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In multipath (MP) environments, the received signals depend on several factors related to the global 

navigation satellite systems (GNSS) receiver environment and motion. Thus it is difficult to use a spe­
cific propagation model to accurately capture the dynamics of the MP signal when the GNSS receiver is 

moving in urban canyons. This paper formulates the problem of MP interference mitigation in the GNSS 
receiver as a joint state (containing the direct signal parameters) and time-varying model parameter (con­
taining the MP signal parameters) estimation. Accordingly, we propose to exploit the EM algorithm for 
achieving the joint state and time-varying parameter estimation in the context of MP interference mit­

igation in GNSS receivers. More precisely, the proposed EM-based MP mitigation approach is decom­
posed into two iterative steps: (a) the posterior pdf of the direct signal parameters and the expected 

log-likelihood function necessary in the expectation step of the EM algorithm are approximated by using 
an appropriate particle filter; (b) the maximum likelihood solution for MP signal parameters is then ob­

tained using Newton's method in the maximization step. The convergence of the proposed approach is 
analyzed based on the existing convergence theorem associated with the EM algorithm. Finally, a com­
prehensive simulation study is conducted to compare the performance of the proposed EM-based MP 
mitigation approach with other state-of-the-art MP mitigation approaches in static and realistic scenar­

ios. 
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. Introduction

With the new application requirements for global navigation 

atellite systems (GNSS) in complex environments, such as in ur­
an canyons, one important remaining challenge is to reduce the 
mpact of multipath (MP) on positioning methods. MP signals are 

ainly due to the fact that a signal transmitted by a navigation 

atellite is very likely to be reflected or diffracted and can follow 
ifferent paths before arriving at the GNSS receiver (1). In general, 
here are two classes of perturbations affecting the received GNSS 

ignals: (a) MP interferences resulting from the sum of the direct 
ignal and of delayed reflections handled by the GNSS receiver (b) 
on-line of sight (NLOS) signals which result from a unique re­

lected signal received and tracked by the GNSS receiver (2,3). In 
ome studies, both MP interference and NLOS signals are often 

onsidered as MP, but they are due to different phenomena that 
• Corresponding author. 
E-mail addresses: cheng.cheng@nwpu.edu.cn (C Cheng),
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ause different ranging errors (4,5). Although these two phenom­
na usually arise together in urban canyons, it is clearly interesting 

o separate them in practical applications. 

.1. Previous work 

The GNSS receiver has to track the signal composed of the di­
ect LOS signal possibly affected by delayed reflections in the pres­

nce of MP interferences. The correlation function of the LOS sig­
al is distorted by the existing MP signals, and this distortion re­

ults in tracking errors leading to biases in code delay and car­
ier phase estimation (6). Different MP interference mitigation ap­
roaches have been proposed in the literature for mitigating MP 

nterference error within the GNSS receiver. Several narrow cor­
elator delay Jock loop (DLL) methods (7) have been proposed in 
rder to eliminate MP interferences by correcting the shape of 
he discriminator function or the correlation function in the DLL 
uch as the strobe correlator (8), the early-late-slope technique (9), 
he double-delta correlator (10). Based on the fact that the stan­
ard discriminator output, which is specificaJly normalized, has 
n invariant point in the presence of MP interferences, the MP 
nsensitive DLL proposed in (11) synchronizes the late replica code 
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to the direct signal code. Another solution is the coupled ampli-

tude DLL consisting of several parallel tracking units, which imple-

ments a feedback loop to separate out the direct and MP signals

and then track each signal parameters in parallel units [12] . 

The parameters of the LOS and reflected signals can be esti-

mated by using a statistical approach based on the maximum like-

lihood (ML) principle [13] , such as the MP estimating delay lock

loop (MEDLL) [14] and the vision correlator [15] introduced by No-

vAtel, which are two different implementations of MP mitigation

techniques [16] . However, these approaches need to process the

received signal by using a cross-correlation function with multiple

correlators and algorithms that can be computationally intensive

[17] . Note that a grid search approach has been proposed in [18] al-

lowing a better implementation of the ML estimator via a global

maximization approach. In order to reduce the computational com-

plexity of ML-based MP mitigation approaches, Newton’s method

has been also investigated for iteratively computing the ML esti-

mators of the direct and MP signal parameters [19,20] . 

Dynamic estimation approaches assume that the time propa-

gation associated with the unknown parameters of direct and MP

signals can be modelled by a first-order Markov model, which pro-

vides the time-dependent prior probability density function (pdf)

for the unknown parameters [21] . The objective is then to esti-

mate recursively the posterior pdf of the unknown parameters as-

sociated with the direct and MP signals. Considering that the cor-

relation function is related to the unknown parameters by highly

nonlinear equations, the use of a Rao–Blackwellized particle fil-

ter (RBPF) has been proposed in the literature to generate sam-

ples distributed according to the posterior distribution of interest

and estimate the state vector with the other unknown parameters

[22] . Some approaches have also been suggested to improve the

efficiency of these filters. For instance, a data compression method

based on the ML estimation was used to decrease the dimension

of the observation vector in order to reduce the complexity of the

MP mitigation technique [23] . A deterministic form of a particle

filter was proposed in [24] for joint MP detection and navigation

parameter estimation with a low number of particles. A two-fold

marginalized Bayesian filter was finally proposed in [25] allowing

the number of received MP signals and the corresponding signal

parameters to be estimated in a track-before-detect fashion.

1.2. Main contributions and paper organization 

A prior dynamic equation associated with the time propaga-

tion of direct signal parameters (this propagation is related to the

vehicle motion) can be defined when the GNSS signal has been

locked inside the receiver [26] . An important property of MP sig-

nals is that they not only depend on the relative position of the

receiver and GNSS satellites, but also on the environment where

the receiver is located, especially in urban canyons [27] . Since it is

difficult to use a specific propagation model to accurately capture

the dynamics of MP signals, we propose in this work to consider

the MP signal parameters as unknown time-varying quantities. As

a consequence, the point of view considered in this work is to for-

mulate the problem of MP interference mitigation in the GNSS re-

ceiver as a joint state (direct signal parameters) and time-varying

model parameter (MP signal parameters) estimation problem using

a state-space model (i.e., state estimation in the presence of model

uncertainty). 

The expectation-maximization (EM) algorithm proposed in

[28] is an effective way to iteratively compute the ML estima-

tor of unknown parameters in probabilistic models involving la-

tent variables [29] . In the EM algorithm, the model parameters

are estimated using two iterative steps denoted as expectation (E)

and maximization (M). In the E-step, the model parameters are

assumed to be known. Therefore an expected log-likelihood func-
ion of the complete data under the joint pdf of the state se-

uence in a fixed-interval needs to be computed. In the M-step,

he ML estimates of the model parameters are computed by max-

mizing the expected log-likelihood function. Accordingly, the EM

lgorithm has been effectively proposed to compute the ML esti-

ator of unknown model parameters for general state-space mod-

ls in a batch manner [30–32] . Moreover, an online EM algorithm

as investigated in [33] by constructing sufficient statistics for the

nknown model parameters using the state and observation vec-

ors. 

The main contribution of this paper is to derive an EM algo-

ithm for joint state and time-varying parameter estimation in the

ontext of MP interference mitigation for GNSS receivers. Differ-

nt from current applications of the EM algorithm to general state-

pace models, we propose to implement the EM iteration over each

bservation interval of the receiver due to the fact that the MP

ignal parameters are assumed to be time-varying and the corre-

ponding sufficient statistics cannot be available in practice. More

recisely, the proposed approach is decomposed into two steps: (a)

he posterior pdf of the LOS signal parameters and the expected

og-likelihood function necessary in the E-step of the EM algorithm

re approximated by using an appropriate particle filter; (b) the

L solution for MP signal parameters is obtained using Newton’s

ethod in the M-step. The convergence of the proposed approach

s analyzed based on the existing convergence theorem associated

ith the EM algorithm for general state-space models. Finally, a

omprehensive simulation study is conducted to compare the per-

ormance of the proposed approach with other state-of-the-art MP

itigation approaches in static and realistic scenarios. 

This paper is organized as follows: The GNSS signal models

n the presence of MP interference are presented in Section 2 .

ection 3 studies the joint estimation of direct and MP signal pa-

ameters in the frame of the EM algorithm. The corresponding

onvergence properties of the proposed approach is analyzed in

ection 4 . The performance of the proposed EM-based MP mit-

gation approach is evaluated in static and dynamic scenarios in

ection 5 . Conclusions are finally reported in Section 6 . 

. GNSS signal model in the presence of MP

In a pilot channel, the received complex baseband signal associ-

ted with GNSS satellites affected by M MP signals can be written

s follows [1] 

 ( t ) = 

M ∑ 

m =0

a m 

c ( t − τm 

) e jϕ m + ω ( t ) (1)

ith 

d ϕ m 

d t 
= 2 π f d m 

(2)

here a m 

, τm 

, ϕm 

and f d m 

are the amplitude, code delay, carrier

hase and Doppler frequency of the m th received signal and the

ubscript m = 0 denotes the direct LOS signal, c ( t ) is the pseudo-

andom noise (PRN) code associated with the GNSS signal, ω( t ) is

 zero mean additive complex Gaussian white noise with variance
2 . In the receiver, sampled data are collected over an observa-

ion interval T a (that is composed of N samples of the GNSS sig-

al, i.e., T a = NT s where T s = 

1 
f s

and f s is the sampling frequency of

he GNSS receiver). It can be assumed that all signal parameters

o not change significantly over the observation interval T a . As a

onsequence, the log-likelihood function of all unknown signal pa-

ameters for the k th ( k ∈ N ) block of N collected samples can be
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xpressed as follows 

 θ∗ ∝ −
∫ 

kT a

(
s ( t ) −

M ∑ 

m =0

a m 

c ( t − τm 

) e jϕ m 

) 2

d t 

∝ −
∫ 

kT a

| s ( t ) | 2 d t +
M ∑ 

m =0

2 R { α∗
m 

R SC ( τm 

) }

−
M ∑ 

m =0 

M ∑ 

n = m +1

2�( τn − τm 

) R { αm 

α∗
n } −

M ∑ 

m =0

T a | αm 

| 2 (3) 

ith 

θ∗ = 

(
a 0 , . . . , a M 

, τ0 , . . . , τM 

, ϕ 0 , . . . , ϕ M 

, f d 0 , . . . , f 
d 
m 

)T

�( τ ) = 

∫ 
kT a

c ( t ) c ( t − τ ) d t 

R SC ( τ ) = 

∫ 
kT a

s ( t ) c ( t − τ ) d t (4) 

here αm 

= a m 

e jϕ m ( m = 0 , . . . , M) denotes the complex amplitude

f the received signal, R { ·} and ( · ) ∗ denote the real part and con-

ugate of a complex number, �( · ) is the correlation function of

he locally-generated PRN replicas in the receiver, R SC ( · ) is the

ross correlation function of the received GNSS signal with the PRN

eplicas over the observation interval. 

In practice, the time propagation of the direct LOS signal pa-

ameters x = 

(
a 0 , τ0 , ϕ 0 , f 

d 
0 

)T
(this propagation is related to the

ynamics of the receiver) can be described by a conditional proba-

ility density function (pdf) of a state-space model when the GNSS

ignal has been locked inside the receiver [34] , i.e., 

 k ∼ f ( x k | x k −1 ) = N
(
F k | k −1 x k −1 , G k | k −1 �x,k −1 G 

T 
k | k −1 

)
(5) 

here k = 1 , . . . , ∞ is the k th observation interval, f (x k | x k −1 ) is

he pdf associated with the direct LOS signal parameter dynamics,

 ( μ, �) denotes the multivariate Gaussian pdf with mean vector

and covariance matrix �, F k | k −1 and G k | k −1 are the transition ma-

rices of the direct LOS signal parameters and the process noises

nd �x,k −1 is the covariance matrix of the process noise (a zero

ean Gaussian white noise). More precisely, the matrices F k | k −1 ,

 k | k −1 and �x,k −1 can be defined as follows [34] 

F k | k −1 = 

⎛ ⎜ ⎜ ⎝
1 0 0 0 

0 1 0 λT a 
0 0 1 T a 
0 0 0 1 

⎞⎟⎟ ⎠ 

, G k | k −1 =

⎛⎜ ⎜⎝ 

T a 0 0 

0 T a 0 

0 0 

T 2 a 

2

0 0 T a 

⎞⎟⎟ ⎠ 

and

x,k −1 = 

⎛⎜ ⎝ 

σ 2 
a 0 0 

0 σ 2 
τ 0 

0 0 σ 2 
f 

⎞⎟⎠ (6) 

here λ = f co / f ca is a scale factor converting the carrier Doppler

requency to the code Doppler frequency, f co and f ca are the PRN

ode and the GNSS signal carrier frequencies, respectively. 

An important property of MP signals is that they not only de-

end on the relative position of the receiver and GNSS satellites,

ut also on the environment where the receiver is located, es-

ecially in urban canyons. Since it is difficult to use a specific

ropagation model to accurately capture the dynamics of MP sig-

als, we propose in this work to consider the MP signal param-

ters as an unknown time-varying model parameter vector, i.e.,

k = 

(
θ1 ,k , . . . , θM,k 

)T 
where θm,k = 

(
a m,k , τm,k , ϕ m,k , f 

d 
m,k

)T 
and m = 

 , . . . , M. Accordingly, the likelihood function in (3) can be defined

sing the following conditional pdf 

 k ∼ g θk 
( y k | x k ) (7) 

here y k = 

(
s ( k −1 ) T a + T s , . . . , s ( k −1 ) T a + NT s 

)T
is the sampled GNSS sig-

al vector over the k th observation interval in GNSS receiver,
 θk 
( y k | x k ) is the pdf associated with the observed measurements

epending on the unknown model parameter vector θk over the

 th observation interval. Note that g θk 
( y k | x k ) can be easily ob-

ained by considering the direct LOS and MP signal parameters in

3) as the state vector x k and unknown time-varying model param-

ter vector θk respectively.

. The EM-based MP interference mitigation in the GNSS

eceiver

According to (5) and (7) , the estimation of the state vector (con-

aining the direct LOS signal parameters) results in a nonlinear fil-

ering problem that can be solved using, e.g., the extended Kalman

lter (KF) or the particle filter (PF) in the absence of MP interfer-

nces. It has been recognized that the KF and PF-based GNSS signal

racking loops can be possibly implemented in the GNSS receiver

35,36] . However, in the presence of MP interferences, the statisti-

al models used to solve the MP mitigation problem in the GNSS

eceiver depend on unknown time-varying model parameter vec-

ors (containing the MP signal parameters) that need to be esti-

ated jointly with the state vector. Thus we propose in this work

o investigate an EM algorithm over one observation interval for

chieving joint state and time-varying parameter estimation in the

ontext of MP mitigation in GNSS receivers (as explained in the

ubsequent sections). 

.1. Expectation-maximization for MP interference mitigation in GNSS 

eceivers 

Since the sampled GNSS signal vectors y 1: k = { y 1 , . . . , y k } over

ach observation interval are mutually independent, the log-

ikelihood function L θ1: k 
( y 1: k ) for a sequence of k observation inter-

als with unknown model parameter vectors θ1: k = 

{
θ1 , . . . , θk 

}
∈

( � is the feasible set of parameters) can be defined as 

 θ1: k 
( y 1: k ) : = log p θ1: k 

( y 1: k )

= 

∑ 

k

log p θk 
( y k ) (8) 

here k = 1 , . . . , ∞ denotes the k th observation interval. Thus the

L estimator ̂ θML
k 

for the k th observation interval can be ob-

ained by maximizing the corresponding log-likelihood L θk 
( y k ) :=

og p θk 
( y k ) , i.e., 

 ML 
k = argmax 

θk ∈ �
L θk 

( y k ) . (9) 

he key idea of the EM algorithm is to consider a sequence of k ob-

ervations y 1: k as incomplete data and construct a complete data

og-likelihood function for the unknown model parameter vectors

1: k by introducing latent state vectors x 1: k [33] , i.e., 

 θ1: k 
( y 1: k , x 1: k ) := log p θ1: k 

( y 1: k , x 1: k ) (10)

here p θ1: k 
( y 1: k , x 1: k ) is the joint pdf of the observations and

tates. Since the EM algorithm iteratively estimates θ1: k by

aximizing the expected log-likelihood of the complete data

 θ1: k 
( y 1: k , x 1: k ) , the corresponding expected log-likelihood for a se-

uence of k observation intervals can be defined as follows [30] 

Q 

(
θ1: k , ̂

 θ1: k (r) 
)

:= E ̂ θ1: k (r)

[
L θ1: k 

( y 1: k , x 1: k ) | y 1: k

]
= 

∫ [
log p θ1: k 

( y 1: k , x 1: k ) 
]

p ̂ θ1: k (r) ( x 1: k | y 1: k ) d x 1: k

(11) 

here ̂ θ1: k ( r ) is the estimator of the unknown model parameter

ectors at the r th EM iteration for a sequence of k observation in-

ervals. 
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Considering that the pdf associated with the state dynamics in

(5) is independent of the unknown model parameter vector θ over

each observation interval, p θ1: k 
( y 1: k , x 1: k ) can be decomposed us-

ing the Markov property associated with the state and observation

equations (5) and (7) 

p θ1: k 
( y 1: k , x 1: k ) =

∏ 

k

g θk 
( y k | x k ) f ( x k | x k −1 ) (12)

where k = 1 , . . . , ∞ . After replacing (12) into (10) , we obtain 

L θ1: k 
( y 1: k , x 1: k ) = 

∑ 

k 

[
log g θk 

( y k | x k ) + log f ( x k | x k −1 )
]

∝ 

∑ 

k

log g θk 
( y k | x k ) . (13)

As a consequence, using (13) into (11) leads to 

Q 

(
θ1: k , ̂

 θ1: k (r) 
)

∝ 

∑ 

k 

∫ 
log 

[
g θk 

( y k | x k ) 
]

p ̂ θk (r) ( x k | y 1: k ) d x k

= 

∑ 

k

Q 

(
θk , ̂

 θk (r) 
)

(14)

where 

Q 

(
θk , ̂

 θk (r) 
)

:= 

∫ 
log 

[
g θk 

( y k | x k ) 
]

p ̂ θk (r) ( x k | y 1: k ) d x k (15)

and where ̂ θk ( r ) is the estimator of the unknown model param-

eter vector at the r th EM iteration for the k th observation inter-

val, p ( x k | y 1: k ) is the posterior pdf of the state vector x k given

all available observations y 1: k and is referred to as the filter-

ing pdf. According to (14) , the expected log-likelihood function

Q 

(
θ1: k , ̂θ1: k

)
for a sequence of observation intervals is proportional

to a summation of the expected log-likelihood function Q 

(
θk , ̂θk

)
for each observation interval when the pdf associated with the

state dynamics is known. Thus the iterative EM solution for a se-

quence of observation intervals can be decomposed into the cor-

responding iterative solutions for each observation sequence. In

addition, the algorithm for the k th observation interval is such

that Q 

(
θk , ̂

 θk (r) 
)

> Q 

(̂ θk (r) , ̂  θk (r) 
)

guaranteeing an increase of

the log-likelihood L θk 
( y k ) > L ̂ θk (r) 

( y k ) at the r + 1 th iteration (see

Corollary 1). After choosing some initial value of θ denoted aŝ θk ( 0 ) ∈ �, the EM algorithm generates iteratively a sequence of

estimates ̂ θk (r) ( r = 0 , 1 , 2 . . . ) whose final value approximates the

ML estimator of θ in (9) . The EM iteration for MP mitigation in

GNSS receivers is summarized in Algorithm 1 . 

Algorithm 1 The iterative solution of the EM algorithm for an ob-

servation interval. 

1: E-Step . Compute Q 

(
θk , ̂

 θk (r) 
)

2: M-Step . Compute ̂ θk (r + 1) = arg max θk ∈ �Q 

(
θk , ̂

 θk (r) 
)

3.2. E-step: computing Q 

(
θk , ̂θk

)
based on a particle filter 

According to (15) , computing Q 

(
θk , ̂θk

)
in the E-step requires

to evaluate the expectation under the posterior pdf p 
θ̂k

( x k | y 1: k ) ,

where ̂ θk has been estimated within the previous M-step and

therefore is known. According to the Bayesian estimation princi-

ple, the posterior pdf p 
θ̂k

( x k | y 1: k ) of the state vector x k (containing

the direct signal parameters) given all available observations y 1: k 

can be recursively updated as follows 

p ̂ θ ( x k | y 1: k ) ∝ p 
θ̂ ( y k | x k ) p ( x k | y 1: k −1 ) (16)
k k
ith 

p ( x k | y 1: k −1 ) =
∫ 

p ( x k | x k −1 ) p ̂ θk −1
( x k −1 | y 1: k −1 ) d x k (17)

here (17) represents a prediction step resulting in the prior pdf of

he state vector for the k th observation interval. According to (7) ,

he observation related to the direct LOS signal parameter vector

s defined by a highly non-linear equation. Thus, it is difficult to

btain an analytic solution of the posterior pdf in (16) . In this sit-

ation, it is classical to consider a particle filter approximating the

osterior distribution of interest by using a set of weighted parti-

les leading to [37] 

p ̂ θk
( x k | y 1: k ) ≈

N s ∑ 

i =1

ω 

i 
k δ

(
x k − x i k

)
(18)

here N s is the number of particles, δ( · ) is the Dirac delta func-

ion, x i 
k 

is the i th state particle, ω 

i 
k 

is an appropriate weight associ-

ted with the i th particle and 

∑ N s 
i =1 

ω 

i 
k 

= 1 for the k th observation

interval. 

As a consequence, Q 

(
θk , ̂

 θk 

)
in the E-step is approximated by

eplacing (18) into (15) , i.e., 

 

(
θk , ̂θk

)
≈ ̂ Q 

(
θk , ̂θk

)
= 

N s ∑ 

i =1

ω 

i 
k log g θk

(
y k | x ik

)
(19)

here the approximation quality can be enhanced by increasing

he number of particles N s . According to the literature, many par-

icle filter methods have been investigated for approximating the

osterior pdf p ( x k | y 1: k ) [38] . All these methods can be used in or-

er to obtain (19) . 

.3. M-step: maximizing ̂ Q 

(
θk , ̂θk

)
using Newton’s method 

In the M-step, the approximation 

̂ Q 

(
θk , ̂θk

)
needs to be maxi-

ized with respective to θk in order to obtain a new iterative ML

stimate of the model parameter vector (containing the MP signal

arameters) for the k th observation interval. Assuming that a set

f weighted state particle 
{
ω 

i 
k 
, x i 

k

}N s

i =1
have been obtained in the

-step, (19) can be maximized by setting the partial derivatives of̂ 

 

(
θk , ̂θk

)
with respective to θk to zero, i.e., 

∂ ̂Q
(
θk , ̂θk

)
∂θk 

= 

N s ∑ 

i =1

ω 

i 
k

∂ log g θk 

(
y k | xi

k

)
∂θk 

= 0 (20)

here θk = 

(
θ1 ,k , . . . , θM,k 

)T
, x i 

k 
=

(
a i 

0 ,k 
, τ i

0 ,k 
, ϕ 

i 
0 ,k 

, f d ,i 
0 ,k

)T
is the i th

article associated with the direct LOS signal parameters. Consider-

ng that the complex amplitude α in (3) contains the correspond-

ng amplitude and carrier phase of the received signal, (20) leads

o 

N s 
 

i =1

ω 

i 
k

∂ log g θk 

(
y k | xi

k

)
∂αm,k 

= 0 (21)

N s 
 

i =1

ω 

i 
k

∂ log g θk 

(
y k | xi

k

)
∂τm,k 

= 0 (22)

here m = 1 , . . . , M. 

After replacing (3) into (21) , the ML solution of the complex

mplitude for the m th MP signal can be expressed as 

 SC 

(
τm,k 

)
−

N s∑
i =1

ω 

i 
k �

(
τm,k − τ i 

0 ,k 

)
αi

0 ,k −
M ∑ 

n =1 ,n � = m
�

(
τn,k − τm,k 

)
αn,k 

−T a αm,k = 0 . (23)
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ccordingly, a bank of partial derivatives with respect to αm 

( m =
 , . . . , M) can be gathered into the following compact expression 

 k αk = b k (24) 

ith 

 k = 

⎛⎜ ⎜⎜⎝
T a �

(
τ2 ,k − τ1 ,k

)
. . . �

(
τM,k − τ1 ,k 

)
�

(
τ1 ,k − τ2 ,k

)
T a . . . �

(
τM,k − τ2 ,k 

)
.. . . . .

. . .
.. . 

�
(
τ1 ,k − τM,k

)
�

(
τ2 ,k − τM,k

)
. . . T a 

⎞⎟⎟⎟⎠
(25) 

nd 

 k = 

(
b 1 ,k , . . . , b M,k 

)T
(26) 

here b m,k = R SC 

(
τm,k 

)
− ∑ N s

i =1 
ω 

i 
k 
�

(
τm,k − τ i 

0 ,k 

)
αi

0 ,k
and m = 1 ,

 . . , M. As a consequence, the complex amplitudes of MP signals

an be solved in closed form as follows 

 k =
(
A 

T 
k A k 

)−1 
A 

T 
k b k (27) 

here ̂ αk = 

(̂ α1 ,k , . . . , ̂  αM,k

)T
. Therefore, the corresponding ampli-

ude and carrier phase of MP signals can be extracted from the

stimated complex amplitude ̂ αk , i.e.,̂ a m,k = ‖ ̂

 αm,k ‖̂ 

 m,k = ∠ ̂

 αm,k (28) 

here m = 1 , . . . , M. Since it is difficult to separate the carrier

oppler frequency from the correlation measurements in (3) , the

arrier Doppler frequency of MP signals is extracted from two suc-

essive carrier phase estimation as follows 

̂ f dm,k = 

̂ ϕ m,k − ̂ ϕ m,k −1

T a 
(29) 

here m = 1 , . . . , M. 

Regarding the ML solution of the code delays, replacing (3) into

22) yields

 

{
α∗

m,k

∂R d 

(
τm,k 

)
∂τm 

}
= 0 (30) 

ith 

 d 

(
τm,k 

)
= R SC 

(
τm,k 

)
−

N s∑
i =1

ω 

i 
k �

(
τm,k − τ i 

0 ,k 

)
αi

0 ,k

−
M ∑ 

n =1 ,n � = m
�

(
τn,k − τm,k 

)
αn 

= 

∫ 
kT 0

[
s ( t ) −

N s ∑ 

i =1

ω 

i 
k α

i 
0 c 

(
t − τ i 

0 

)
−

M ∑
n =1 ,n � = m

αn c ( t − τn ) 

]
c ( t − τm 

) d t (31) 

here m = 1 , . . . , M. Considering that the correlation function in

31) depends on the code delay parameter though the PRN code

 ( t − τ ) , there is no closed form expression for the parameter τm,k .

e propose to use Newton’s method in [20] to iteratively compute

he ML estimator of the code delay. Thus the iterative solution of

he code delay of the m th MP signal is

 m,k ( r + 1 ) = ̂

 τm,k ( r ) −
R 

{
R 

∗
d 

(̂ τm,k ( r ) 
) ∂R d ( ̂  τm,k ( r ) ) 

∂τm

}
R 

{
R 

∗
d 

(̂ τm,k ( r ) 
) ∂ 2 R d ( ̂  τm,k ( r ) ) 

∂τ 2 
m 

} (32) 

here m = 1 , . . . , M and r = 0 , 1 , 2 . . . is the number of iterations.

ore details about the derivation of the derivatives 
∂R ( τ ) 
∂τ

and

∂ 2 R ( τ ) 
2 are given in [20] . 
∂ τ
Note that the estimated complex amplitude in (27) is a func-

ion of the code delay of MP signals for the k th observation inter-

al, whereas the code delay estimator in (32) requires to know the

omplex amplitude of MP signals. Therefore, the amplitude esti-

ates in (27) at the ( r + 1 ) th iteration are calculated by using the

ode delay estimates at the r th iteration. Then the code delay esti-

ates at the ( r + 1 ) th iteration can be implemented based on the

ast estimates of complex amplitudes. 

Considering that MP signals depend on the environment where

he receiver is located, it is difficult to accurately obtain the ini-

ial values of the MP signal parameters at the beginning of each

M iteration. Generally, MP signals do not affect positioning re-

ults inside the receiver when the code delay offsets of the MP

ignals with respect to the direct LOS signal are equal or larger

han 2 T c (where T c is the chip duration of the PRN code). Thus, the

stimation of the MP signal parameters is only performed when

m 

∈ (τ0 , τ0 + 2 T c ) where m = 1 , . . . , M. In this paper, the code de-

ays of the MP signals are supposed to be random values uni-

ormly distributed in the interval τm 

∈ (τ0 , τ0 + 2 T c ) with the con-

ition τ0 < τ1 < . . . < τM 

< τ0 + 2 T c at the beginning of the EM it-

rations for each observation interval. Finally, the EM-based MP in-

erference mitigation approach in GNSS receivers is summarized in

lgorithm 2 . 

lgorithm 2 Proposed EM-based MP interference mitigation ap-

roach in GNSS receivers. 

tep 1: Initialization ( r = 0 ). 

: Calculate x i 
k 

∼ f
(
x k | x ik −1

)
according to (5) where x i 

k 
=

a i 
0 ,k 

, τ i 
0 ,k 

, ϕ 

i 
0 ,k 

, f d ,i 
0 ,k

)T

nd i = 1 , . . . , N s . 

: Generate the initial code delay of the m th MP signal
 m,k ( 0 ) ∼ U(τ0 ,k , τ0 ,k + 2 T c )

here τ0 ,k = max 
1 <i<N s

{ τ i
0 ,k 

} and 

̂ τ1 ,k ( 0 ) < . . . < ̂

 τM,k ( 0 ) and U ( a, b )

enotes the 

niform distribution on the interval ( a, b ) . 

: Calculate the corresponding complex amplitude ̂ αm,k ( 0 ) for

 = 1 , . . . , M 

sing (27). 

tep 2: Iteration. For r = 1 , 2 , . . . 

 E-step 

: Using the model parameter vector ̂ θk ( r − 1 ) , update each parti-

le weight ω 

i
k

ased on a particle filter approach (e.g., the bootstrap particle

lter [38]) and 

ompute ̂ Q 

(
θk , ̂

 θk ( r − 1 ) 

)
according to (19). 

 M-step 

: Using the ML estimate of the code delay τm,k ( r − 1 ) where

 = 1 , . . . , M, 

ompute the complex amplitude ̂ αk ( r ) of MP signals according to

27). 

 Extract the amplitude, carrier phase and Doppler frequency

ssociated with 

P signal according to (28) and (29). 

: Using the ML estimate of the complex amplitude ̂ αk ( r ) , com-

ute the code delay 

f the MP signal τm,k ( r ) according to (32) for m = 1 , . . . , M. 

 Stopping rule 

: If 

∣∣∣̂ Q 
(̂ θr+1 , ̂

 θr 

)
−̂ Q 

(̂ θr , ̂
 θr 

)∣∣∣∣∣∣̂ Q 
(̂ θr+1 , ̂

 θr 

)∣∣∣ < δ or r ≥ r max where 0 < δ � 1 , stop the

M iteration 

lse set r = r + 1 . 

tep 3: Recursion ( k = k + 1 ). Go to Step 1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

r  

n  

a  

i  

F  

c  

s

R  

w  

l  

h  

a

5

 

t  

n  

t  

g  

p  

m  

r  

D  

t  

1  

L  

o  

0  

d  

t  

p  

M  

c  

i  

T  

s  

o  

e  

−

 

d  

m  

t  

m  

t  

m  

t  

t  

o  

r  
4. Convergence analysis

Since it is difficult to establish convergence of the sequence

of estimates ̂ θ(r) ( r = 0 , 1 , 2 . . . ), it is classical to prove that the

iterative solution of the EM algoritm verifies Q 

(̂ θ( r + 1 ) , ̂  θ( r )

)
>

Q 

(̂ θ( r ) , ̂  θ( r )

)
guaranteeing a strict increase of the log-likelihood

L ̂ θ( r+1 ) 
( y 1: k ) > L ̂ θ( r ) 

( y 1: k ) for a sequence of observation intervals

at the ( r + 1 ) th iteration, as demonstrated in Theorem 2 of [39] .

In the context of MP mitigation in GNSS receivers, this non-

decreasing property over an observation can be obtained based on

Theorem 2 of [39] . 

Corollary 1. Let ̂ θk ( r + 1 ) be generated from 

̂ θk ( r ) by an iteration of

Algorithm 1 . Then 

L ̂ θk ( r+1 ) 
≥ L ̂ θk ( r )

∀ r = 0 , 1 , 2 , . . . (33)

with equality if and only if 

Q 

(̂ θk ( r + 1 ) , ̂  θk ( r ) 

)
= Q 

(̂ θk ( r ) , ̂
 θk ( r ) 

)
(34)

and 

p ̂ θk ( r+1 ) 
( x k | y 1: k ) = p ̂ θk ( r ) 

( x k | y 1: k ) (35)

for almost all (with respect to Lebesgue measure) x k . 

Proof. See Appendix A . �

According to (3) , the likelihood of the MP signal parameters in

the M-step depends on the code delay of received signals via the

cross correlation function. For the C/A code in the GPS L1 signal,

the correlation function is a convex triangular function. Therefore,

the strict monotonicity of any EM iteration is guaranteed in the

context of MP mitigation in GNSS receivers. 

In the proposed EM-based MP mitigation approach, Q 

(
θk , ̂θk

)
is approximated by using the particle-based approximation̂ Q N s 

(
θk , ̂

 θk 

)
. According to Lemma 9.2 in [32] , ̂ Q N s 

(
θ, ̂  θ

)
provides

an accurate approximation of Q 

(
θ, ̂  θ

)
when the number of par-

ticle N s is sufficiently large. Therefore, using a particle-based ap-

proximation 

̂ Q N s 

(
θ, ̂  θ

)
instead of Q 

(
θ, ̂  θ

)
is a reasonable way of

implementing the ML estimation of MP signal parameters in the

proposed EM-based MP mitigation approach. 

5. Algorithm assessment

In order to evaluate the performance of the proposed EM-based

MP mitigation approach, the GPS L1 C/A signal was taken into ac-

count and the related parameters used in all test scenarios are pro-

vided in Table 1 . The MP mitigation approach was implemented for

two kinds of test scenarios: (a) a static scenario where the joint

estimate accuracy of the state vector (containing the direct signal

parameters) and model parameter vector (containing the MP signal

parameters) was evaluated under the condition of a set of spec-

ified model parameters (i.e., the MP signal parameter offsets are

constant with respect to the direct LOS signal); (b) a dynamic sce-

nario in which the joint estimate accuracy was evaluated under the
Table 1

Related parameters in test scenarios.

Amplitude noise σa = 0 . 01 

Code delay noise στ = 0 . 01 chips/s 

Doppler frequency noise σ f = 5 Hz/s 

Integration time T a = 25 ms 

Correlation spacing δ = 0 . 15 chips 

p  

d  

t  

d

p

L

o

ondition of time-varying model parameters (i.e., the MP signal pa-

ameter offsets are time-varying with respect to the direct LOS sig-

al). The bootstrap particle filter was implemented for recursively

pproximating the filtering pdf in the proposed EM-based MP mit-

gation approach and the number of particles was set to N s = 100 .

inally, the root mean square error (RMSE) of the estimator asso-

iated with the direct LOS signal was used as a performance mea-

ure. This measure is defined as 

MSE = 

√
1 

N m 

N m ∑ 

i =1

(
̂ x (i ) − x 

)2
(36)

here ̂ x (i ) is the i th run estimate. 100 Monte Carlo (MC) simu-

ations ( N m 

= 100 ) were run for any test scenario. All algorithms

ave been coded using MATLAB and run on a laptop with Intel i-5

nd 8 GB RAM. 

.1. MP mitigation performance comparison in static scenarios 

The received complex baseband signals was generated by using

he signal model in (1) and we assume that one reflected MP sig-

al affects the direct LOS signal (i.e., M = 1 ). In order to evaluate

he estimation performance of the proposed EM-based MP miti-

ation approach and to compare it with other MP mitigation ap-

roaches in the static scenario, we considered the proposed MP

itigation approach, the fast iterative maximum-likelihood algo-

ithm (FIMLA) studied in [20] and the coherent narrow correlator

LL for this scenario. The maximum number of iterations in both

he proposed MP mitigation approach and the FIMLA were set to

5 (i.e., r max = 15 ). The carrier-to-noise ratio (CNR) of the direct

OS signal was set to 50 dB-Hz and the multipath-to-direct ratio

f the MP signal amplitude was maintained to a constant value

.5. In addition, the RMSE envelops (i.e., the RMSE versus the code

elay offset of MP signal) for the code delay and carrier phase of

he direct LOS signal was used to evaluate the performance of the

roposed MP mitigation method. A set of code delay offsets of the

P signal can be obtained by setting the difference between the

ode delays of the direct LOS signal and those of the MP signal

n the interval (0, 1.5 T c ), i.e., 
τ1 = τ1 − τ0 where 
τ 1 ∈ (0, 1.5 T c ).

he carrier phase offset of the MP signal (i.e., 
ϕ 1 = ϕ 1 − ϕ 0 ) was

et to 0 ◦ (in-phase with the direct LOS signal) and to 180 ◦ (out-

f-phase with the direct LOS signal) when computing the RMSE

nvelops associated with the direct LOS code delay, and to 90 ◦ and

90 ◦ (orthogonal with the direct LOS signal) when computing the

RMSE envelops for the direct LOS carrier phase, respectively. 1

As shown in Fig. 1 , the RMSE envelopes of the direct LOS code

elay and carrier phase obtained with the proposed EM-based MP

itigation approach and the FIMLA are smaller than those ob-

ained with the narrow correlator DLL, which indicates that the MP

itigation performance of the ML-based methods is better than

hat of the narrow correlator-based method. In addition, the esti-

ation performance for the direct LOS carrier phase is similar for

he proposed approach and FIMLA, whereas the RMSE envelop of

he direct LOS code delay obtained with the proposed approach is

bviously smaller than the other ones. Accordingly, estimated er-

ors of the MP code delay (i.e., δτ1 = ̂

 τ1 − τ1 ) obtained with the

roposed approach and the FIMLA over 100 MC simulations are

epicted as box plots in Fig. 2 (the figure only displays the es-

imated error for the in-phase situation since a similar result is
1 In a conventional tracking loop of the GPS receiver, the tracking errors of the

irect LOS code delay due to MP interferences were maximized when the carrier

hase offset of MP signal was 0 ◦ and 180 ◦ and the tracking errors of the direct 

OS carrier phase due to MP interferences were maximized when the carrier phase

ffset of MP signal was −90 ◦ and 90 ◦ . 



Fig. 1. RMSE envelopes of the LOS code delay and carrier phase with different approaches. Proposed approach: black solid line; FIMLA: red dashed line; Narrow correlator

DLL: blue dash-dotted line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Estimate error of MP code delay versus the code delay offset of MP signal.

o  

m  

p  

w  

c  

p  

d  

o  

a  

t  

p  

s  

s  

t  

C  

c  
btained for the out-of-phase component). It is clear that the esti-

ated error of the MP code delay obtained with the proposed ap-

roach is significantly smaller than that obtained from the FIMLA

hen the code delay offset of the MP signal is smaller than 0.2

hips. This difference between the two approaches gradually disap-

ears as the code delay offset of MP signal increases. Although the

irect LOS and MP signal parameters are jointly estimated based

n the iterative fashion both in these two approach, the proposed
pproach can effectively improve the estimation performance due

o the fact that the prior information about the direct LOS signal

arameters is taken into account by using the EM iteration. Fig. 3

hows the estimated MP code delay offset (i.e., 
̂ τ1 = ̂

 τ1 − τ0 ) ver-

us the EM iteration times over 100 MC simulations. Thanks to

he convex property of the correlation function associated with the

/A code of the GPS L1 signal, the estimated MP code delay offsets

onverge rapidly to values close to the true parameters when the



Fig. 3. Estimated MP code delay offset versus the number of EM iterations for 100 MC simulations. Estimated value: blue line; True value: black line. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. RMSE of the LOS code delay for different CNRs.
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corresponding initial value at the beginning of the EM iterations is

uniformly chosen in the fixed interval. 

In order to evaluate the effect of different CNR levels on the

estimation performance of the proposed approach, the three MP

mitigation approaches were implemented using code delay and

carrier phase offsets of the MP signal fixed to 0.5 chips and 0 ◦,

respectively. Fig. 4 displays the RMSE of the direct LOS code delay

versus CNR. It is known that the narrow correlator DLL is insen-

sitive to CNR changes, which is confirmed in Fig. 4 . Considering

that a smaller value of CNR leads to a larger noise variance im-

pairing the ML estimation accuracy, the FIMLA is very sensitive to

the CNR and requires a long integration time (resulting in a small

noise variance) to obtain reliable estimation results. The proposed

approach using prior information about the direct LOS signal can
fficiently reduce the influence of noise and MP on the estimation

erformance. 

Considering that more than one MP signal enters the receiver

t the same time in some MP scenarios, we assume in a second

cenario that two reflected MP signals affect the direct LOS signal

i.e., M = 2 ). The multipath-to-direct ratios of the MP signal am-

litudes were set to 0.7 and 0.4, respectively. The estimated mean

nd standard deviation of the code delay offsets for the two MP

ignals obtained with the proposed approach and FIMLA over 100

C simulations are reported in Table 2 . Table 2 shows that simi-

ar results are obtained when the two MP signals are in-phase and

rthogonal. It is clear that the estimation performance of the ap-

roaches is degraded when the code delay offsets of the two MP

ignals are relatively close, whereas the corresponding estimation

ccuracy is clearly improved as the code delay offsets of the two

P signals are gradually separated. In addition, the estimated ac-

uracy obtained with the proposed approach is better than that

btained with FIMLA, especially for the first MP signal (i.e., a short

P signal). Thus a better MP mitigation performance can be ob-

ained by using the proposed EM-based MP mitigation approach in

he presence of multiple MP signals. 

.2. MP mitigation performance in dynamic scenarios 

In order to demonstrate the joint estimation performance of the

roposed EM-based MP mitigation approach in dynamic scenarios,

e considered one reflected MP signal with the following dynam-

cs [23,25] : 

(i) The code delay of the MP signal is assumed to follow the

process

τ1 ,k = τ1 ,k −1 + ˙ τ1 ,k −1 T a + ω τ

˙ τ1 ,k = ˙ τ1 ,k −1 + ω ˙ τ (37)



Table 2

Estimated means and standard deviations for the code delay offsets of the two MP signals.

True MP signal parameter offsets Estimated MP code delay offsets

code delay (chips) carrier phase ( ◦) (mean ± standard deviation) 


τ 1 
τ 2 
ϕ1 
ϕ2 Proposed approach FIMLA


̂ τ1 
̂ τ2 
̂ τ1 
̂ τ2 

0.18 0.025 ± 0.122 0.173 ± 0.043 0.058 ± 0.003 0.076 ± 0.004 

0.25 0.088 ± 0.057 0.208 ± 0.039 0.176 ± 0.059 0.207 ± 0.030 

0.30 0.080 ± 0.043 0.283 ± 0.056 0.027 ± 0.027 0.236 ± 0.032 

0.45 0.086 ± 0.026 0.434 ± 0.036 0.034 ± 0.008 0.387 ± 0.038 

0.10 0.60 0 ◦ 0 ◦ 0.097 ± 0.019 0.595 ± 0.031 0.039 ± 0.006 0.554 ± 0.036 

0.82 0.096 ± 0.017 0.818 ± 0.026 0.041 ± 0.006 0.777 ± 0.036 

0.98 0.094 ± 0.026 0.970 ± 0.042 0.049 ± 0.013 0.949 ± 0.052 

1.19 0.097 ± 0.032 1.183 ± 0.069 0.046 ± 0.010 1.151 ± 0.043 

1.48 0.096 ± 0.012 1.479 ± 0.020 0.040 ± 0.006 1.478 ± 0.026 

0.18 0.124 ± 0.095 0.109 ± 0.059 0.001 ± 0.029 0.148 ± 0.064 

0.25 0.068 ± 0.049 0.239 ± 0.051 0.006 ± 0.031 0.172 ± 0.078 

0.30 0.076 ± 0.033 0.291 ± 0.045 0.023 ± 0.019 0.257 ± 0.033 

0.45 0.097 ± 0.017 0.451 ± 0.025 0.034 ± 0.008 0.439 ± 0.029 

0.10 0.60 0 ◦ 90 ◦ 0.097 ± 0.015 0.604 ± 0.024 0.039 ± 0.007 0.593 ± 0.025 

0.82 0.095 ± 0.015 0.822 ± 0.027 0.042 ± 0.007 0.820 ± 0.026 

0.98 0.096 ± 0.014 0.979 ± 0.025 0.043 ± 0.007 0.979 ± 0.022 

1.19 0.099 ± 0.011 1.185 ± 0.023 0.049 ± 0.012 1.190 ± 0.018 

1.48 0.098 ± 0.012 1.482 ± 0.019 0.046 ± 0.006 1.478 ± 0.018 
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Fig. 5. RMSE of the LOS code delay obtained with the different approaches.
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where ˙ τ1 ,k refers to the change rate of the MP code delay,

ω τ and ω ˙ τ are zero mean Gaussian white noises with vari-

ances σ 2 
τ and σ 2 

˙ τ . In addition, the MP code delay is initial-

ized with 

τ1 , 0 = τ0 , 0 + | 
τ1 , 0 + ω τ | (38)

where 
τ 1,0 is the initial code delay offset of the MP signal

with respect to the direct LOS signal. 

(ii) The complex amplitude of the MP signal α1, k depends on the

previous amplitude α1 ,k −1 through the parametric model

α1 ,k = e j2 π f ca T a ̇ τ1 ,k α1 ,k −1 + ω α (39)

where ω α is a zero mean additive complex Gaussian white

noise with variance σ 2 
α . 

This model was motivated by its efficiency in MP prone envi-

onments such as the urban canyons [27] . We propose to compare

he proposed approach with FIMLA, the coherent narrow corre-

ator DLL and particle filter-based MP mitigation approach stud-

ed in [22] for this scenario. Accordingly, the propagation mod-

ls for the direct LOS and MP signal parameters used in the par-

icle filter-based MP mitigation approach were defined using (5),

37) and (39) . The simulation time T was set to 5 s. The CNR of

he direct LOS signal and the multipath-to-direct ratio of the MP

ignal amplitudes were set to 46 dB-Hz and 0.5, respectively. A

ast-fading MP condition was considered in this dynamic scenario.

ccordingly, the initial code delay offset of the MP signal and

he corresponding rate of change were set as 
τ1 , 0 = 0 . 2 chips

nd ˙ τ1 , 0 = 0 . 01 chips/s (which is equivalent to a relative speed of

bout 4 m/s between the receiver and the reflector). The carrier

oppler frequency offset of the MP signal with respect to the di-

ect LOS signal (i.e., the fading frequency) was approximately equal

o 5 Hz. The standard deviations were fixed to στ = 10 −3 chips,

˙ τ = 10 −4 chip/s and σα = 0 . 01 , which is a reasonable choice to

esemble a typical urban satellite navigation channel environment

40] .

Fig. 5 shows the RMSEs of the direct LOS code delay obtained

ith different approaches in the fast-fading MP condition. Since

he prior information about the LOS signal parameters is con-

idered both in the proposed EM-based and particle filter-based

P mitigation approaches, the RMSEs obtained with these two
pproaches are obviously smaller than those obtained with the

oherent narrow correlator DLL and FIMLA. Moreover, the results

btained by using the proposed EM-based and particle filter-based

P mitigation approaches are very similar. Although the propaga-

ion model associated with MP signal parameters is not considered

n the proposed approach, the EM iteration can reduce the impact

f the model uncertainty resulting from the unknown model pa-

ameter vector (containing the MP signal parameters) on the esti-

ate accuracy for the state vector (containing the direct signal pa-

ameters). The averaged values of MP code delay offset estimates

ver 100 MC simulations are depicted in Fig. 6 . Since the EM iter-

tion is implemented over each observation interval, the change of

P code delay with time can be accurately tracked by using the

roposed approach and the corresponding estimation accuracy is

lightly inferior to that obtained with the particle filter. This is due

o the fact that the prior propagation model for MP signal parame-

ers is not taken into account in the proposed approach. When the

umber of EM iterations is maximum, the computational complex-

ties of the proposed EM-based and particle filter-based MP miti-

ation approaches are O ( r max N s T ) and O ( N s T ), respectively. Table 3

hows the execution times for 100 Monte Carlo runs by using dif-

erent numbers of particles in the proposed EM-based and particle

lter-based MP mitigation approaches. The computational cost of



Table 3

Execution times using the different number of particles.

Number of particles ( N s ) Execution times (s)

Proposed approach with the maximum number of iterations Proposed approach with the stopping rule Particle filter

50 191.34 105.16 36.58

100 351.85 192.20 69.29

200 662.38 360.47 138.91

400 1295.66 714.87 271.31

Fig. 6. Averaged values of MP code delay offset estimates over 100 MC simulations.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. RMSE of the estimated LOS code delay in the presence of changes affecting

the dynamics of MP signals.

Table 4

MP signal parameters in dynamic scenarios.

Signal parameters MP signals

MP #1 MP #2

Appearance time (s) 0–5 0–2.5 4–5

Initial code delay offset (chips) 0.1 0.4 0.3

Initial change rate of the MP code delay (chips/s) 0.01 −0.03 0

Multipath-to-direct 0.7 0.3 0.5

Fading frequency (Hz) 2 5 0
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the proposed approach was evaluated in the following two situa-

tions: (a) the algorithm is stopped when the stopping rule in Line

8 of Algorithm 2 is satisfied (b) the number of EM iterations is set

to its maximum value r max = 15 . Since the implementation of the

EM iteration is made for each observation interval, the computa-

tional cost of the proposed approach is much higher than the one

associated with the particle filter. Thanks to the good convergence

property of the proposed EM-based MP mitigation approach, the

actual number of EM iterations of the proposed approach is less

than the maximum number of iterations. As a consequence, the

corresponding computational cost can be efficiently reduced by in-

troducing the stopping rule of Line 8 of Algorithm 2 in the pro-

posed approach. 

According to the previous experiments, the particle filter-based

approach has a better MP mitigation performance due to the fact

that the propagation model for MP signal parameters follows the

actual dynamics of MP signals. However, an accurate propagation

model cannot always be defined to capture the dynamics of MP

signals in real applications. In the next experiments, we assume

that the differences between consecutive code delays of the MP

signal are independent and follow an exponential distribution [41] ,

i.e.,

μ1 ,k = τ1 ,k − τ1 ,k −1 (40)

with 

p 
(
μ1 ,k 

)
= 

1

μ0 

e
− I 

R 
(μ1 ,k )

μ0 (41)

where I R + is the indicator function on R 

+ and μ0 is a predefined

decaying parameter, which was set to 2 × 10 −3 chips in this exper-

iment. In addition, the complex amplitude of the MP signal varies

according to (39) . In this experiment, the code delay of the MP

signal was generated using (37) during the time interval [0 s, 2 s)

and using (40) during the time interval [2 s, 5 s]. Fig. 7 displays

the RMSEs of the direct LOS code delay obtained with the pro-

posed EM and particle filter-based MP mitigation approaches. It is

clear that the performance of the particle filter-based approach is

significantly reduced during the second time interval [2 s, 5 s] due

to an inaccurate model for the dynamics of MP signals. Conversely,
he proposed EM-based approach is less affected by an inaccurate

ropagation model for the MP signal parameters, since this model

s not used in the EM algorithm. These results indicate that the

roposed EM algorithm provides a better robustness in constraint

nvironments, such as urban canyons. 

In the last experiments, we consider two reflected MP signals

imultanously affecting the direct LOS signal dynamically. The pa-

ameters of the two MP signals are provided in Table 4 . The es-

imated code delay offsets and multipath-to-direct ratios of these

P signals are displayed in Fig. 8 . As shown in Fig. 8 , the MP

ignal parameters can be accurately tracked by the proposed ap-

roach even in the presence of multiple MP signals. Note that the

stimated value of the multipath-to-direct ratio for the MP signal

2 is less than 0.05 chips when the corresponding MP signal dis-

ppears. Thus a threshold on the estimated MP signal amplitude

an be used for eliminating the false MP signal path estimation in

he proposed MP mitigation approach. In other words, the MP sig-

al path is not taken into account when the estimated MP signal

mplitude is smaller than the threshold. Considering that two re-

ected signals very close in time can be considered as only one

erturbation in the LOS signal parameter estimation [19] , a two-

ath model (i.e., M = 2 ) in the proposed EM-based MP mitigation

pproach is often sufficient for practical applications. 



Fig. 8. Estimation results for two MP signal parameters in dynamic scenarios. MP #1: blue solid line; MP #2: red dashed line; True value: black dash-dotted line. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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. Conclusion

This paper proposed to mitigate the presence of MP interfer-

nces potentially affecting GNSS signals by jointly estimating a

tate vector containing the parameters of the direct signal and

ime-varying parameters associated with reflected signals. The es-

imation of all these parameters was conducted using an EM algo-

ithm, whose convergence properties have been established in this

ontext. Since the MP signal parameters were assumed to be time-

arying with an unknown sufficient statistics, we studied an EM

lgorithm defined for each observation interval of the receiver for

he joint estimation of the direct LOS and MP signal parameters. A

imulation study was conducted in static and dynamic scenarios in

rder to compare the performance of the proposed approach with

he narrow correlator delay lock loop (DLL), the algorithm FIMLA

f [20] and the particle filter-based MP mitigation approach inves-

igated in [22] . The proposed algorithm exploited some prior in-

ormation about the direct LOS signal parameters via the different

M iterations, providing better MP interference mitigation when

ompared to the other strategies, especially for short MP signals.

lthough the estimation accuracy of the proposed approach was

lightly overcome by the particle filter-based MP mitigation ap-

roach, the proposed EM algorithm showed a better robustness in

P environments since it does not require an accurate propagation

odel for the dynamics of MP signals. We think that the proposed

P mitigation technique is interesting for high chip rate GNSS sig-

als, especially when these signals are contaminated by short de-

ay MP interferences. In order to further reduce the computational

oad, our future work will be devoted to implementing a low-cost

olution (such as unscented Kalman filter) for non-linear systems

n the proposed EM algorithm. Testing the proposed algorithm in

ore practical applications using aircraft or autonomous car data

s also an interesting prospect. 

ppendix A. Proof of Corollary 1 

roof. According to Theorem 2 in [39] , we have 

 ̂ θ1: k ( r+1 ) 
( y 1: k ) − L ̂ θ1: k ( r ) 

( y 1: k ) ≥ Q 

(̂ θ1: k ( r + 1 ) , ̂  θ1: k ( r ) 

)
−Q

(̂ θ1: k ( r ) , ̂
 θ1: k ( r ) 

)
≥ 0 . (A.1) 

sing (14) into (A.1) leads to 

 

k

L ̂ θk ( r+1 ) 
( y k ) −

∑ 

k

L ̂ θk ( r ) 
( y k ) ∝ 

∑ 

k

Q 

(̂ θk ( r + 1 ) , ̂  θk (r) 
)

−
∑ 

k

Q 

(̂ θk ( r ) , ̂
 θk (r) 

)
≥ 0 . (A.2) 
ccordingly, (A.2) can be decomposed as follows 

 ̂ θk ( r+1 ) 
( y k ) − L ̂ θk ( r ) 

( y k ) ∝ Q 

(̂ θk ( r + 1 ) , ̂  θk (r) 
)

−Q
(̂ θk ( r ) , ̂

 θk (r) 
)

≥ 0 (A.3) 

here k = 1 , . . . , ∞ . Considering that L ̂ θk ( r+1 ) 
( y k ) − L ̂ θk ( r ) 

( y k ) is

n increasing function of Q 

(̂ θk ( r + 1 ) , ̂  θk (r) 
)

− Q
(̂ θk ( r ) , ̂

 θk (r) 
)

for

he k th observation interval, L ̂ θk ( r+1 ) 
( y k ) ≥ L ̂ θk ( r ) 

( y k ) holds when

 

(̂ θk ( r + 1 ) , ̂  θk (r) 
)

≥ Q 

(̂ θk ( r ) , ̂
 θk (r) 

)
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