
exp([ω]×∆t) Qa∆t Pa∆t2

0 1 ∆t
0 0 1

]
. (32)

C. The adjoint and small adjoint matrices
Following the general methodology explained in [19], the adjoint

matrix is obtained by identifying the linear terms in Ad∆τ =
(∆τ∧∆−1)∨. We get after long but relatively easy calculations,

Ad∆ =

[
∆R −∆R∆t [∆p−∆v∆t]×∆R ∆v

0 ∆R [∆v]×∆R 0

0 0 ∆R 0
0 0 0 1

]
∈ R10×10 . (33)

Similarly, from [25] the small adjoint matrix can be computed by
identifying the linear terms in adτσ = (τ∧σ∧ − σ∧τ∧)∨ which
for τ = (ρ,υ,θ,∆t) ∈ d yields,

adτ =

 [θ]× −I∆t [ρ]× υ

0 [θ]× [υ]× 0

0 0 [θ]× 0

0 0 0 0

 ∈ R10×10 . (34)

D. The right Jacobian
The right Jacobian Jr is the Jacobian of Exp() as described

in [19]. Lacking at the moment a closed form for it, we take the
general methodology for the left Jacobian described in [25], and
transform it to the right using Jr(τ ) = Jl(−τ ) [19],

Jr(τ ) = Jl(−τ ) =
∑
i

ad−τ
i

(i+ 1)!
=
∑
i

(−adτ )i

(i+ 1)!
. (35)

This sum can be truncated at the desired degree of accuracy.
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