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Abstract
This paper proposes an empirical model of inverse demand for differentiated prod-

ucts: the Inverse Product Differentiation Logit (IPDL) model. The IPDL model gen-

eralizes the commonly used nested logit model to allow richer substitution patterns,

including complementarity. Nevertheless, the IDPL model can be estimated by two-

stage least squares using aggregate data. We apply the IDPL model to data on ready-

to-eat cereals in Chicago in 1991-1992, and find that complementarity is pervasive in

this market. We then show that the IPDL model belongs to a wider class of inverse de-

mand models in which products can be complements, and which is sufficiently large to

encompass a large class of discrete choice demand models. We establish invertibility

for this wider class, thus extending previous results on demand inversion.
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1 Introduction

Estimating the demand for differentiated products is of great empirical relevance in indus-
trial organization and other fields of economics. It is important for understanding con-
sumer behavior and for analyzing major economic issues such as the effects of mergers and
changes in regulation. Ideally, one would like to employ a model that accommodates rich
patterns of substitution, while requiring just regression for estimation.

This paper proposes the Inverse Product Differentiation Logit (IPDL) model, which
generalizes the nested logit model by allowing richer patterns of substitution and in par-
ticular complementarity (i.e., a negative cross-price elasticity of demand), while being es-
timable by linear instrumental variables regression.

The IPDL model is relevant for estimating demands for differentiated products that are
segmented along multiple dimensions. It generalizes the nested logit models by allowing
the segmentation to be non-hierarchical, which is often desirable in applications. At the
same time, it maintains the important advantages of the nested logit model. First, its in-
verse demand has closed form such that numerical inversion of demand is not required.
Second, it can be estimated by two-stage least squares regression of market shares on prod-
uct characteristics and shares related to product segmentation. Third, it is consistent with
utility maximization. The IDPL model may therefore be an attractive option in the many
empirical applications where the nested logit model would otherwise be used.

The current practice of the demand estimation literature with aggregate data is to as-
sume an additive random utility model (ARUM) (McFadden, 1974) and to estimate it using
Berry (1994)’s method to deal with endogeneity of prices and market shares. The logit
model is the simplest option, but exhibits the Independence of Irrelevant alternatives (IIA)
property. This implies that an improvement in one product draws demand proportionately
from all the other products and makes cross-price elasticities independent of how close
products are in characteristics space, which is unreasonable in most applications.

The nested logit model with two or more levels generalizes the logit model (see Gold-
berg, 1995; Verboven, 1996a). This model is commonly used to estimate aggregate demand
for differentiated products; some recent examples are Björnerstedt and Verboven (2016)
and Berry et al. (2016). The nested logit model has closed-form inverse demand and is
conveniently estimated by two-stage least squares. It imposes, however, the restriction that
the segmentation of products, i.e., the nesting structure, must be hierarchical, meaning.
that each nest on a lower level must be contained within exactly one nest on a higher level.
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This severely constrains the substitution patterns that the nested logit model can accommo-
date, since the IIA property still holds within nests and at the nest level. Furthermore, the
sequence of segmentation dimensions in the hierarchy is not unique and often not obvious.1

The logit and nested logit models belong to the wider class of Generalized Extreme
Value (GEV) models developed by McFadden (1978).2 A number of recent papers have
proposed members from this class in order to obtain models with richer substitution pat-
terns. The product differentiation logit model of Bresnahan et al. (1997) extends the nested
logit model by allowing the grouping of products to be non-hierarchical. The ordered logit
model of Small (1987) and the ordered nested logit model of Grigolon (2018) describe
markets having a natural ordering of products.3 The seminal paper by Berry et al. (1995)
overcomes the limitations of the nested logit model by specifying a random coefficient logit
model, which breaks IIA at the population level. However, the inverse demands of these
more general models do not have closed form.

The richer substitution patterns of these models is obtained at the cost of more complex
and time-consuming nonlinear estimation procedures such as the nested fixed point (NFP)
approach of Berry et al. (1995) or the Mathematical Program with Equilibrium Constraints
(MPEC) approach of Dubé et al. (2012), which are associated with issues of local optima
and choice of starting values (see e.g., Knittel and Metaxoglou, 2014).

In this paper, we depart from the standard practice by specifying a model in terms of
the inverse demand. Given linear-in-parameters utility indexes, the model can then be di-
rectly estimated by linear regression using Berry (1994)’s method. More specifically, we
propose the IPDL model for products that are segmented along multiple dimensions. The
IPDL model extends the nested logit model by allowing arbitrary, non-hierarchical group-
ing structures (i.e., any partitioning of the choice set in each dimension). It improves on
the nested logit model by allowing for richer patterns of substitution and, as we show,
even complementarity. This improvement is achieved by removing the constraint that the
segmentation should be hierarchical, and it is therefore costless. While the IPDL model

1Hellerstein (2008) writes, concerning the beers market, "[D]emand models such as the multistage bud-
geting model or the nested logit model do not fit this market particularly well. It is difficult to define clear
nests or stages in beer consumption because of the high cross-price elasticities between domestic light beers
and foreign light and regular beers. When a consumer chooses to drink a light beer that also is an import, it
is not clear if he categorized beers primarily as domestic or imported and secondarily as light or regular, or
vice versa."

2GEV models are ARUM in which the random utilities have a multivariate extreme value distribution
(Fosgerau et al., 2013).

3Other papers provide generalizations of the logit model by using semiparametric or nonparametric meth-
ods, see Davis and Schiraldi (2014) for more details.
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requires modelers to define the segmentation, the relative importance of segmentation di-
mensions can be estimated.

Another important approach in demand estimation is the flexible functional form ap-
proach (e.g., the AIDS model of Deaton and Muellbauer, 1980), where the error term has
no immediate structural interpretation. By contrast, in this paper, the error term has the
structural interpretation of Berry (1994) that it represents product/market-level characteris-
tics unobserved by the modeller but observed by consumers and firms.

The IPDL model belongs to a wider class of inverse demand models, that we label
Generalized Inverse Logit (GIL) models. We show that any GIL model is consistent with
a representative consumer model (RCM) in which a utility-maximizing representative con-
sumer chooses a vector of nonzero demands, trading off variety against quality. We also
show that any ARUM is equivalent to some GIL model. However, the converse is not true,
since some GIL models exhibit complementarity, which cannot occur in an ARUM. We es-
tablish a new demand inversion result, which extends Berry (1994) and Berry et al. (2013)
by allowing complementarity. It is often desirable to allow complementarity as important
economic questions hinge on the extent to which products are substitutes or complements.
In particular, this directly affects the incentives to introduce a new product on the market,
to bundle, to merge, etc.4

The paper is organized as follows. Section 2 sets the context, introducing the role of
demand inversion with the inverse demand of the logit and nested logit models as examples.
Section 3 introduces the IPDL model as a generalization of the inverse demand of the
nested logit model and shows how to estimate it with aggregate data. Section 4 applies
the IPDL model to estimate the demand for ready-to-eat cereals in Chicago, finding that
complementarity is pervasive in this market. Section 5 introduces the wider class of GIL
models. Section 6 studies its linkages with the ARUM and RCM. Section 7 concludes. A
supplement provides Monte Carlo evidence on the IPDL model as well as general methods
and examples for building GIL models that go beyond the IPDL model.

4See Gentzkow (2007), Ershov et al. (2018), and Iaria and Wang (2019) who investigate these issues
empirically.
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2 Motivation

2.1 General Setting: the Role of Demand Inversion

Consider a population of consumers choosing from a choice set of J + 1 differentiated
products, denoted by J = {0, 1, . . . , J}, where products j = 1, . . . , J are the inside
products and product j = 0 is the outside good. We consider aggregate data on market
shares sjt > 0, prices pjt ∈ R and K product/market characteristics xjt ∈ RK for each
inside product j = 1, . . . , J in each market t = 1, . . . , T (Berry, 1994; Berry et al., 1995;
Nevo, 2001). For each market t, the market shares sjt are positive and sum to 1, i.e.,
st = (s0t, . . . , sJt) ∈ int (∆), where int (∆) is the interior of the unit simplex in RJ+1.

Based on Berry and Haile (2014), let δjt ∈ R be an index given by

δjt = δ (pjt, xjt, ξjt;θ1) , j ∈ J , t = 1, . . . , T, (1)

where ξjt ∈ R is the jt-product/market unobserved characteristics term and θ1 is a vector
of parameters.

Consider the system of demand equations

st = σ (δt;θ2) , t = 1, . . . , T, (2)

which relates the vector of observed market shares, st, to the vector of product indexes in
market t, δt = (δ0t, . . . , δJt), through the model, σ = (σ0, . . . , σJ), where θ2 is a vector of
parameters and

σ(·;θ2) : D → int(∆)

is an invertible function, with domain D ⊂ RJ+1.5

The market share of the outside good is determined by the identity

σ0 (δt;θ2) = 1−
J∑
k=1

σk (δt;θ2) , t = 1, . . . , T. (3)

We normalize the index of the outside good, setting δ0t = 0 in each market t = 1, . . . , T .
Several remarks regarding the demand system (2) are in order. First, the unobserved

5Restricting the domain of σ to D enables the model to be normalized. E.g., D = {δt ∈ RJ+1 : δ0t = 0}
or D =

{
δt ∈ RJ+1 :

∑
j∈J δjt = 0

}
.
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characteristics terms ξjt are scalars. Second, there is no income effect, since σ does not
depend on income, and income is implicitly assumed to be sufficiently high that y >

maxj∈J pj . Last, prices pjt and characteristics xjt enter only through the indexes (in par-
ticular, we rule out random coefficients on prices and product characteristics).

Since the functionσ in Equation (2) is invertible in δt, then the inverse demand, denoted
by σ−1j , maps from market shares st to each index δjt with

δjt = σ−1j (st;θ2) , j ∈ J , t = 1, . . . , T. (4)

For simplicity, we assume a linear index,

δjt = xjtβ − αpjt + ξjt, j ∈ J , t = 1, . . . , T. (5)

Then the unobserved product characteristics terms, ξjt, can be written as a function of
the data and parameters θ1 = (α,β) and θ2 to be estimated,

ξjt = σ−1j (st;θ2) + αpjt − xjtβ, j ∈ J , t = 1, . . . , T. (6)

The unobserved product characteristics terms ξjt represent the structural error terms of
the model, since we assume that they are observed by consumers and firms but not by the
modeller. In addition, prices and market shares in the right-hand side of Equation (6) are
endogenous, i.e., they are correlated with the structural error terms ξjt.6 Then, following
Berry (1994), we can estimate demands (2) based on the conditional moment restrictions

E [ξjt|zt] = 0, j ∈ J , t = 1, . . . , T, (7)

provided that there exists appropriate instruments zt for the endogenous prices and market
shares.

2.2 Closed-form and Linear-in-Parameters Inverse Demands

Since the seminal papers by Berry (1994) and Berry et al. (1995), the standard practice of
the demand estimation literature with aggregate data has been to specify an ARUM and

6Prices are likely to be endogenous since firms may consider both observed and unobserved product
characteristics when setting prices. Market shares are endogenous by construction since they are defined by
the system of equations (2), where each demand depends on the entire vectors of endogenous prices and
unobserved product characteristics.
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to compute the corresponding demands, which then must be inverted numerically during
estimation.7 In this paper, we instead directly specify inverse demands of the form

σ−1j (st;θ2) = lnGj (st;θ2) + ct, j ∈ J , (8)

where the vector function G = (G0, . . . , GJ) is invertible as a function of st ∈ int (∆), and
where ct ∈ R is a market-specific constant.8 Combining with Equation (4), this amounts to

lnGj (st;θ2) = δjt − ct. (9)

When lnGj is linear in parameters θ2, estimation amounts to linear regression, which
makes two-stage least squares (2SLS) easily applicable and (empirical) identification clear.

The logit and the nested logit models have closed-form and linear-in-parameters inverse
demands that satisfy Equation (8). For the logit model,

lnGj (st) = ln (sjt) , j ∈ J , (10)

so that its inverse demand its given by the following well-known expression (Berry, 1994)

σ−1j (st) = ln

(
sjt
s0t

)
= δjt. (11)

For the two-level nested logit model, which partitions the choice set into groups,

lnGj (st;µ) = (1− µ) ln (sjt) + µ ln

 ∑
k∈G(j)

skt

 , j ∈ J , (12)

where G(j) is the set of products grouped with product j and µ ∈ (0, 1) is the nesting
parameter (see Berry, 1994).

For the three-level nested logit model, which extends the two-level nested logit model

7To our knowledge, the logit and the nested logit models are the only ARUM that yield closed-form
inverse demands.

8Compiani (2019) adopts a similar approach, but proposing to nonparametrically estimate inverse de-
mands for differentiated products based on aggregate data.
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by further partitioning groups into subgroups,

lnGj (st;µ1, µ2) =

(
1−

2∑
d=1

µd

)
ln (sjt) + µ1 ln

 ∑
k∈G1(j)

skt

+ µ2 ln

 ∑
k∈G2(j)

skt

 ,

(13)
where the parameters satisfy

∑2
d=1 µd < 1, µd ≥ 0, d = 1, 2, and where G1(j) and G2(j)

are the sets of products belonging the same group and to the same subgroup as product j,
respectively.9

The logit and nested logit models have the important advantage that they boil down to
linear regression models (Berry, 1994). For example, for the logit model,

ln

(
sjt
s0t

)
= xjtβ − αpjt + ξjt, j = 1, . . . , J, t = 1, . . . , T. (14)

The logit model requires just one instrument for price and the two-level nested logit model
requires one instrument for price and one for the endogenous shares. As a consequence,
both models allow very large choice sets involving thousands of products. However, the
logit and nested logit models impose strong restrictions on the substitution patterns that can
be accommodated.

In the next section, we introduce the inverse product differentiation logit (IPDL) model,
which extends the inverse demand of the nested logit model in the same way that the prod-
uct differentiation logit model of Bresnahan et al. (1997) extends the nested logit model;
we take the IPDL model to data on ready-to-eat cereals in Section 4.

3 The Inverse Product Differentiation Logit (IPDL)

Specification of the Model Suppose that each market exhibits product segmentation
along D dimensions, indexed by d. Each dimension d defines a finite number of groups

of products, such that each product belongs to exactly one group in each dimension. The
grouping structure is exogenous and, for simplicity, assumed to be common across markets.

Let θ2 = (µ1, . . . , µD), where
∑D

d=1 µd < 1 and µd ≥ 0, d = 1, . . . , D , and let Gd (j)

be the set of products grouped with product j on dimension d. The IPDL model has inverse

9Indeed, setting γ1 = µ1+µ2 and γ2 = µ1, we recover Equation (10) of Verboven (1996a) and the model
satisfies the constraint 0 ≤ γ2 ≤ γ1 < 1 that makes it consistent with random utility maximization.
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demands that are given by Equation (8), where lnGj is defined as

lnGj (st;θ2) =

(
1−

D∑
d=1

µd

)
ln (sjt) +

D∑
d=1

µd ln

 ∑
k∈Gd(j)

skt

 . (15)

We show below that inverse demands (15) are invertible, such that it is possible to
compute the IPDL demands.10 We show in Section 6 that the IDPL demand is consistent
with utility maximization.

We say that two products are of the same type if they belong to the same group on all
dimensions. We assume that the outside good is the only product of its type, which implies
that

lnG0 (st;θ2) = ln (s0t) = δ0t − ct = −ct. (16)

The IPDL model extends the nested logit model by allowing arbitrary, non-hierarchical
grouping structures, i.e., any partitioning of the choice set in each dimension. Figure 1
illustrates the competing hierarchical and non-hierarchical grouping structures used for the
empirical application in Section 4. The freedom in defining grouping structures can be
used to build inverse demand models that are similar in spirit to GEV models based on
nesting, which have proved useful for demand estimation purposes (Train, 2009, Chap.
4). For example, like Small (1987) and Grigolon (2018), it is possible to define grouping
structures that describe markets where products are naturally ordered.

It is important to note that the parametrization of the IPDL model does not depend on
the number of products, but instead on the number of segmentation dimensions. This is
important because it implies that the IPDL model can handle markets involving very many
products.

Estimation of the IPDL Model Combining Equations (15) and (16), the IPDL model
boils down to a linear regression model of market shares on product characteristics and
share terms

ln

(
sjt
s0t

)
= xjtβ − αpjt +

D∑
d=1

µd ln

(
sjt∑

k∈Gd(j) skt

)
+ ξjt, (17)

for all inside products j = 1, . . . , J in each market t = 1, . . . , T .

10Invertibility of lnG = (lnG0, . . . , lnGJ) is shown using Proposition 1. The key assumption that en-
sures invertibility is that

∑D
d=1 µd < 1, which means that a positive weight is assigned to the terms ln(sjt).
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Equation (17) has the same form as the logit and nested logit equations (see Berry,
1994; Verboven, 1996a), except for the share terms. Under the standard assumption that
product characteristics xjt are exogenous, we must therefore find at leastD+1 instruments:
one instrument for price and for each of the D share terms.

Following the prevailing literature (see e.g., Berry and Haile, 2014; Reynaert and Ver-
boven, 2014; Armstrong, 2016), both cost shifters and BLP instruments are good candi-
dates for instruments. Cost shifters are appropriate instruments for prices but may not be
appropriate for market shares because costs affect the market shares only through prices.
BLP instruments, which are functions of the characteristics of competing products and are
commonly used to instrument prices, are also useful to instrument market shares. In theory,
BLP instruments generally suffice for identification.11 However, in practice they may be
weak and then cost shifters are required.

Following Verboven (1996a) and Bresnahan et al. (1997), the BLP instruments of the
IPDL model include, for each dimension, the sums of characteristics for other products of
the same group as well as the number of products within each group. These instruments
reflect the degree of substitution and the closeness of products within a group and are
therefore likely to affect prices and within-group market shares. The same instruments
can also be computed for products of the same type. Lastly, we can exploit the ownership
structure of the market and compute the same instruments while distinguishing products
of the same firms from products of competing firms. The idea is that prices, and thus
market shares, depend on the ownership structure since multi-product firms set prices so as
to maximize their total profits.

Links to Discrete Choice Models We show below that the IPDL model is consistent
with a representative consumer model (RCM) with taste for variety and without income
effect. The RCM assumes the existence of a variety-seeking representative consumer who
aggregates a population of consumers and chooses some quantity of every product, trading
off variety against quality. It has been a workhorse of the international trade literature
since Dixit and Stiglitz (1977) and Krugman (1979), and has also been used for demand
estimation purposes (e.g., Pinkse and Slade, 2004).

Specifically, as shown below, the IPDL model is consistent with a representative con-
sumer, endowed with income y, who chooses a vector st ∈ int (∆) of nonzero market

11See Armstrong (2016) for a discussion on the validity of BLP instruments as the number of products
increases.
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shares in market t so as to maximize the utility

αy +
∑
j∈J

δjtsjt −
∑
j∈J

sjt lnGj (st) , (18)

where Gj is defined by Equations (15) and (16), and where δj is a linear-in-price index.
The second term in Equation (18) captures the net utility derived from the consumption of
st in the absence of interaction among products and the last term expresses taste for variety.

As mentioned above, the IPDL model has the nested logit model, and thus the logit
model, as special cases: the logit is obtained when product segmentation does not matter,
and the nested logit model is obtained when the grouping structure is hierarchical. Thus
some IDPL models are ARUM. On the other hand, as shown below and in contrast to any
ARUM, some IDPL models allow complementarity.12

Complementarity We use the standard definition of complementarity and substitutabil-
ity in the absence of income effect (Samuelson, 1974), defining complementarity (resp.,
substitutability) as a negative (resp., positive) cross-price derivative of demand.13 Proposi-
tion 4 in Appendix A.3 provides some properties of the IPDL model regarding the patterns
of substitution, including the matrix of price derivatives of demand.

The IPDL model allows complementarity. To see this, suppose there are 3 inside prod-
ucts and one outside good. Inside products are grouped according to two dimensions: for
the first dimension, product 1 is in one group, and products 2 and 3 are in a second group;
for the second dimension, products 1 and 2 are in one group, and product 3 is in a second
group. Products 1 and 3 are complements if the derivative of the demand for product 3 with
respect to the price of product 1 is negative, that is, if14

(1− µ1 − µ2) (s1 + s2) (s2 + s3)− µ1µ2s0s2 > 0, (19)

which simplifies to 4/3 > µ1µ2/(1 − µ1 − µ2) for s0 = 1/2 and s1 = s2 = s3 = 1/6.
In particular, products 1 and 3 are complements for µ1 = µ2 = 1/3, but are substitutes
for µ1 = µ2 = 0.45. With the representative consumer interpretation, the parameter
µ0 = 1 −

∑D
d=1 µd measures taste for variety over all products of the choice set and each

12It would be of interest to establish conditions under which the IDPL model is equivalent to an ARUM.
13This definition is different from the one used by Gentzkow (2007) in the context of an ARUM defined

over bundles of products.
14See Proposition 4 in Appendix A.3.
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parameter µd, for d ≥ 1, measures taste for variety across groups of products according to
dimension d: higher µd means that variety at the level of groups of products matters more,
meaning that products in the same group in dimension d are more similar (see Verboven,
1996b, for a similar interpretation of the nesting parameter of the nested logit model). Then
complementarity in the IPDL model arises in a very intuitive way, due to taste for variety
at the group level.

In Section 1 of the supplement, we provide some simulation results investigating the
patterns of substitution. We find that: (i) products of the same type are always substi-
tutes, while products of different types may be substitutes or complements; and (ii) closer
products into the characteristics space used to form product types (i.e., higher values of µd
and/or whether products belong to the same groups or not) have higher cross-price elastic-
ities.

4 Empirical Illustration: Demand for Cereals

In this section, we illustrate the IPDL model by estimating the demand for ready-to-eat
(RTE) cereals in Chicago in 1991 – 1992. This market has been studied extensively (see
e.g., Nevo, 2001; Michel and Weiergraeber, 2019) and it is known to exhibit product seg-
mentation. We compare the results (in terms of elasticities and goodness-of-fit) from the
IPDL model to those from two alternative nested logit models.

4.1 Data

Databases We use store-level scanner data from the Dominick’s Database, made avail-
able by the James M. Kilts Center, University of Chicago Booth School of Business. We
supplement with data on the nutrient content of the RTE cereals (sugar, energy, fiber, lipid,
sodium, and protein) from the USDA Nutrient Database for Standard Reference and with
monthly sugar prices from the website www.indexmundi.com.

For our analysis, we use data from 83 Dominick’s stores and focus on the 50 largest
products in terms of sales (e.g., Kellogg’s Special K), where a product is a cereal (e.g.,
Special K) associated to its brand (e.g., Kellogg’s). We define a market as a store-month
pair. Prices of a serving (i.e., 35 grammes) and market shares are computed following Nevo
(2001). See Appendix B for more details on the data.
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Product Segmentation Based on the observations below, we consider two segmentation
dimensions. The first dimension is brand, where the brands are General Mills, Kellogg’s,
Nabisco, Post, Quaker, and Ralston. The second dimension is market segment, where
the market segments are family, kids, health/nutrition, and taste enhanced (see e.g., Nevo,
2001). These two dimensions are combined to form 17 product types among the 50 prod-
ucts.

Brands play an important role: Kellogg’s is the largest company and has large market
shares in all market segments; and General Mills, the second largest company, is especially
popular in the family and kids segments. Taken together, Kellogg’s and General Mills
account for around 80 percent of the market. As regards market segments, the family and
kids segments dominate and account for almost 70 percent of the market.

Table 1 shows the average nutrient content of the cereals grouped by brand and market
segment. As expected, cereals for health/nutrition contain less sugar, more fiber, less lipid,
and less sodium, and are less caloric. By contrast, cereals for kids contain more sugar and
more calories. Moreover, Nabisco offers cereals with less sugar and less calories, while
Quaker and Ralston offer cereals with more calories. The two dimensions therefore proxy,
at least partially, for the nutrient content of the cereals.

Figure 1 illustrates the grouping structure of the IPDL model (left panel) and of the
three-level nested logit model where products are grouped first by brand and then by market
segment (right panel).

Figure 1: PRODUCT SEGMENTATION ON THE CEREALS MARKET

Each dot illustrates the location of a cereal in the grouping structure.
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Table 1: AVERAGE BY MARKET SEGMENT AND BY BRAND

Dimensions Sugar Energy Fiber Lipid Sodium Protein N
g/serve kcal/serve g/serve g/serve mg/serve g/serve

Brand (dimension 1)
General Mills 9.92 132.09 1.99 1.51 230.69 2.65 17

(4.67) (7.69) (0.98) (0.82) (60.83) (0.83)
Kellogg’s 9.58 127.50 2.47 0.85 228.49 2.88 18

(5.52) (11.16) (2.81) (0.96) (103.93) (1.43)
Nabisco 0.25 125.48 3.43 0.58 2.10 3.83 2

(0.09) (0.74) (0) (0) (1.98) (0.02)
Post 12.02 130.76 2.09 1.03 212.03 2.49 5

(4.64) (14.83) (2.02) (0.78) (22.31) (1.15)
Quaker 8.50 139.44 2.26 2.43 159.88 3.59 5

(4.04) (9.20) (0.66) (1.86) (94.60) (1.15)
Ralston 7.09 138.48 0.58 0.51 305.43 2.04 3

(6.61) (1.41) (0.08) (0.65) (71.57) (0.39)
Market Segment (dimension 2)
Family 7.54 130.41 2.22 0.99 269.66 2.88 17

(5.27) (9.83) (2.61) (0.71) (88.64) (1.03)
Health/nutrition 5.03 122.54 3.16 0.54 168.54 3.84 9

(3.69) (5.78) (1.31) (0.21) (133.62) (1.35)
Kids 13.40 137.75 1.00 1.35 211.38 2.01 16

(4.17) (3.80) (0.69) (0.79) (44.77) (0.87)
Taste enhanced 9.70 129.28 3.32 2.22 166.43 3.16 8

(2.05) (15.50) (1.12) (1.93) (76.38) (0.34)
Total 9.31 131.16 2.17 1.22 216.29 2.82 50

(5.21) (10.21) (1.92) (1.08) (93.53) (1.15)
Notes: Standard deviations are reported in parentheses. Column "N" gives the number of
products by market segment and by brand. Averages and standard deviations are computed
over products (without taking into account of their market shares).

4.2 Demand Estimation

Specification We estimate Equation (17), where xjt includes a constant, the nutrients
mentioned above and a dummy for promotion. Following Bresnahan et al. (1997), we in-
clude fixed effects for brands (ξb) and market segments (ξs), which capture market-invariant
observed and unobserved brand-specific and market segment-specific characteristics, re-
spectively. The advantages provided by the two dimensions are therefore parametrized by
the fixed effects ξb and ξs, which measure the extent to which belonging to a group shifts
the demand for the product, as well as the parameters for groups µ1 and µ2, which measure
the extent to which products within a group are protected from substitution from products
in other groups along each dimension. Lastly, we include fixed effects for month (ξm), and
store (ξst), which capture monthly unobserved determinants of demand and time-invariant
store characteristics, respectively.
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The unobserved product characteristics terms are therefore given by

ξjt = ξb + ξs + ξm + ξst + ξ̃jt, (20)

where ξ̃jt, the structural error that remain in ξjt, capture the unobserved product charac-
teristics varying across products and markets that are not included into the model (e.g.,
changes in shelf-space, positioning of the products among others), which affect consumers
utility and that consumers and firms (but not the modeller) observe so that they are likely
to be correlated with prices and market shares.

Instruments We use two sets of instruments. First, as cost-based instruments, we form
the price of the cereal’s sugar content of a serve (i.e., sugar content in a serve times the
sugar monthly price), which we interact with brand fixed effects. Multiplying the price of
sugar by the sugar content allows the instrument to vary by product; and interacting this
with fixed effects allows the price of sugar to enter the production function of each firm
differently.

Second, we form BLP instruments by using other products’ promotional activity in a
given market, which varies both across stores for a given month and across months for a
given store: for a given product, other products’ promotional activity should affect con-
sumers’ choices, and should thus be correlated with the price and market share of that
product, but not with the error term.15 Specifically, we use the number of other promoted
products of rival firms and the number of other promoted products of the same firm, which
we interact with brand name fixed effects. We also use these numbers over products be-
longing to the same market segment, which we interact with market segment fixed effects.

A potential problem is weak identification, which occurs when instruments are only
weakly correlated with the endogenous variables. With multiple endogenous variables, the
standard first-stage F-statistic is no longer appropriate to test for weak instruments. We
therefore use Sanderson and Windmeijer (2016)’s F-statistic to test whether each endoge-
nous variable is weakly identified. In each estimated model, the F-statistics are far larger

15We do not use functions of the nutrient content of the cereals as instruments since by construction of the
data they are invariant across markets. We treat promotion as an exogenous variable since, at Dominick’s
Finer Foods, the promotional calendar is known several weeks in advance of the weekly price decisions. One
concern about the use of promotions to form instruments is that promotions could be advertised. If it was the
case, this would mean that promotions are not exogenous and cannot be used as instruments. However, we
do not observe advertising in the data, which is therefore part of the error term, and, in turn, we assume that
promotions are not followed by advertising. See Michel and Weiergraeber (2019) who also use promotion to
form instruments.
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than 10, implying that we can be confident that instruments are not weak.

Parameter Estimates Table 2 presents the 2SLS demand estimates from the IPDL and
the three-level nested logit models with groups for market segment on top (3NL1) and with
groups for brand on top (3NL2), in columns (1), (2), and (3), respectively.

Table 2: PARAMETER ESTIMATES OF DEMAND

(1) (2) (3)
IPDL 3NL1 3NL2

Price (−α) -1.83 (0.12) -2.91 (0.12) -4.10 (0.16)
Promotion (β) 0.088 (0.003) 0.102 (0.003) 0.144 (0.004)
Constant (β0) -0.697 (0.059) -0.379 (0.065) -0.195 (0.076)
Nesting Parameters (µ)

Market Segment/Group (µ1) 0.626 (0.009) 0.771 (0.008) 0.668 (0.011)
Brand/Subgroup (µ2) 0.232 (0.009) 0.792 (0.007) 0.709 (0.010)

FE Brands (ξb)
Kellogg’s 0.024 (0.005) -0.056 (0.003) 0.104 (0.006)
Nabisco -0.754 (0.024) -0.218 (0.011) -2.11 (0.02)
Post -0.485 (0.014) -0.187 (0.008) -1.36 (0.01)
Quaker -0.553 (0.015) -0.329 (0.014) -1.51 (0.01)
Ralston -0.732 (0.025) -0.200 (0.011) -2.13 (0.02)

FE Market Segments (ξs)
Health/nutrition -0.672 (0.010) -0.855 (0.008) -0.069 (0.005)
Kids -0.433 (0.009) -0.529 (0.009) 0.071 (0.005)
Taste enhanced -0.710 (0.010) -0.903 (0.007) -0.088 (0.006)

Observations 99281 99281 99281
RMSE 0.210 0.242 0.270
Notes: The dependent variable is ln(sjt/s0t). Regressions include fixed effects (FE) for brands,
market segments, months, and stores, as well as a constant, the nutrients (fiber, sugar, lipid, protein,
energy, sodium) and a dummy for promotion. Robust standard errors are reported in parentheses.
The values of the F-statistics in the first stages suggest that weak instruments are not a problem.

Consider first the results from the IPDL model. As expected, the estimated parameters
on the negative of price (α) and on promotion (β) are significantly positive. The estimated
parameters for groups have magnitude and sign that conform to the assumptions of the
IPDL model, µ1 ≥ 0, µ2 ≥ 0 and 1 − µ1 − µ2 > 0; no constraints were imposed on the
parameters during the estimation. These estimates imply that there is product segmentation
along both dimensions: for cereals of the same market segment, cereals of the same brand
are closer substitutes than cereals of different brands; and for cereals of the same brand,
cereals within the same market segment are closer substitutes than cereals from different
market segments. Overall, cereals of the same type are closer substitutes.
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We find that the brand reputation of the cereals confers a significant advantage to prod-
ucts from General Mills and Kellogg’s and that cereals for family have a significant ad-
vantage. In addition, we find that µ1 > µ2, which means that the market segments confer
more protection from substitution than brand reputation does (cereals of the same market
segment are more protected from cereals from different market segments than cereals of
the same brand are from cereals of different brands).

Model Selection and Robustness The estimates from the two nested logit models satisfy
µ2 > µ1, which means that they are both consistent with random utility maximization.
Neither nested logit model can then be rejected on this criterion.

The three estimated models are non-nested and have the same number of estimated
parameters. Then the non-nested test of Rivers and Vuong (2002) can be used to determine
which best fits the data. We find that the test strongly rejects both nested logit models in
favor of the IPDL model.16

In many situations, consumers face choices involving a very large number of products
(e.g., choice of a car or of a RTE cereal). We have estimated an alternative specification
in which we define products as cereal-brand-store combinations, as it is commonly done
in the vertical relationships literature (see e.g., Villas-Boas, 2007), and markets as months.
The resulting specification, which has more than 4, 000 products, leads to very similar
parameter estimates, thereby indicating that the results are fairly robust to the definitions
of products and markets.

Substitution Patterns. Figure 2 presents the estimated density of the own- and cross-
price elasticities of demands of the IPDL and the two nested logit models (see Section 3
of the supplement for the estimated own- and cross-price elasticities of demands, averaged
across markets and product types).

The estimated own-price elasticities are in line with the literature (see e.g., Nevo, 2001).
On average, the estimated own-price elasticity of demands is −2.815 for the IPDL model,

16The test statistic is given by
√
J × T

(
Q̂1 − Q̂2

)
/σ̂, where Q̂i is the value of the 2SLS objective func-

tion of model i evaluated at the demand estimates, and σ̂2 is the estimated value of the variance of the
difference between Q̂i’s. The null hypothesis is that the two non-nested models are asymptotically equiva-
lent; the first (resp., second) alternative hypothesis is that model 1 (resp., model 2) is asymptotically better
than model 2 (resp., model 1). This statistic must be evaluated against the standard normal distribution and
we estimate σ̂2 using 500 bootstrap replications. The test statistics of the two nested logit models (model 1)
against the IDPL model (model 2) are 1509.77 and 3644.43, respectively.
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−3.187 for the 3NL1 model and −3.124 for the 3NL2 model. However, there is an impor-
tant variation in price responsiveness across product types: for the IPDL model, own-price
elasticities range from−3.560 for cereals for kids produced by General Mills to−1.388 for
cereals for health/nutrition produced by Post; for the 3NL1 model, they range from−3.923

for cereals for kids produced by Ralston to−1.868 for cereals for health/nutrition produced
by Post; and for the 3NL2 model, they range from −3.975 for cereals for kids produced by
General Mills to −1.488 for cereals for health/nutrition produced by Post.

Consider now the cross-price elasticities. Among the 50×50 different cross-price elas-
ticities that the IPDL model yields, 49.5 percent (resp., 50.5 percent) are negative (resp.,
positive), meaning about one half of all pairs of cereals are complements. Note that the
presence of complementarity is likely to reduce competition in the cereals market com-
pared to a case with no complementarity. Iaria and Wang (2019) also find that complemen-
tarity is pervasive in the RTE cereals market. Complementarity can arise for many reasons,
including taste for variety and shopping costs.

Products of the same brand are always substitutes, which means that there is cannibal-
ization effect; likewise, products from the same market segment are all substitutes. Prod-
ucts of different brands and of different market segments may or may not be complements.

Figure 2: ESTIMATED PRICE ELASTICITIES OF DEMANDS
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5 The Generalized Inverse Logit Model

In this section, we introduce the Generalized Inverse Logit (GIL) class of models, which
includes the IPDL model as a special case and hence also the logit and nested logit models.
Proofs for this section are provided in Appendix A.4 along with formal statements of the
results. To ease exposition, we omit notation for parameters θ2 and market t.

Definition. GIL models are inverse demands of the form (9), i.e.,

lnGj (s) = δj − c, j ∈ J , (21)

where c ∈ R is a market-specific constant and ln G = (lnG0, . . . , lnGJ) is an inverse GIL
demand.

An inverse GIL demand is a function ln G, where G : (0,∞)J+1 → (0,∞)J+1 is
homogeneous of degree one and where the Jacobian JlnG (s) is positive definite and sym-
metric.

This definition immediately implies that the IDPL model is also a GIL model. Section
2 of the supplement provides a range of general methods for building inverse GIL demands
along with illustrative examples that go beyond the IPDL model, which is the focus of the
paper. As stated in the following proposition, an inverse GIL demand is injective and hence
invertible on its range.

Proposition 1. Let ln G be an inverse GIL demand. Then ln G is injective on int (∆).

We denote the inverse function as H = G−1. Inverting Equation (21) and using that
demands sum to one together with the homogeneity of G leads to the demand functions

sj = σj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J . (22)

This expression generalizes the logit demands in a nontrivial way through the presence of
the function H.

In addition, consider any vector of market shares s ∈ int (∆). Then, holding δ0 = 0, the
injectivity of the inverse GIL demand ensures that there exists a unique vector of indexes
δ = (0, δ1, . . . , δJ) that rationalizes demand, i.e., s = σ (δ).

Using that demands satisfy Roy’s identity ∂CS
(
eδ
)
/∂δj = σj (δ), it can easily be
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shown that the consumer surplus is

CS (δ) = ln

(∑
k∈J

Hk

(
eδ
))

, (23)

up to an additive constant. Note that the consumer surplus is simply the logarithm of the
denominator of the demands in Equation (22), just as in the case of the logit model.

Using that demands sum to one, we obtain that the market-specific constant is equal to
the consumer surplus c = CS (δ), which combined with Equation (21), shows that GIL
models satisfy

δj = lnGj (s) + CS (δ) , j ∈ J . (24)

Differentiating (24) with respect to δ, we find that the matrix of demand derivatives
∂σj/∂δi is given by

Jσ (δ) = [JlnG (s)]−1 − ssᵀ, (25)

where s = σ (δ). Given the absence of income effects, the matrix (25) is the Slutsky
matrix. This is symmetric and positive semi-definite, which implies that GIL demands are
non-decreasing in their own index δj , ∂σj/∂δj ≥ 0.

The class of GIL models accommodates patterns that go beyond those of standard
ARUM. In particular, it allows for complementarity: this is for example the case of the
IPDL model, which is a member of the class of GIL models. Our invertibility result in
Proposition 1 therefore extends Berry (1994)’s invertibility result, which restricts the prod-
ucts to be strict substitutes. Proposition 1 also extends Berry et al. (2013), who show
invertibility for demands that satisfy their “connected substitutes” conditions, which rule
out complementarity.17

17The connected substitutes structure requires two conditions: (i) products are weak gross substitutes,
i.e., everything else equal, an increase in δi weakly decreases demand σj for all other products; and (ii) the
“connected strict substitution” condition holds, i.e., there is sufficient strict substitution between products to
treat them in one demand system. In contrast to ours, Berry et al. (2013)’s result does not require that demand
σ is differentiable. Demand systems with complementarity may be covered by Berry et al. (2013)’s result
in cases where a suitable transformation of demand can be found such that the transformed demand satisfies
their conditions. They provide no general result on how such a transformation could be found. Our result
allows complementarity without requiring such a transformation to be found.
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6 Relationships between Models

This section puts the GIL and the IPDL models into perspective by showing how they relate
to the representative consumer model (RCM) and to the additive random utility model
(ARUM).

6.1 Representative Consumer Model

Consider a representative consumer facing the choice set of differentiated products, J , and
a homogeneous numéraire good, with demands for the differentiated products summing to
one. Let pj and vj be the price and the quality of product j ∈ J , respectively. The price
of the numéraire good is normalized to 1 and the representative consumer’s income y is
sufficiently high (y > maxj∈J pj) to guarantee that consumption of the numéraire good is
positive.

In this subsection, we show that the inverse GIL demand ln G is consistent with a
representative consumer who chooses a consumption vector s ∈ ∆ of market shares of the
differentiated product and a quantity z ≥ 0 of the numéraire good, so as to maximize her
direct utility

αz +
∑
j∈J

vjsj −
∑
j∈J

sj lnGj (s) (26)

subject to the budget constraint and the constraint that demands sum to one,∑
j∈J

pjsj + z ≤ y and
∑
j∈J

sj = 1, (27)

where α > 0 is the marginal utility of income. The first two terms of the direct utility
(26) describe the utility that the representative consumer derives from the consumption
(s, z) of the differentiated products and the numéraire in the absence of interaction among
them. The third term is a strictly concave function of s that expresses the representative
consumer’s taste for variety (see Lemma 4 in Appendix A.5.1).

Let δj = vj − αpj be the net utility that the consumer derives from consuming one
unit of product j ∈ J . The utility maximization program (26)-(27) leads to first-order
conditions for interior solution

lnGj (s) + c = δj, (28)
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which are of the form of Equation (21) defining the inverse GIL demand.
We state this observation as a proposition and give a detailed proof in Appendix A.5.1.

Proposition 2. The GIL model (28) is consistent with a representative consumer who max-
imizes utility (26) subject to constraints (27).

This proposition thus extends Anderson et al. (1988) and Verboven (1996b)’s results
that the logit and the nested logit models are consistent with a utility maximizing represen-
tative consumer.

6.2 Additive Random Utility Model

We now turn to the Additive Random Utility Model. A population of consumers face the
choice set of differentiated products, J , and associate a deterministic utility component
δj = vj − αpj to each product j ∈ J . Each individual consumer chooses the product that
maximizes her indirect utility given by18

uj = δj + εj, j ∈ J , (29)

where the vector of random utility components ε = (ε0, . . . , εj, . . . , εJ) follows a joint dis-
tribution with finite means that is absolutely continuous, fully supported on RJ+1 and inde-
pendent of δ. These assumptions are standard in the discrete choice literature. They imply
that utility ties occur with probability 0, that the choice probabilities are all everywhere
positive, and that random coefficients are ruled out. Specific distributional assumptions for
ε lead to specific models such as the logit model, the nested logit model, the probit model,
etc.

The probability that a consumer chooses product j is

Pj (δ) = Pr (uj ≥ ui, ∀i 6= j) , j ∈ J . (30)

Let CS : RJ+1 → R be the consumer surplus, i.e. the expected maximum utility given by

CS (δ) = E
(

max
j∈J

uj

)
. (31)

18Note that income does not enter utility (29), which means that there is no income effect. This is equivalent
to the case in which income enters linearly. The deterministic utilities, δj , are common across all consumers,
which rules out heterogeneity in preferences apart from the random utilities εj .
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By the Williams-Daly-Zachary theorem (McFadden, 1981), the conditional choice proba-
bilities are equal to the derivatives of the consumer surplus, i.e. Pj (δ) = ∂CS (δ) /∂δj .
Define a function H =

(
H0, . . . , HJ

)
, with Hj : (0,∞)J+1 → (0,∞) as the derivative of

the exponentiated surplus with respect to its jth component, i.e.,

Hj

(
eδ
)

=
∂eCS(δ)

∂δj
= Pj (δ) eCS(δ), j ∈ J . (32)

Summing over k ∈ J and using that probabilities sum to one, we can write the ARUM
choice probabilities and the consumer surplus in terms of H as

Pj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J , (33)

and

CS (δ) = ln

(∑
k∈J

Hk

(
eδ
))

. (34)

Lemma 6 in Appendix A.5.2 shows that H is invertible, with inverse G = H
−1

, and
that ln G is an inverse GIL demand. Then we can invert Equations (33) to obtain the inverse
ARUM demands, which coincide with the inverse GIL demands (21) when G = G,

lnGj (s) + c = δj, j ∈ J , (35)

with c = CS (δ).
Products are always substitutes in an ARUM. In contrast, some GIL models allow for

complementarity and cannot therefore be rationalized by any ARUM. This is in particular
the case of the IPDL model introduced in Section 3 and used in the empirical illustration in
Section 4. We summarize the results as follows.

Proposition 3. The ARUM choice probabilities in Equation (33) coincide with the GIL
demands defined by Equation (22) when G = G = H−1 = H−1.

Then any ARUM is consistent with some GIL model. The converse does not hold, since
some GIL models are not consistent with any ARUM.

Lastly, any GIL model is consistent with some perturbed utility model (PUM).19 In a

19See Hofbauer and Sandholm (2002), McFadden and Fosgerau (2012) and Fudenberg et al. (2015) for
more details on PUM. PUM have been used to model optimization with effort (Mattsson and Weibull, 2002),
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PUM, the consumer chooses a vector of choice probabilities s ∈ int (∆) to maximize her
utility function defined as the sum of an expected utility component and a concave and
deterministic function of s, labeled as perturbation. Specifically, the GIL model (28) can
be rationalized by a PUM with utility given by∑

j∈J

δjsj −
∑
j∈J

sj lnGj (s) , (36)

without the explicit structure of income and prices. However, the converse does not hold.
For example, for the concave perturbation function

∑
j∈J ln sj , the corresponding candi-

date inverse GIL demand is lnGj (s) = 1
sj

ln (sj), which is not homogeneous of degree one
and thus is not an inverse GIL demand.

Proposition 3 shows that the choice probabilities generated by any ARUM can be de-
rived from some GIL model. As the class of GIL models is a strict subset of the class
of PUM models, we have therefore strengthened Hofbauer and Sandholm (2002)’s result
that the choice probabilities generated by any ARUM can be derived from some PUM by
showing that the GIL structure is sufficient to recover any ARUM.

6.3 Overview of Relationships

The relationships between the GIL, IDPL, ARUM and RCM classes of models are illus-
trated in Figure 3.

We have established that any GIL model is an RCM. An example suffices to show that
there are RCM that are not consistent with any GIL model. In particular, when lnGj (s) =
1
sj

ln (sj), the direct utility (26) is consistent with a RCM but not with a GIL model.
As mentioned above, the IPDL model is a GIL model and admits the logit and nested

logit models as special cases. We have also shown that any ARUM is observationally
equivalent to some GIL model. However, the special case of IPDL model shows that the
converse does not hold, since it allows for complementarity which is ruled out by any
ARUM.

stochastic choices (Swait and Marley, 2013; Fudenberg et al., 2015), and rational inattention (Matejka and
McKay, 2015; Fosgerau et al., 2018). Allen and Rehbeck (2019) show that some PUM allow for comple-
mentarity
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Figure 3: RELATIONSHIPS BETWEEN RCM, ARUM AND GIL MODELS

Altogether, as Figure 3 shows, the class of GIL model is strictly larger than the class of
ARUM, but strictly smaller than the class of RCM.

7 Conclusion

This paper has introduced the IPDL model, which is an inverse demand model for differ-
entiated products that are segmented according to multiple dimensions. The IDPL model
allows for more complex patterns of substitution than the nested logit model, it even al-
lows for complementarity, while being easily estimated by linear regression using Berry
(1994)’s method. The IDPL model provides an attractive modelling framework in appli-
cations where the priority is to maintain the computational simplicity of logit and nested
logit models, while allowing more realistic patterns of substitution that do not constrain
products to be substitutes.

The IDPL model belongs to the wider class of GIL models, which is a class of repre-
sentative consumer models, large enough to comprise equivalents of all ARUM as well as
models in which products may be complements. Finding that GIL demands are invertible
even in the presence of complementarity extends the previous literature on invertibility of
demand.
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There is ample room for future research on the IDPL model and the more general GIL
class of models. Generally, it is of interest to develop GIL models for various applications,
exploiting the possibilities for constructing models with structures that are tailored to spe-
cific circumstances. On the methodological level, it is of interest to develop methods for
estimating GIL models with individual-level data. Another issue is to determine conditions
on the inverse GIL demand under which products are substitutes. Finally, the link to ratio-
nal inattention, pointed out in Fosgerau et al. (2018), remains to be explored theoretically
and empirically.
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A Proofs and Additional Results

A.1 Mathematical Notation

We use italics for scalar variables and real-valued functions, boldface for vectors, matri-
ces and vector-valued functions, and calligraphic for sets. By default, vectors are column
vectors: s = (s0, . . . , sJ)ᵀ ∈ RJ+1.

∆ ⊂ RJ+1 is the J-dimensional unit simplex: ∆ =
{

s ∈ [0,∞)J+1 :
∑

j∈J sj = 1
}

,

and int (∆) =
{

s ∈ (0,∞)J+1 :
∑

j∈J sj = 1
}

is its interior.

Let CS : RJ+1 → R be a function. Then, ∇δCS (δ), with elements j given by ∂CS(δ)
∂δj

,
denotes its gradient with respect to the vector δ.

Let G = (G0, . . . , GJ) : RJ+1 → RJ+1 be a vector function composed of functions
Gj : RJ+1 → R. Its Jacobian matrix JG (s) at s has elements ij given by ∂Gi(s)

∂sj
.

A univariate function R→ R applied to a vector is a coordinate-wise application of the
function, e.g., ln (s) = (ln (s0) , . . . , ln (sJ)). 1J = (1, . . . , 1)ᵀ ∈ RJ is a vector consisting
of ones and IJ ∈ RJ×J denotes the J × J identity matrix.

A.2 Preliminary Results

This section states some preliminary mathematical results that are used in the proofs below.

Lemma 1 (Euler equation for homogeneous functions). Suppose that φ : (0,∞)J+1 → R
is homogeneous of degree one. Then

φ (s) =
J∑
i=0

∂φ (s)

∂si
si, for all s ∈ (0,∞)J+1 . (37)

Definition. A matrix A ∈ R(J+1)×(J+1) is positive quasi-definite if its symmetric part,
defined by 1

2
(A + Aᵀ), is positive definite.

It follows that a symmetric and positive definite matrix is positive quasi-definite.

Lemma 2 (Gale and Nikaido 1965, Theorem 6). If a differentiable mapping F : Θ →
RJ+1, where Θ is a convex region (either closed or non-closed) of RJ+1, has a Jacobian
matrix that is everywhere quasi-definite in Θ, then F is injective on Θ.
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Lemma 3 (Simon and Blume, 1994, Theorem 14.4). Let F : RJ+1 → RJ+1 and G :

RJ+1 → RJ+1 be continuously differentiable functions. Let y ∈ RJ+1 and x = G (y) ∈
RJ+1. Consider the composite function

C = F ◦G : RJ+1 → RJ+1.

The Jacobian matrix JC (y) is given by

JC (y) = JF◦G (y) = JF (x) JG (y) .

A.3 Properties of the IPDL Model

Let Θd be the matrix encoding the grouping structure for dimension d with elements ij
given by

(Θd)ij =

1, if i ∈ Gd (j) ,

0, otherwise,
(38)

where we recall that Gd(j) is the set of products that are grouped with product j in dimen-
sion d. Let sGd(j) =

∑
k∈J (Θd)jk sk denote the market share of the group Gd (j).

Proposition 4. The IPDL model has the following properties.

1. The IIA property holds for products of the same type; but does not hold in general
for products of different types.

2. The matrix of own- and cross-price derivatives is given by

Jσ (δ) = −α (Ψdiag (s)− ssᵀ) , (39)

where

Ψ =

[(
1−

D∑
d=1

µd

)
IJ+1 +

D∑
d=1

µdΘdSGd

]−1
, (40)

where SGd is the diagonal matrix with elements jj given by sj
sGd(j)

with sj = σj (δ).

3. Products can be substitutes or complements.

Proof of Proposition 4.
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1. Using the relation (15) between indexes δ and market shares s, we obtain for any pair
of products j and k that

σj (δ)

σk (δ)
= exp

(
δj − δk

1−
∑D

d=1 µd
+

D∑
d=1

µd

1−
∑D

d=1 µd
ln

(
σGd(k) (δ)

σGd(j) (δ)

))
. (41)

For products j and k of the same type (i.e., with Gd (k) = Gd (j) for all d), Equation
(41) reduces to σj(δ)

σk(δ)
= exp

(
δj−δk

1−
∑D
d=1 µd

)
, which is independent of the characteristics

or existence of all other products, i.e., IIA holds for products of the same type. When
products are of different types, the ratio can depend on the characteristics of other
products, which means that IIA does not hold in general.

2. Use Equation (48) in Proposition 5 below to show that the matrix of own- and cross-
price derivatives is given by Equations (39) and (40).

3. Suppose there are 3 inside products and one outside good. Inside products are
grouped according two dimensions. For the first dimension, product 1 is in one
group, and products 2 and 3 are in a second group. For the second dimension, prod-
ucts 1 and 2 are in one group, and product 3 is in a second group.

Using Equation (39), we show that

∂σ1 (δ)

∂p3
= −α ((1− µ1 − µ2) (s1 + s2) (s2 + s3)− µ1µ2s0s2) , (42)

meaning that products 1 and 3 are complements if

(1− µ1 − µ2) (s1 + s2) (s2 + s3)− µ1µ2s0s2 > 0.

A.4 Results for Section 5

Proof of Proposition 1. The function ln G is differentiable on the convex region int (∆)

of RJ+1. In addition, JlnG is positive quasi-definite on int (∆), since by assumption it is
symmetric and positive definite on int (∆). Then ln G is injective by Lemma 2.

Proposition 5. The GIL models defined by Equation (21) satisfy the following properties.
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1. The market-specific constant c is equal to

c = ln

(∑
k∈J

Hk

(
eδ
))

, (43)

where H(eδ) = (H0(e
δ), . . . , HJ(eδ)) = G−1(eδ).

2. The market shares functions are given by

σj (δ) =
Hj

(
eδ
)∑

k∈J Hk (eδ)
, j ∈ J . (44)

3. The Euler-type equation

∑
j∈J

sj
∂ lnGj (s)

∂sk
= 1, k ∈ J , s ∈ int (∆) (45)

holds and can be written in matrix form as

JlnG (s) s = 1J+1, s ∈ int (∆) . (46)

4. Roy’s identity implies that the consumer surplus is given by the convex function

CS (δ) = ln

(∑
k∈J

Hk

(
eδ
))

. (47)

5. With s = σ (δ), the matrix of demand derivatives is given by

Jσ (δ) = [JlnG (s)]−1 − ssᵀ, (48)

which is symmetric and positive semi-definite. This implies that GIL demands have
symmetric cross effects and are non-decreasing in their own index.

Proof of Proposition 5.

1. Exponentiating and applying H on both sides of Equation (21) leads to

s = H(eδe−c) = H(eδ)e−c, (49)
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where the last equality uses the homogeneity of H. Using that demands sum to 1

leads to Equation (43).

2. Combine Equations (43) and (49) and use σj (δ) = sj to obtain Equation (44).

3. Note that

∑
j∈J

sj
∂ lnGj (s)

∂sk
=
∑
j∈J

sj
∂ lnGk (s)

∂sj
=

∑
j∈J sj

∂Gk(s)
∂sj

Gk (s)
=
Gk (s)

Gk (s)
= 1, (50)

where the first equality relies on the symmetry of the Jacobian of ln G and the third
equality uses the Euler equation for the homogeneous function G.

4. We verify that Roy’s identity holds. Set δ = ln G (s). Then (ln G)−1 (δ) = H ◦
exp (δ) = s, and by Lemma 3,

JlnG (s) =
[
J(lnG)−1 (ln G (s))

]−1
= [JH◦exp (δ)]−1 . (51)

By assumption, the Jacobian JlnG(s) is positive definite and symmetric. Then its
inverse JH◦exp (δ) exists and is symmetric, i.e.,

∂Hi

(
eδ
)

∂δj
=
∂Hj

(
eδ
)

∂δi
. (52)

Then Roy’s identity can be verified via

∂CS
(
eδ
)

∂δi
=

∑
k∈J

∂Hk(eδ)
∂δi∑

j∈J Hj (eδ)
=

∑
k∈J

∂Hi(eδ)
∂δk∑

j∈J Hj (eδ)
, (53)

=

∑
k∈J

∂Hi(eδ)
∂eδk

eδk∑
j∈J Hj (eδ)

=
Hi

(
eδ
)∑

j∈J Hj (eδ)
= σi (δ) , (54)

where the second equality uses symmetry of JH◦exp (δ) and the fourth equality uses
the Euler equation for the homogeneous function H.

Convexity of the consumer surplus follows by property 5 since the Hessian, Jσ (δ),
is positive semidefinite.
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5. Differentiate δj = lnGj (s) + CS (δ) with respect to δ to find that

IJ+1 = JlnG (s) Jσ (δ) + 1J+1s
ᵀ, (55)

where s = σ (δ). Solving for Jσ (δ), we obtain that

Jσ (δ) = [JlnG (s)]−1 [I− 1J+1s
ᵀ] = [JlnG (s)]−1 − [JlnG (s)]−1 1J+1s

ᵀ, (56)

since JlnG (s) is invertible. Finally, use Equation (46) to show that [JlnG (s)]−1 1J+1s
ᵀ =

ssᵀ. Then Jσ (δ) is symmetric.

As JlnG (s) is positive definite, the square-root matrix [JlnG (s)]1/2 exists and is also
positive definite. Then

[JlnG (s)]1/2Jσ (δ) [JlnG (s)]1/2 = [JlnG (s)]−1/2(I− 1J+1s
ᵀ)[JlnG (s)]1/2,

is symmetric and idempotent and hence positive semidefinite. Then also Jσ (δ) is
positive semidefinite.

A.5 Results for Section 6

A.5.1 Representative Consumer Model

Lemma 4. Let ln G be an inverse GIL demand. Then the function s → −sᵀ ln G(s) =

−
∑

j∈J sj lnGj (s) is strictly concave on int(∆).

Proof of Lemma 4. Consider s ∈ int(∆). By property 3 of Proposition 5, the Hessian of
−sᵀ ln G(s) is −JlnG (s), which is negative definite by assumption.

Proof of Proposition 2. Consider the representative consumer maximizing utility (26) sub-
ject to constraints (27). The budget constraint is always binding since α > 0 and y >

maxj∈J pj . Substituting the budget constraint into the direct utility (26), the representative
consumer then chooses s ∈ ∆ to maximize

u (s) = αy +
∑
j∈J

δjsj −
∑
j∈J

sj lnGj (s) , (57)
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where δj = vj − αpj .
The Lagrangian of the utility maximization program given by

L (s, λ) = u (s) + λ

(
1−

∑
j∈J

sj

)
, (58)

yields
∑

j∈J sj = 1 and the first-order conditions

δj − lnGj (s)−
∑
k∈J

sk
∂ lnGk (s)

∂sj
− λ = 0, j ∈ J . (59)

By property 3 of Proposition 5, the first-order conditions can be simplified to

δj − lnGj (s)− 1− λ = 0, j ∈ J . (60)

The first-order condition for an interior solution has a unique solution, since the objective
is strictly concave by Lemma 4, hence the utility maximizing demands exist uniquely.

Setting c = 1+λ then shows that the representative consumer model leads to the inverse
GIL demand

lnGj (s) + c = δj. (61)

A.5.2 Additive Random Utility Model

Since shifting all the δj’s by a constant amount c ∈ R shifts the maximum expected utility
CS by the same amount and does not affect choice probabilities P, we may use the nor-
malization

∑
j∈J δj = 0, i.e., we consider at no loss of generality the restrictions of G and

P to Λ =
{
δ ∈ RJ+1 :

∑
j∈J δj = 0

}
.

The following lemma collects some properties of the expected maximum utility CS.

Lemma 5. The expected maximum utility CS has the following properties.

1. It is twice continuously differentiable, convex and finite everywhere.

2. It satisfies the homogeneity property

CS (δ + c1J+1) = CS (δ) + c, c ∈ R. (62)
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3. Its Hessian is positive definite on Λ.

4. It is given in terms of the expected residual of the maximum utility product by

CS (δ) =
∑
j∈J

Pj (δ) δj + E (εj∗ |δ) , (63)

where j∗ is the index of the chosen product.

Proof of Lemma 5. McFadden (1981) establishes convexity, finiteness, and the homo-
geneity property (62). He also shows the existence of all mixed partial derivatives up
to order J ≥ 2, meaning that all second order mixed partial derivatives are continuous.
Hofbauer and Sandholm (2002) show that the Hessian of CS is positive definite on Λ.

Let j∗ be the index of the chosen product. Property (63) follows from the law of iterated
expectations,

CS (δ) =
∑
j∈J

E
(

max
j∈J
{δj + εj} |j∗ = j, δ

)
Pj (δ) ,

=
∑
j∈J

(δj + E (εj∗|j∗ = j, δ)Pj (δ)) ,

=
∑
j∈J

Pj (δ) δj + E (εj∗ |δ) .

It is well-known in the convex analysis literature that, for the logit model, the convex
conjugate of the negative Shannon entropy −CS∗ (s) =

∑
j∈J sj ln (sj) is the log-sum

CS (δ) = ln
(∑

j∈J e
δj

)
(see e.g., Boyd and Vandenberghe, 2004). Fosgerau et al. (2018)

extend this result to a class of "generalized entropies" which has the Shannon entropy as
special case. See also Matejka and McKay (2015), Chiong et al. (2016) and Galichon and
Salanié (2015) who use convex analysis in different contexts.

Lemma 6. The function H is invertible, and its inverse G = H
−1

is an inverse GIL
demand.

Lemma 6 is proved in Fosgerau et al. (2018) in a very similar setting. The proof pro-
vided here applies to the exact setting of the current paper and has independent value by
being simpler.
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Proof of Lemma 6. We first show that H is injective. Note that H is differentiable. Con-
sider the function δ → H

(
eδ
)
. Its Jacobian is positive definite on Λ since it has elements

ij given by {
eCS(δ)

∂CS (δ)

∂δi

∂CS (δ)

∂δj

}
+

{
eCS(δ)

∂2CS (δ)

∂δi∂δj

}
,

where the first term is a positive semi-definite matrix and where, by property 3 of Lemma
5, the second term is a positive definite matrix on Λ. As it is also symmetric, it follows
that the Jacobian is positive quasi-definite. Then H is invertible by Lemma 2. By Norets
and Takahashi (2013), the range of H is int(∆), which then is the domain of the inverse
function H

−1
.

We now show that ln G is an inverse GIL demand. Note that G is linearly homogeneous
and that, as shown above, the Jacobian of H is symmetric and positive definite. Then, by
Lemma 3, the same is true for the Jacobian of ln G.

B Data

Databases We use data from the Dominick’s Database made available by the James M.
Kilts Center, University of Chicago Booth School of Business. This is weekly store-level
scanner data, comprising information on 30 categories of packaged products at the UPC
level for all Dominick’s Finer Foods chain stores in the Chicago metropolitan area over the
period 1989-1997. For the application, we consider the RTE cereals category during the
period 1991–1992.

We supplement the data with the nutrient content of the RTE cereals using the USDA
Nutrient Database for Standard Reference. This dataset is made available by the United
States Department of Agriculture and provides the nutrient content of more than 8,500
different foods including RTE cereals (in particular, we use releases SR11 (year 1996) and
SR16 (year 2004) for sugar). We have collected six characteristics: fiber, sugar, lipid and
protein in g/serve, energy in kcal/serve, and sodium in mg/serve. We also supplement the
data with monthly sugar prices from the website www.indexmundi.com to form cost-based
instruments.

Markets, Products, Market shares and Prices We aggregate UPCs into products (e.g.,
Kellogg’s Special K), so that different size boxes are considered one product, where a
product is a cereal (e.g., Special K) associated to its brand (e.g., Kellogg’s). We focus
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attention on the top 50 products in terms of sales, which account for 73 percent of sales of
the category in the sample we use.

We define a market as a store-month pair. Following Nevo (2001), we define market
shares of the inside products by converting volume sales into number of servings sold, and
then by dividing it by the total potential number of servings at a store in a given month.

To compute the total potential number of servings at a store in a given month, we as-
sume that (i) an individual in a household consumes around 15 servings per month, and
(ii) consumers visit stores twice a week. Indeed, according to USDA’s Economic Research
Service, per capita consumption of RTE cereals was equal to around 14 pounds (that is,
about 6350 grammes) in 1992, which is equivalent to 15 servings per month (without loss
of generality, we assume that a serving weight is equal to 35 grammes). Then, the poten-
tial (month-store) market size (in servings) is computed as the weekly average number of
households which visited that store in that given month, times the average household size
for that store, times the number of servings an individual consumes in a month. The mar-
ket share of the outside good is then the difference between one and the sum of the inside
products market shares. As a robustness check, we have also estimated the models with
the alternative assumption that consumers visit stores once a week; results do not change
significantly.

Lastly, following Nevo (2001), we compute the price of a serving by dividing the dollar
sales by the number of servings sold, where the dollar sales reflect the price consumers
paid; we also convert the six nutrients into nutrients for a serving.
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Abstract

We first present Monte Carlo simulations investigating some properties of the In-

verse Product Differentiation Logit (IPDL) model. Next, we provide a range of general

methods for building members of the class of Generalized Inverse Logit (GIL) models

along with illustrative examples that go beyond the IPDL model. Finally, we pro-

vide more information on the dataset we use in the empirical illustration as well as

additional tables of results.

Notation We use italics for scalar variables and real-valued functions, boldface for vec-
tors, matrices and vector-valued functions, and calligraphic for sets. By default, vectors are
column vectors: s = (s0, . . . , sJ)ᵀ ∈ RJ+1.

∆J ⊂ RJ+1 is the J-dimensional unit simplex: ∆J =
{

s ∈ [0,∞)J+1 :
∑

j∈J sj = 1
}

,

and int (∆J) =
{

s ∈ (0,∞)J+1 :
∑

j∈J sj = 1
}

is its interior, where J = {0, 1, . . . , J}.

Let CS : RJ+1 → R be a function. Then, ∇δCS (δ), with elements j given by ∂CS(δ)
∂δj

,
denotes its gradient with respect to the vector δ.

Let G = (G0, . . . , GJ) : RJ+1 → RJ+1 be a vector function composed of functions
Gj : RJ+1 → R. Its Jacobian matrix JG (s) at s has elements ij given by ∂Gi(s)

∂sj
.

A univariate function R→ R applied to a vector is a coordinate-wise application of the
function, e.g., ln (s) = (ln (s0) , . . . , ln (sJ)). 1J = (1, . . . , 1)ᵀ ∈ RJ is a vector consisting
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of ones and IJ ∈ RJ×J denotes the J × J identity matrix. Let |s̃| =
∑

j∈J |s̃j| denotes the
1-norm of vector s̃.

1 Simulation Results for the IPDL Model

Let Θd be the matrix encoding the grouping structure for dimension d, with elements ij
given by

(Θd)ij =

1, if i ∈ Gd (j) ,

0, otherwise,
(1)

where Gd (j) is the set of products that are grouped with product j in dimension d. Let
sGd(j) =

∑
k∈J (Θd)jk sk be the market share of Gd (j).

Recall that the matrix of own- and cross-price derivatives for the IPDL model is

Jσ(δ) = −α (Ψdiag (s)− ssᵀ) , (2)

where

Ψ =

[(
1−

D∑
d=1

µd

)
IJ+1 +

D∑
d=1

µdΘdSGd

]−1
, (3)

and where SGd is the diagonal matrix with elements jj given by sj
sGd(j)

with sj = σj (δ). We
cannot obtain closed-form formulae for the entries of the matrix of own- and cross-price
derivatives. We therefore perform simulations to better understand the substitution patterns
of the IPDL model.

Simulated Data We simulate

• A market with 20 inside products and an outside good;

• 20 different grouping structures (i.e. allocations of products in groups) along 3 di-
mensions, and with 3 groups per dimension. We obtain a grouping structure by
simulating a 20 × 3 matrix of random numbers following a generalized Bernoulli
distribution;

• 20 different vectors of grouping parameters µ = (µ0, . . . , µ3). We obtain a vector of
µ by simulating a 4-vector of uniformly distributed random numbers, where the first
element is µ0, then normalizing so that µ ∈ int (∆3);

2



• 20 different vectors of market shares s = (s0, . . . , s20). We obtain a vector of market
shares by simulating a 21-vector of uniformly distributed random numbers, where the
first element is s0, then by normalizing the vector of market shares of inside products
so that s ∈ int (∆20).

This way of normalizing ensures that we simulate markets with very low and very high
values for µ0 and s0. Combining the grouping structures, the grouping parameters, and the
market shares, we form 8, 000 markets. The following table gives summary statistics on
the simulated data.

TABLE 1: SUMMARY STATISTICS ON THE SIMULATED DATA

Variable Mean Min Max
s0 0.5253 0.0064 0.9906
sj 0.0158 3e-06 0.0697
µ0 0.4662 0.0697 0.9532
µ1 0.2014 0.0135 0.8480
µ2 0.1420 0.0175 0.4036
µ3 0.1904 0.0059 0.5212

Grouping Structure Table 2 shows the distribution of the own- and cross-price deriva-
tives according to the number of common groups.

Own-price elasticities are always negative, while cross-price elasticities can be either
negative (complementarity) or positive (substitutability). Products of the same type are
always substitutes. Products that are very similar (i.e., that are grouped together according
to all dimensions, but one) are also always substitutes. Products that are very different
can be either substitutes or complements. Products are less likely to be substitutes as they
become more different.
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Table 2: DISTRIBUTION OF PRICE DERIVATIVES ACCORDING TO THE NUMBER OF

COMMON GROUPS

Common groups Jσ > 0 Median Min Max Freq.
Own-price derivatives
– 0.00% -0.0222 -0.7781 -3e-06 100.00%
Cross-price derivatives
0 (None) 45.33% -7e-07 -0.1539 0.0251 25.09%
1 90.38% 0.0002 -0.1114 0.2082 43.59%
2 100.00% 0.0006 -1e-09 0.2641 26.47%
3 (All) 100.00% 0.0009 -1e-09 0.3100 4.85%
Total 82.09% 0.0002 -0.1539 0.3100 100.00%
Notes: Column "Jσ > 0" gives the percentage of positive cross-price elasticities
according to the number of common groups (e.g., the row "2" concerns products
that are grouped together into 2 groups). Column "Freq." gives the frequencies
(in percentage) of the cross-price elasticities (e.g., 4.85 percent of the cross-price
elasticities involve products of the same type).

.

Grouping Parameters Table 3 shows the distribution of cross-price derivative accord-
ing to the proximity of products into the characteristics space used to form product types,
as measured by the sum of grouping parameters µjk =

∑3
d=1 µd1 {j ∈ Gd (k)} for two

products j and k.
As the parameter µjk becomes larger, we observe that (i) the derivatives increase in

values, and that (ii) the share of substitutes increases. This is because higher µd means that
products of the same group in dimension d become more similar.

Table 3: PERCENTAGE OF SUBSTITUTES ACCORDING TO THE VALUE OF µjk

µjk Jσ > 0 Median Min Max
[0, 0.1[ 65.60% 0.0000 -0.1539 0.0286

[0.1, 0.2[ 96.37% 0.0002 -0.0538 0.1462
[0.2, 0.3[ 93.52% 0.0003 -0.1114 0.1670
[0.3, 0.4[ 94.16% 0.0007 -0.0673 0.2082
[0.4, 0.5[ 93.89% 0.0009 -0.0432 0.2049
[0.5, 1[ 100.00% 0.0020 1e-08 0.3100

Summary In the IPDL model,

1. (Grouping structure) Products of the same type are always substitutes. Products of
different types may be substitutes or complements, depending on the degree of close-
ness between products as measured by the value of the parameters µd and by the
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closeness of the products into the characteristics space used to form product types.
The closer two products are, the more likely they are to be substitutes.

2. (Grouping parameters) The size of the cross-derivatives depends on the degree of
closeness. The closer two products are, the higher is their cross-derivative.

2 Construction of GIL Models

In this section, we provide a range of general methods for building members of the class
of GIL models, along with illustrative examples. They allow us to obtain alternative mod-
els to the logit and nested logit models that have interesting features: some of them can
accommodate complementarity, others have closed form for both the demands and their
inverse.

Definition A. An inverse GIL demand is a function ln G, where G : (0,∞)J+1 →
(0,∞)J+1 is homogeneous of degree one and where the Jacobian JlnG (s) is positive defi-
nite and symmetric.

Definition B. An almost inverse GIL demand is a function that satisfies the requirements
for being an inverse GIL demand, except the Jacobian JlnG (s) is only required to be posi-
tive semi-definite rather than positive definite.

2.1 General Methods and Illustrative Examples

The first result in this section shows that averaging an almost inverse GIL demand with an
inverse GIL demand yields a new inverse GIL demand.

Proposition A (Averaging). Let Gk, k ∈ {1, . . . , K}, be almost inverse GIL demands with
at least one being an inverse GIL demand. Let (α1, . . . , αK) ∈ int(∆K−1). Then

ln G (s) =
K∑
k=1

αk ln Gk (s) (4)

is an inverse GIL demand.
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Proof of Proposition A. The function G is homogeneous of degree one since for λ > 0,

G (λs) =
K∏
k=1

Gk (λs)αk =
K∏
k=1

λαkGk (s)αk ,

=

(
K∏
k=1

λαk

)(
K∏
k=1

Gk (s)αk

)
,

=
(
λ
∑K

k=1 αk

)( K∏
k=1

Gk (s)αk

)
= λG (s) ,

where the second equality uses the homogeneity of the functionsGk and the fourth equality
uses the restrictions on parameters

∑K
k=1 αk = 1.

The Jacobian of ln G, given by JlnG =
∑K

k=1 αkJlnGk
, is symmetric as the linear

combination of symmetric matrices, and positive definite as the linear combination of at
most K − 1 positive semi-definite matrices and at least one positive definite matrix.

Proposition A leads to the following corollary.

Corollary A (General grouping). Let G ⊆ 2J be a finite set of groups with associated
parameters µg, where µ0j +

∑
{g∈G|j∈g} µg = 1 for all j ∈ J with µg ≥ 0 for all g ∈ G and

µ0j > 0 for all j ∈ J . Let ln G = (lnG0, . . . , lnGJ) be given by

lnGj (s) = µ0j ln (sj) +
∑

{g∈G|j∈g}

µg ln

(∑
i∈g

si

)
. (5)

Then ln G is an inverse GIL demand.

Proof of Corollary A. Let T 0
j (s) = sj and for each g ∈ G, Tg = (T g1 , . . . , T

g
J ) with

T gj (s) =
(∑

i∈g si

)1{j∈g}
. The Jacobian of ln Tg has elements jk given by 1{j∈g}1{k∈g}∑

i∈g si
,

and thus JlnTg =
1g1

ᵀ
g∑

i∈g si
where 1g = (1 {1 ∈ g} , . . . ,1 {J ∈ g})ᵀ. Each Tg is an almost

inverse GIL demand while T0 is the logit inverse demand. Lastly,
∑
{g∈G|j∈g} µg+µ0j = 1.

Then the conditions for application of Proposition A are fulfilled.

The grouping structure in Corollary A is arbitrary and therefore allows the grouping
structure that defines the IPDL model. The presence of the logit inverse demand, due to
µ0 > 0, ensures that the Jacobian JlnG(s) is always positive definite and hence that the
inverse demand is indeed invertible.
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If the outside good 0 belongs only to one group and is the only member of that group,
then lnG0 (s) = ln(s0) = δ0 + c. Setting δ0 = 0 and assuming a linear index, the model of
Corollary A boils down to the linear regression model

ln

(
sj
s0

)
= xjβ − αpj +

∑
g∈G(j)

µg ln

(∑
k∈g

sk

)
+ ξj, j = 1, . . . , J. (6)

The following proposition shows how an inverse GIL demand can be transformed into
another inverse GIL demand by application of a location shift and a matrix with non-
negative elements that sum to one across rows and columns. Let unnormalized demands s̃

be demands obtained before normalizing their sum to one, i.e., s = s̃/|̃s|.

Proposition B (Transformation). Let T be an inverse GIL demand and m ∈ RJ+1 be a
location shift vector. Let A ∈ R(J+1)×(J+1) be an invertible matrix such that aij ≥ 0 and∑

i∈J aij =
∑

j∈J aij = 1. Then the function ln G given by

ln G(s) = Aᵀ [ln (T (As))] + m (7)

is an inverse GIL demand, and the corresponding unnormalized demands are given by

s̃ = A−1T−1
(
exp

[
(Aᵀ)−1 (δ −m)

])
. (8)

Proof of Proposition B. The function G defined by Equation (7) is homogeneous of de-
gree one since for λ > 0,

G (λs) = exp (Aᵀ ln T (A (λs)) + m) ,

= exp (Aᵀ lnλ+ Aᵀ ln T (As) + m) ,

= exp (lnλ+ Aᵀ ln T (As) + m) = λG (s) ,

where the second equality uses the homogeneity of T, and the third equality uses the feature
that columns of A sum to 1.

The Jacobian of ln G is JlnG(s) = AᵀJlnT(s)A, which is symmetric and positive
definite. Unnormalized demands (8) follow from solving ln G (̃s) = δ.

Proposition B provides models where both demand and inverse demand have closed
form, as it is the case of the logit and nested logit models. We illustrate this proposition
with an inverse GIL demand that allows for complementarity.
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Example A. Let J + 1 = 3, m = 0, T (s) = s, and

A =

 p 1− p 0

1− p p 0

0 0 1

 ,

with p < 0.5. Then we obtain that

s̃ = A−1
(
exp

[
(Aᵀ)−1 δ

])
=


p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2 − 1−p

2p−1e
p

2p−1 δ2−
1−p
2p−1 δ1

p
2p−1e

p
2p−1 δ2−

1−p
2p−1 δ1 − 1−p

2p−1e
p

2p−1 δ1−
1−p
2p−1 δ2

eδ3

 ,

so that

s3 = σ3 (δ) =
eδ3

e
p

2p−1 δ1−
1−p
2p−1 δ2 + e

p
2p−1 δ2−

1−p
2p−1 δ1 + eδ3

,

and ∂σ3(δ)
∂δ1

> 0 if and only if δ2 − δ1 > (2p− 1) ln
(

1−p
p

)
.

2.2 Zero Demands

The constructions above rule out zero demands (this is also the case of the models discussed
in the main text). The following proposition shows how we can build models that allow
zero demands by slightly modifying Proposition A and applying it to functions G defined
on [0,∞)J+1 instead of just (0,∞)J+1.

Proposition C (Invertible grouping). Let G = {g0, . . . , gJ} be a finite set of J + 1 groups
(i.e., the number of groups is equal to the number of products). Let µg > 0, for all g ∈ G, be
the associated parameters, where

∑
{g∈G|j∈g} µg = 1 for all j ∈ J . Let G = (G0, . . . , GJ) :

[0,∞)J+1 → (0,∞)J+1 be given by

lnGj (s) =
∑

{g∈G|j∈g}

µg ln

(∑
i∈g

si

)
. (9)

Let W = diag (µg0 , . . . , µgJ ) and let M ∈ R(J+1)×(J+1) with entries Mjk = 1{j∈gk}

(where rows correspond to products and columns to groups). If M is invertible, then ln G

has all the properties of an inverse GIL demand, except that it is defined on ∆J , and the
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unnormalized demands satisfy

δ = ln G (̃s)⇔ s̃ = (Mᵀ)−1 exp
(
W−1M−1δ

)
.

Proof of Proposition C. Following the proof of Proposition A, the function G given by
Equation (9) clearly has all the properties of an almost inverse GIL demand. Thus, it
remains to show that the Jacobian of ln G is positive definite if M is invertible.

Observe that

lnGj (s) =
∑
k∈J

µgk1 {j ∈ gk} ln

(∑
i∈gk

si

)

=
∑
k∈J

µgk1 {j ∈ gk} ln

(∑
i∈J

1 {i ∈ gk} si

)
,

and, in turn, that
∂ lnGj (s)

∂sl
=
∑
k∈J

µgk
1 {j ∈ gk}1 {l ∈ gk}∑

i∈gk si
,

which can be expressed in matrix form as

JlnG (s) = MVMᵀ,

with V = diag
(

µg0∑
i∈g0

si
, . . . ,

µgJ∑
i∈gJ

si

)
. This is positive definite since all µg are strictly

positive and M is invertible.
Lastly, with M invertible, unnormalized demands solve ln G (s̃) = MW ln (Mᵀs̃) = δ

and are given by s̃ = (Mᵀ)−1 exp (W−1M−1δ).

As it is illustrated in the following example and as it is the case in ARUM where error
terms have bounded support, Proposition C allows for zero demands when there is no
degenerate group (i.e, a group containing only one product). Note that this proposition also
allows to build models with closed form for both the demands and their inverses.

Example B. Define groups from the symmetric matrix M with entriesMij = 1{i 6=j}, so that
each product belongs to J+1 groups. Its inverse, M−1, has entries ij equal to 1

J+1
−1{i=j}.

Let µg = 1/(J + 1) for each group g = 0, . . . , J . Then the unnormalized demands are
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given by s̃ = (M)−1 exp [(J + 1)M−1δ] and lead to the following demands

σi (δ) =
s̃i∑
j∈J s̃j

=

∑
j∈J e

−(J+1)δj − (J + 1)e−(J+1)δi∑
j∈J e

−(J+1)δj
. (10)

Demands (10) are non-negative only for values of δ within some set. To ensure positive
demands, it is sufficient to average with the simple inverse logit demand. Demands (10)
are not consistent with any ARUM since they do not exhibit the feature of the ARUM that
the mixed partial derivatives of σi (δ) alternate in sign. Indeed, products are substitutes

∂σ1 (δ)

∂δ2
= −J2e−J(δ1+δ2)/

(∑
j∈J

e−Jδj

)2

< 0,

but
∂2σ1 (δ)

∂δ2∂δ3
= −2J3e−J(δ1+δ2+δ3)/

(∑
j∈J

e−Jδj

)3

< 0.

3 Supplemental Material for the Empirical Illustration

Elasticities for the Main Specifications. Tables 5 and 6 give the estimated average
(over product types and markets) price elasticities of demands for the main specifications.
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Table 4: TOP 50 BRANDS

Nb. Brand Product Type Brand name Market segment Shares (%)
Dollars Volume

1 Apple Cinnamon Cheerios 1 General Mills Family 2.23 2.02
2 Cheerios 1 General Mills Family 7.67 6.76
3 Clusters 1 General Mills Family 1.03 0.89
4 Golden Grahams 1 General Mills Family 2.28 2.12
5 Honey Nut Cheerios 1 General Mills Family 4.82 4.47
6 Total Corn Flakes 1 General Mills Family 0.87 0.59
7 Wheaties 1 General Mills Family 2.59 2.75
8 Total 2 General Mills Health/nutrition 1.29 1.00
9 Total Raisin Bran 2 General Mills Health/nutrition 1.61 1.49
10 Cinnamon Toast Crunch 3 General Mills Kids 2.16 1.94
11 Cocoa Puffs 3 General Mills Kids 1.22 0.98
12 Kix 3 General Mills Kids 1.68 1.29
13 Lucky Charms 3 General Mills Kids 2.35 1.94
14 Trix 3 General Mills Kids 2.43 1.75
15 Oatmeal (Raisin) Crisp 4 General Mills Taste enhanced 2.05 2.09
16 Raisin Nut 4 General Mills Taste enhanced 1.60 1.60
17 Whole Grain Total 4 General Mills Taste enhanced 1.77 1.29
18 All Bran 5 Kellogg’s Family 0.97 1.11
19 Common Sense Oat Bran 5 Kellogg’s Family 0.49 0.46
20 Corn Flakes 5 Kellogg’s Family 4.12 6.96
21 Crispix 5 Kellogg’s Family 1.88 1.70
22 Frosted Flakes 5 Kellogg’s Family 6.01 6.77
23 Honey Smacks 5 Kellogg’s Family 0.85 0.84
24 Rice Krispies 5 Kellogg’s Family 5.58 6.06
25 Bran Flakes 6 Kellogg’s Health/nutrition 0.90 1.16
26 Frosted Mini-Wheats 6 Kellogg’s Health/nutrition 3.35 3.69
27 Product 19 6 Kellogg’s Health/nutrition 1.06 0.86
28 Special K 6 Kellogg’s Health/nutrition 3.07 2.53
29 Apple Jacks 7 Kellogg’s Kids 1.67 1.32
30 Cocoa Krispies 7 Kellogg’s Kids 0.99 0.85
31 Corn Pops 7 Kellogg’s Kids 1.80 1.52
32 Froot Loops 7 Kellogg’s Kids 2.66 2.22
33 Cracklin’ Oat Bran 8 Kellogg’s Taste enhanced 1.91 1.66
34 Just Right 8 Kellogg’s Taste enhanced 1.07 1.12
35 Raisin Bran 8 Kellogg’s Taste enhanced 3.96 4.83
36 Shredded Wheat 9 Nabisco Health/nutrition 0.77 0.88
37 Spoon Size Shredded Wheat 9 Nabisco Health/nutrition 1.59 1.63
38 Grape Nuts 10 Post Health/nutrition 2.27 3.06
39 Cocoa Pebbles 11 Post Kids 1.11 0.92
40 Fruity Pebbles 11 Post Kids 1.14 0.94
41 Honey-Comb 11 Post Kids 1.05 0.90
42 Raisin Bran 12 Post Taste enhanced 0.93 1.10
43 Oat Squares 13 Quaker Family 0.91 1.02
44 CapNCrunch 14 Quaker Kids 1.00 1.10
45 Jumbo Crunch (Cap’n Crunch) 14 Quaker Kids 1.27 1.35
46 Life 14 Quaker Kids 1.73 2.24
47 100% Cereal-H 15 Quaker Taste enhanced 1.42 1.84
48 Corn Chex 16 Ralston Family 0.81 0.72
49 Rice Chex 16 Ralston Family 1.15 1.03
50 Cookie-Crisp 17 Ralston Kids 0.89 0.68
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Table 5: AVERAGE PRICE ELASTICITIES FOR THE IPDL MODEL

O
w

n
C

ross

Type
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
-3.107

0.195
0.091

0.071
0.078

0.077
-0.026

-0.047
-0.039

0.004
0.010

-0.011
-0.003

0.108
-0.016

-0.008
0.064

-0.060
2

-3.203
0.059

0.323
0.064

0.068
-0.036

0.227
-0.032

-0.028
0.095

0.186
-0.073

-0.066
-0.008

-0.004
0.000

-0.006
-0.001

3
-3.560

0.068
0.093

0.334
0.084

-0.031
-0.006

0.235
-0.015

0.003
-0.055

0.186
-0.063

-0.110
0.157

-0.094
-0.051

0.216
4

-2.651
0.062

0.082
0.070

0.355
-0.037

-0.017
-0.028

0.256
0.003

-0.020
-0.032

0.249
-0.051

-0.042
0.242

-0.006
0.002

5
-2.513

0.062
-0.047

-0.027
-0.039

0.142
0.034

0.053
0.042

-0.006
-0.011

0.009
-0.003

0.085
-0.004

-0.016
0.050

-0.038
6

-2.581
-0.025

0.324
-0.006

-0.020
0.038

0.386
0.056

0.042
0.127

0.244
-0.086

-0.095
-0.013

0.005
-0.009

-0.009
0.009

7
-3.319

-0.035
-0.037

0.183
-0.028

0.047
0.046

0.266
0.055

-0.005
-0.063

0.158
-0.052

-0.090
0.129

-0.083
-0.043

0.176
8

-2.651
-0.032

-0.036
-0.013

0.259
0.043

0.038
0.061

0.334
-0.005

-0.036
-0.013

0.251
-0.055

-0.037
0.236

-0.006
0.012

9
-1.945

0.002
0.077

0.002
0.002

-0.004
0.072

-0.004
-0.003

0.912
0.060

-0.016
-0.014

0.005
0.005

0.006
0.005

0.005
10

-1.388
0.009

0.266
-0.051

-0.021
-0.013

0.244
-0.073

-0.043
0.107

–
0.489

0.501
0.036

-0.024
0.006

0.019
-0.040

11
-3.238

-0.005
-0.051

0.089
-0.020

0.004
-0.042

0.098
-0.011

-0.013
0.247

0.386
0.270

-0.029
0.065

-0.045
-0.012

0.082
12

-2.097
-0.002

-0.044
-0.029

0.146
-0.001

-0.044
-0.029

0.146
-0.011

0.233
0.248

–
-0.005

-0.032
0.143

0.011
-0.017

13
-2.379

0.043
-0.005

-0.047
-0.027

0.043
-0.006

-0.047
-0.027

0.004
0.015

-0.026
-0.006

–
0.199

0.219
0.036

-0.053
14

-2.492
-0.008

-0.003
0.086

-0.029
-0.003

0.002
0.092

-0.024
0.005

-0.015
0.075

-0.040
0.287

0.381
0.266

-0.013
0.081

15
-1.760

-0.006
0.001

-0.061
0.185

-0.012
-0.006

-0.067
0.179

0.007
0.004

-0.057
0.184

0.338
0.282

–
0.013

-0.041
16

-2.631
0.027

-0.004
-0.022

-0.003
0.027

-0.004
-0.022

-0.003
0.004

0.009
-0.009

0.010
0.040

-0.009
0.010

0.784
0.734

17
-3.287

-0.022
-0.001

0.084
0.001

-0.017
0.004

0.089
0.006

0.004
-0.018

0.067
-0.016

-0.049
0.057

-0.026
0.663

–
N

otes:
E

lasticities
are

averaged
overproducttypes

and
overm

arkets.
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Table 6: AVERAGE PRICE ELASTICITIES FOR THE THREE-LEVEL NL MODELS

Type 3NL1 3NL2

Own Cross Own Cross

Same Same Different Same Same Different
subgroup group group subgroup group group

1 -3.442 0.152 0.118 0.005 -3.440 0.177 0.131 0.007
2 -3.462 0.378 0.207 0.003 -3.547 0.316 0.085 0.004
3 -3.907 0.314 0.234 0.004 -3.975 0.234 0.125 0.006
4 -2.900 0.372 0.269 0.004 -3.034 0.244 0.103 0.005
5 -2.758 0.119 0.095 0.004 -2.776 0.116 0.084 0.006
6 -2.865 0.370 0.296 0.004 -3.156 0.194 0.094 0.006
7 -3.632 0.270 0.182 0.003 -3.714 0.196 0.077 0.005
8 -2.898 0.346 0.272 0.004 -3.008 0.185 0.086 0.006
9 -2.807 0.307 0.167 – -2.026 1.106 – 0.003

10 -1.868 – 0.307 0.005 -1.488 – 0.624 0.007
11 -3.718 0.231 0.116 0.002 -3.503 0.468 0.313 0.003
12 -2.334 – 0.163 0.002 -2.139 – 0.286 0.003
13 -2.595 – 0.048 0.002 -2.333 – 0.234 0.003
14 -2.888 0.211 0.132 0.002 -2.709 0.440 0.333 0.004
15 -2.060 – 0.207 0.003 -1.842 – 0.360 0.004
16 -3.501 0.219 0.051 0.002 -2.723 1.019 0.790 0.003
17 -3.922 – 0.096 0.002 -3.186 – 0.717 0.003

Notes: Elasticities are averaged over product types and over markets.
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