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ESTIMATION OF LARGE BLOCK STRUCTURED COVARIANCE

MATRICES: APPLICATION TO “MULTI-OMIC” APPROACHES TO

STUDY SEED QUALITY

M. PERROT-DOCKÈS, C. LÉVY-LEDUC, AND L. RAJJOU

Abstract. Motivated by an application in high-throughput genomics and metabolomics, we
propose a novel, efficient and fully data-driven approach for estimating large block structured
sparse covariance matrices in the case where the number of variables is much larger than
the number of samples without limiting ourselves to block diagonal matrices. Our approach
consists in approximating such a covariance matrix by the sum of a low-rank sparse matrix
and a diagonal matrix. Our methodology also can deal with matrices for which the block
structure appears only if the columns and rows are permuted according to an unknown
permutation. Our technique is implemented in the R package BlockCov which is available
from the Comprehensive R Archive Network (CRAN) and from GitHub. In order to illustrate
the statistical and numerical performance of our package some numerical experiments are
provided as well as a thorough comparison with alternative methods. Finally, our approach
is applied to the use of “multi-omic” approaches for studying seed quality.

1. Introduction

Plant functional genomics refers to the description of the biological function of a single or
a group of genes and both the dynamics and the plasticity of genome expression to shape
the phenotype. Combining multi-omics such as transcriptomic, proteomic or metabolomic
approaches allows us to address in a new light the dimension and the complexity of the
different levels of gene expression control and the delicacy of the metabolic regulation of
plants under fluctuation environments. Thus, our era marks a real conceptual shift in plant
biology where the individual is no longer considered as a simple sum of components but rather
as a system with a set of interacting components to maximize its growth, its reproduction and
its adaptation. Plant systems biology is therefore defined by multidisciplinary and multi-scale
approaches based on the acquisition of a wide range of data as exhaustive as possible.

In this context, it is crucial to propose new methodologies for integrating heterogeneous
data explaining the co-regulations/co-accumulations of products of gene expression (mRNA,
proteins) and metabolites. In order to better understand these phenomena, our goal will thus
be to propose a new approach for estimating block structured covariance matrix in a high-
dimensional framework where the dimension of the covariance matrix is much larger than
the sample size. In this setting, it is well known that the commonly used sample covariance
matrix performs poorly. In recent years, researchers have proposed various regularization
techniques to consistently estimate large covariance matrices or the inverse of such matrices,
namely precision matrices. To estimate such matrices, one of the key assumptions made
in the literature is that the matrix of interest is sparse, namely many entries are equal to
zero. A number of regularization approaches including banding, tapering, thresholding and
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`1 minimization, have been developed to estimate large covariance matrices or their inverse
such as, for instance, Ledoit and Wolf (2004), Bickel and Levina (2008), Banerjee et al. (2008),
Bien and Tibshirani (2011) and Rothman (2012) among many others. For further references,
we refer the reader to Cai and Yuan (2012) and to the review of Fan et al. (2016).

In this paper, we shall consider the following framework. Let E1,E2, · · · ,En, n zero-mean
i.i.d. q-dimensional random vectors having a covariance matrix Σ such that the number q
of its rows and columns is much larger than n. The goal of the paper is to propose a new
estimator of Σ and of the square root of its inverse, Σ−1/2, in the particular case where Σ is
assumed to have a block structure without limiting ourselves to diagonal blocks. An accurate
estimator of Σ can indeed be very useful to better understand the links between the columns of
the observation matrix and may highlight some biological processes. Moreover, an estimator
of Σ−1/2 can be very useful in the general linear model in order to remove the dependence
that may exist between the columns of the observation matrix. For further details on this
point, we refer the reader to Perrot-Dockès et al. (2018), Perrot-Dockès et al. (2018) and
to the R package MultiVarSel in which such an approach is proposed and implemented for
performing variable selection in the multivariate linear model in the presence of dependence
between the columns of the observation matrix.

More precisely, in this paper, we shall assume that

(1) Σ = ZZ ′ + D,

where Z is a q×k sparse matrix with k � q, Z ′ denotes the transpose of the matrix Z and D
is a diagonal matrix such that the diagonal terms of Σ are equal to one. Two examples of such
matrices Z and Σ are given in Figure 1 in the case where k = 5 and q = 50 and in the case
where the columns of Σ do not need to be permuted in order to see the block structure. Based
on (1), our model could seem to be close to factor models described in Johnson and Wichern
(1988) and Fan et al. (2016). However, in Johnson and Wichern (1988), the high-dimensional
aspects are not considered and in Fan et al. (2016) the sparsity constraint is not studied.
Blum et al. (2016b) proposed a methodology which is based on the factor model but with a
sparsity constraint on the coefficients of Z which leads to a sparse covariance matrix. Note
also that the block diagonal assumption has already been recently considered by Devijver and
Gallopin (2018) for estimating the inverse of large covariance matrices in high-dimensional
Gaussian Graphical Models (GGM).

We also propose a methodology to estimate Σ in the case where the block structure is
latent; that is, permuting the columns and rows of Σ renders visible its block structure. An
example of such a matrix Σ is given in Figure 2 in the case where k = 5 and q = 50.

Our approach is fully data-driven and consists in providing a low rank matrix approximation
of the ZZ ′ part of Σ and then in using a `1 regularization to obtain a sparse estimator of Σ.
When the block structure is latent, a hierarchical clustering step must be applied first. With
this estimator of Σ, we explain how to obtain an estimator of Σ−1/2.

Our methodology is described in Section 2. Some numerical experiments on synthetic data
are provided in Section 3. An application to the analysis of “-omic” data to study seed quality
is performed in Section 4.
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Figure 1. Examples of matrices Σ generated from different matrices Z lead-
ing to a block diagonal or to a more general block structure (extra-diagonal
blocks).

Figure 2. Examples of matrices Σ of Figure 1 in which the columns and rows
are randomly permuted.

2. Statistical inference

The strategy that we propose for estimating Σ and Σ−1/2 can be summarized as follows.

• First step: Low rank approximation. In this step, we propose to approximate the part
ZZ ′ of Σ by a low rank matrix using a Singular Value Decomposition (SVD).
• Second step: Detecting the position of the non null values. In this step, we use a Lasso

criterion to yield a sparse estimator Σ̃ of Σ.

• Third step: Positive definiteness. We apply the methodology of Higham (2002) to Σ̃

to ensure that the final estimator Σ̂ of Σ is positive definite.
• Fourth step: Estimation of Σ−1/2. In this step, Σ−1/2 is estimated from the spectral

decomposition of Σ̂ obtained in the previous step.

2.1. Low rank approximation. By definition of Z in (1), ZZ ′ is a q × q low rank matrix
having its rank smaller or equal to k � q. In the first step, our goal is thus to propose a low
rank approximation of an estimator of ZZ ′.
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Let S be the sample q × q covariance matrix defined by

S =
1

n− 1

n∑
i=1

(
Ei −E

) (
Ei −E

)′
, with E =

1

n

n∑
i=1

Ei,

where Ei = (Ei,1, . . . , Ei,q)
′. The corresponding q × q sample correlation matrix R = (Ri,j)

is defined by:

(2) Ri,j =
Si,j
σiσj

, ∀1 ≤ i, j ≤ q,

where

σ2
i =

1

n− 1

n∑
`=1

(E`,i − Ei)2, with Ei =
1

n

n∑
`=1

E`,i, ∀1 ≤ i ≤ q.

Let us also consider the (q − 1)× (q − 1) matrix Γ defined by:

Γi,j = Ri,j+1, ∀1 ≤ i ≤ j ≤ q − 1,(3)

Γi,j = Γj,i, ∀1 ≤ j < i ≤ q − 1.

If S was the real matrix Σ, the corresponding matrix Γ would have a rank less than or equal
to k. Since S is an estimator of Σ, we shall use a rank r approximation Γr of Γ. This will
be performed by considering in its singular value decomposition only the r largest singular
values and by replacing the other ones by 0. By Eckart and Young (1936), this corresponds
to the best rank r approximation of Γ. The choice of r will be discussed in Section 2.5.

2.2. Detecting the position of the non null values. Let us first explain the usual frame-
work in which the Lasso approach is used. We consider a linear model of the following form

(4) Y = XB + E ,
where Y, B and E are vectors and B is sparse meaning that it has a lot of null components.

In such models a very popular approach initially proposed by Tibshirani (1996) is the Least
Absolute Shrinkage eStimatOr (Lasso), which is defined as follows for a positive λ:

(5) B̂(λ) = ArgminB
{
‖Y − XB‖22 + λ‖B‖1

}
,

where, for u = (u1, . . . , un), ‖u‖22 =
∑n

i=1 u
2
i and ‖u‖1 =

∑n
i=1 |ui|, i.e. the `1-norm of the

vector u. Observe that the first term of (5) is the classical least-squares criterion and that
λ‖B‖1 can be seen as a penalty term. The interest of such a criterion is the sparsity enforcing
property of the `1-norm ensuring that the number of non-zero components of the estimator

B̂ of B is small for large enough values of λ. Let

(6) Y = vecH(Γr),

where vecH defined in Section 16.4 of Harville (2001) is such that for a n× n matrix A,

vecH(A) =


a1∗
a2∗

...
an∗

 ,

where ai∗ is the sub-vector of the column i of A obtained by striking out the i − 1 first
elements. In order to estimate the sparse matrix ZZ ′, we need to propose a sparse estimator
of Γr. To do this we apply the Lasso criterion described in (5), where X is the identity matrix.
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In the case where X is an orthogonal matrix it has been shown in Giraud (2014) that the
solution of (5) is:

B̂(λ)j =

{
X ′jY(1− λ

2|X ′
jY|

), if |X ′jY| > λ
2

0, otherwise,

where Xj denotes the jth column of X . Using the fact that X is the identity matrix we get

(7) B̂(λ)j =

{
Yj(1− λ

2|Yj |), if |Yj | > λ
2

0, otherwise.

We then reestimate the non null coefficients using the least-squares criterion and get:

(8) B̃(λ)j =

{
Yj , if |Yj | > λ

2
0, otherwise,

where Y is defined in (6).

It has to be noticed that Γ̂r obtained in (7) satisfies the following criterion:

Γ̂r = ArgminΘ {‖Γr −Θ‖F + λ|Θ|1} ,
where ‖ · ‖F denotes the Frobenius norm defined for a matrix A by ‖A‖2F = Trace(A′A),
|M |1 = ‖vec(M)‖1 denotes the `1-norm of the vector formed by stacking the columns of M .
It is thus closely related to the generalized thresholding estimator defined in Wen et al. (2016)
and to the one defined in Rothman (2012) with τ = 0 except that in our case |Θ−|1 is replaced
by |Θ|1 where Θ− corresponds to the matrix Θ in which the diagonal terms are replaced by 0.

The diagonal terms of Σ were indeed already removed in Γr. Hence, we get Γ̂r by elementwise
soft-thresholding that is by putting to zero the value of Γr that are under a given threshold
and by multiplying the non null values by a coefficient containing this threshold.

Here, we choose to estimate Γr by Γ̃r(λ) defined through B̃(λ) in (8) which corresponds

to a hard-thresholding and we set the upper triangular part of the estimator Σ̃(λ) of Σ to

be equal to Γ̃r(λ). Since the diagonal terms of Σ are assumed to be equal to 1, we take the

diagonal terms of Σ̃(λ) equal to 1. The lower triangular part of Σ̃(λ) is then obtained by
symmetry.

The choice of the best parameter λ denoted λfinal in the following will be discussed in
Section 3.2.

2.3. Positive definiteness. To ensure the positive definiteness of our estimator Σ̂ of Σ, we

consider the nearest correlation matrix to Σ̃(λfinal) which is computed by using the method-
ology proposed by Higham (2002) and which is implemented in the function nearPD of the R
package Matrix, see Bates and Maechler (2018).

2.4. Estimation of Σ−1/2. Even if providing an estimator of a large covariance matrix can
be very useful in practice, it may also be interesting to efficiently estimate Σ−1/2. Such an
estimator can indeed be used in the general linear model in order to remove the dependence
that may exist between the columns of the observations matrix. For further details on this
point, we refer the reader to Perrot-Dockès et al. (2018), Perrot-Dockès et al. (2018) and
to the R package MultiVarSel in which such an approach is proposed and implemented for
performing variable selection in the multivariate linear model in the presence of dependence
between the columns of the observation matrix.

Since Σ̂ is a symmetric matrix, it can be rewritten as UDU ′, where D is a diagonal matrix
and U is an orthogonal matrix. The matrix Σ−1/2 can thus be estimated by UD−1/2U ′ where
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D−1/2 is a diagonal matrix having its diagonal terms equal to the square root of the inverse

of the singular values of Σ̂. However, inverting the square root of too small eigenvalues may
lead to poor estimators of Σ−1/2. This is the reason why we propose to estimate Σ−1/2 by

(9) Σ̂
−1/2

t = UD
−1/2
t U ′,

where D
−1/2
t is a diagonal matrix such that its diagonal entries are equal to the square root

of the inverse of the diagonal entries of D except for those which are smaller than a given

threshold t which are replaced by 0 in D
−1/2
t . The choice of t will be further discussed in

Section 3.7.

2.5. Choice of the parameters. Our methodology for estimating Σ depends on two pa-
rameters: The number r of singular values kept for defining Γr and the parameter λ which

controls the sparsity level namely the number of zero values in B̃(λ) defined in (8).
For choosing r, we shall compare two strategies in Section 3.1:

• The Cattell criterion based on the Cattell’s scree plot described in Cattell (1966) and
• the PA permutation method proposed by Horn (1965) and recently studied from a

theoretical point of view byDobriban (2018).

To choose the parameter λ in (8), we shall compare two strategies in Section 3.2:

• The BL approach proposed in Bickel and Levina (2008) based on cross-validation and
• the Elbow method which consists in computing for different values of λ the Frobenius

norm ‖R − Σ̃(λ)‖F , where R and Σ̃(λ) are defined in (2) and at the end of Section
2.2, respectively. Then, it fits two simple linear regressions and chooses the value of
λ achieving the best fit.

3. Numerical experiments

Our methodology described in the previous section is implemented in the R package
BlockCov and is available from the CRAN (Comprehensive R Achive Network) and from
GitHub.

We propose hereafter to investigate the performance of our approach for different types of
matrices Σ defined in (1) and for different values of n and q. The four following cases consid-
ered correspond to different types of matrices Z, the matrices D being chosen accordingly to
ensure that the matrix Σ has its diagonal terms equal to 1.

• Diagonal-Equal case. In this situation, Z has the structure displayed in the left
part of Figure 1, namely it has 5 columns such that the numbers of the non values in
the five columns are equal to 0.1× q, 0.2× q, 0.3× q, 0.2× q and 0.2× q, respectively
and the non null values are equal to

√
0.7,
√

0.75,
√

0.65,
√

0.8 and
√

0.7, respectively.
• Diagonal-Unequal case. In this scenario, Z has the same structure as for the

Diagonal-Equal case except that the non null values in the five columns are not
fixed but randomly chosen in [

√
0.6,
√

0.8] except for the third column for which its
values are randomly chosen in [

√
0.3,
√

0.6].
• Extra-Diagonal-Equal case. Here, Z has the structure displayed in the right part

of Figure 1. The values of the columns of Z are the same as those of the Diagonal-
Equal case except for the fourth column which is assumed to contain additional non
values equal to -0.5 in the range [0.35× q, 0.45× q].
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• Extra-Diagonal-Unequal case. Z has the same structure as in the Extra-Diagonal-
Equal case except that the values are randomly chosen as in the Diagonal-Unequal
case except for the fourth column where the additional non values are still equal to
-0.5 in the range [0.35× q, 0.45× q].

For n ∈ {10, 30, 50} and q ∈ {100, 500}, 100 n × q matrices E were generated such that
its rows E1,E2, · · · ,En are i.i.d. q-dimensional zero-mean Gaussian vectors having a covari-
ance matrix Σ chosen according to the four previous cases: Diagonal-Equal, Diagonal-
Unequal, Extra-Diagonal-Equal or Extra-Diagonal-Unequal.

3.1. Low rank approximation. The approaches for choosing r described in Section 2.5 are
illustrated in Figure 3 in the Extra-Diagonal-Unequal case. We can see from this figure that
both methodologies find the right value of r which is here equal to 5.

To go further, we investigate the behavior of our methodologies from 100 replications of
the matrix E for the four different types of Σ. Figure 4 displays the barplots associated to
the estimation of r made in the different replications by the two approaches for the different
scenarii. We can see from this figure that the PA criterion seems to be slightly more stable
than the Cattell criterion when n ≥ 30. However, in the case where n = 10, the PA criterion
underestimates the value of r. Moreover, in terms of computational time, the performance of
Cattell is much better, see Figure 5.

3.2. Positions of the non null values. For the four scenarios, the performance of the two
approaches: BL and Elbow described in Section 2.5 for choosing λ and hence the number of

non null values in Σ̃(λ) is illustrated in Figure 6. This figure displays the True Positive Rate
(TPR) and the False Positive Rate (FPR) of the methodologies from 100 replications of the
matrix E for the four different types of Σ and for different values of n and q.

Cattell PA

0 50 [...] 500 0 50 [...] 500
0

30

60

90

Index

E
ig

en
va

lu
es

Real Sample

Figure 3. Illustration of PA and Cattell criteria for choosing r when q = 500
and n = 30 in the Extra-Diagonal-Unequal case. The value of r found by both
methodologies is displayed with a dotted line, the straight lines obtained for
the Cattell criterion and the eigenvalues of the permuted matrices in the PA
methodology are displayed in grey.
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n = 10

q = 100

n = 10

q = 500

n = 30
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q = 500
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Diagonal Equal Diagonal Unequal Extra-Diagonal Equal Extra-Diagonal Unequal

Figure 4. Barplots corresponding to the number of times where each value
of r is chosen in the low-rank approximation from 100 replications for the two
methodologies in the different scenarii for the different values of n et q.
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Figure 5. Computational times of PA and Cattell criteria.

We can see from this figure that the performance of Elbow is on a par with the one of BL
except for the case where n = 10 for which the performance of Elbow is slightly better in
terms of True Positive Rate. Moreover, in terms of computational time, the performance of
Elbow is much better, see Figure 7.

3.3. Comparison with other methodologies. The goal of this section is to compare the
statistical performance of our approach with other methodologies.

Since our goal is to estimate a covariance matrix containing blocks, we shall compare
our approach with clustering techniques. Once the groups or blocks have be obtained, Σ is
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n = 10

q = 100

n = 10

q = 500

n = 30

q = 100
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q = 500
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Diagonal Equal Diagonal Unequal Extra-Diagonal Equal Extra-Diagonal Unequal

Figure 6. Boxplots comparing the TPR (True Positive Rate) and the FPR
(False positive Rate) of the two methodologies proposed to select the parameter
λ from 100 replications in the different scenarii.
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q = 500

n = 30
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Figure 7. Computational times of Elbow and BL criteria.

estimated by assuming that the corresponding matrix estimator is block-wise constant except
for the diagonal blocks for which the diagonal entries are equal to 1 and the extra-diagonal
terms are assumed to be equal. This gives a great advantage to these methodologies in the
Diagonal-Equal and in the Extra-Diagonal-Equal scenarii. More precisely, let ρi,j denote
the value of the entries in the block having its rows corresponding to Group (or Cluster) i
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and its columns to Group (or Cluster) j. Then, for a given clustering C:

(10) ρi,j =


1

#C(i)#C(j)

∑
k∈C(i),`∈C(j)

Rk,`, if C(i) 6= C(j)

1
#C(i)(#C(i)−1)

∑
k∈C(i),`∈C(i),k 6=`

Rk,`, if C(i) = C(j)

,

where C(i) denotes the cluster i, #C(i) denotes the number of elements in the cluster C(i)
and Rk,` is the (k, `) entry of the matrix R defined in Equation (2).

For the matrices Σ corresponding to the four scenarios previously described, we shall
compare the statistical performance of the following methods:

• empirical which estimates Σ by R defined in (2),
• blocks which estimates Σ using the methodology described in this article with the

criteria PA and BL for choosing r and λ, respectively,
• blocks fast which estimates Σ using the methodology described in this article with

the criteria Cattell and Elbow for choosing r and λ, respectively,
• blocks real which estimates Σ using the methodology described in this article when
r and the number of non null values are assumed to be known which gives access to
the best value of λ,
• hclust which estimates Σ by determining clusters using a hierarchical clustering with

the “complete” agglomeration method described in Hastie et al. (2001) and then uses
Equation (10) to estimate Σ,
• Specc which estimates Σ by determining clusters using spectral clustering described

in von Luxburg (2007) and estimates Σ with Equation (10),
• kmeans which estimates Σ by determining clusters from a k-means clustering ap-

proach described in Hastie et al. (2001) and then uses Equation (10) to estimate
Σ.

In order to improve the performance of the clustering approaches: hclust, Specc and
kmeans, the real number of clusters has been provided to these methods. The performance
of the different approaches is assessed using the Frobenius norm of the difference between Σ
and its estimator.

Figure 8 displays the mean and standard deviations of the Frobenius norm of the differ-
ence between Σ and its estimator for different values of n and q in the four different cases:
Diagonal-Equal, Diagonal-Unequal, Extra-Diagonal-Equal and Extra-Diagonal-Unequal.
We can see from this figure that in the case where n = 10, the performance of blocks fast
is on a par with the one of blocks real and is better than the one of blocks. In the case
where n = 50, the performance of blocks is slightly better than the one of blocks fast and
is similar to the one of blocks real. Moreover, in all cases, either blocks fast or blocks
outperforms the other approaches.

Then, the estimators of Σ derived from blocks, blocks fast and blocks real were com-
pared to the PDSCE estimator proposed by Rothman (2012) and implemented in the R
package PDSCE and to the estimator proposed by Blum et al. (2016b) and implemented in
the FANet package Blum et al. (2016a). Since the computational burden of PDSCE is high
for large values of q, we limit ourselves to the Extra-Diagonal-Equal case when n = 30
and q = 100 for the comparison. Figure 9 displays the results. We can see from this figure
that blocks, blocks fast and blocks real provide better results than PDSCE and FANet.
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n =  10

q =  100

n =  10

q =  500

n =  50

q =  100

n =  50

q =  500

15 20 25 30 35 75 100 125 150 5 10 15 0 25 50 75

Diagonal Equal

Diagonal Unequal

Extra-Diagonal Equal

Extra-Diagonal Unequal

Frobenius norm

blocks

blocks_fast

blocks_real

empirical

hclust

kmeans

specc

Figure 8. Comparison of the Frobenius norm of Σ−Σ̂ for different estimators

Σ̂ of Σ and for different Σ.

However, it has to be noticed that PDSCE is not designed for dealing with block structured
covariance matrices but just for providing sparse estimators of large covariance matrices.

5
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20

blocks blocks_fast blocks_real FANet PDSCE

Fr
ob

en
iu

s 
no

rm

blocks blocks_fast blocks_real FANet PDSCE

Figure 9. Comparison of the Frobenius norm of Σ̂ − Σ in the Extra-
Diagonal-Equal case for n = 30 and q = 100.

3.4. Columns permutation. In practice, it may occur that the columns of E consisting of
the rows E1,E2, . . . ,En are not ordered in a way which makes blocks appear in the matrix
Σ. To address this issue, we propose to perform a hierarchical clustering on E beforehand
and use the obtained permutation of the observations which guarantees that a cluster plot
using this ordering will not have crossings of the branches. Let us denote Eord the matrix E
in which the columns have been permuted according to this ordering and Σord the covariance
matrix of each row of Eord. Then, we apply our methodology to Eord which should provide
an efficient estimator of Σord. In order to get an estimator of Σ the columns and rows are
permuted according to the ordering coming from the hierarchical clustering.
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To assess the corresponding loss of performance, we generated for each matrix E used
for making Figure 8 a matrix Eperm in which the columns of E were randomly permuted.
The associated covariance matrix is denoted Σperm. Then, we applied the methodology
described in the previous paragraph denoted blocks samp and blocks fast samp in Figure

10 thus providing Σ̂perm. The performance of this new methodology was compared to the
methodology that we proposed in the previous sections (denoted blocks and blocks fast in
Figure 10) when the columns of E were not permuted. The results are displayed in Figure
10. We can see from this figure that the performance of our approach does not seem to be
altered by the permutation of the columns.

3.5. Numerical performance. Figure 11 displays the computational times for estimating
Σ with the methods blocks and blocks fast for different values of q ranging from 100 to
3000 and n = 30. The timings were obtained on a workstation with 16 GB of RAM and Intel
Core i7 (3.66GHz) CPU. Our methodology is implemented in the R package BlockCov which
uses the R language (R Core Team, 2017) and relies on the R package Matrix. We can see
from this figure that it takes around 3 minutes to estimate a 1000× 1000 correlation matrix.

3.6. Choice of the threshold t for estimating Σ−1/2. Since we are interested in assessing

the ability of Σ̂
−1/2

t defined in (9) to remove the dependence that may exist between the

columns of E, we shall consider the Frobenius norm of Σ̂
−1/2

t ΣΣ̂
−1/2

t − Idq which should be
close to zero, where Idq denotes the identity matrix of Rq. Figure 12 displays the Frobenius

norm of Σ̂
−1/2

t ΣΣ̂
−1/2

t − Idq for different threshold t. A threshold of 0.1 seems to provide a
small error in terms of Frobenius norm. Hence, in the following, t will be equal to 0.1 and

Σ̂
−1/2

0.1 will be referred as Σ̂
−1/2

.
This technique was applied to all of the estimators of Σ discussed in Section 3.3 to get

different estimators of Σ−1/2. The Frobenius norm of the error Σ̂
−1/2

ΣΣ̂
−1/2
− Idq is used to

n =  10
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q =  500

n =  50
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n =  50

q =  500

15 20 25 30 35 75 100 125 150 3 6 9 10 20 30 40 50
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Frobenius norm

blocks blocks_fast blocks_fast_samp blocks_samp

Figure 10. Comparison of the Frobenius norm of Σ− Σ̂, and Σperm − Σ̂perm.
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Figure 11. Times in seconds to perform our methodology in the Extra-
Diagonal Unequal case.

compare the different estimators obtained by considering the different estimators of Σ. The
results are displayed in Figure 13. We observe from this figure that in the case where n = 10
the estimators of Σ−1/2 derived from the empirical, the blocks fast and the blocks real
estimators of Σ perform similarly and seem to be more adapted than the others to remove
the dependence among the columns of E. However, when n = 50, the behavior is completely
different. Firstly, in the Diagonal-Equal case, the estimator of Σ−1/2 derived from the
hclust estimator of Σ seems to perform better than the others. Secondly, in the Diagonal-
Unequal case, the estimator derived from blocks, blocks fast and blocks real perform
similarly than the one obtained from hclust. Thirdly, in the Extra-Diagonal case, the
estimators derived from blocks, blocks fast and blocks real methodology perform better
than the other estimators.

Then, the estimators of Σ−1/2 derived from blocks, blocks fast and blocks real were
compared to the GRAB estimator proposed by Hosseini and Lee (2016). Since the com-
putational burden of GRAB is high for large values of q, we limit ourselves to the Extra-
Diagonal-Equal case when n = 30 and q = 100 for the comparison. Figure 14 displays
the results. We can see that blocks and blocks real provide better results than GRAB.
However, it has to be noticed that the latter approach depends on a lot of parameters that
were difficult to choose, thus we used the default ones.

3.7. Use of Σ−1/2 to remove the dependence in multivariate linear models. Eventu-
ally, we assess the performance of the BlockCov methodology to remove the dependence in the
columns of an observation matrix in order to be used for variable selection in the multivariate
linear model as it is performed in the MultiVarSel R package:

(11) Y = XB + E,

where Y is a n×q response matrix, X is a n×p design matrix, B is a coefficients matrix and
E is an error matrix. Here, E1,E2, · · · ,En are n zero-mean i.i.d. q-dimensional Gaussian
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Figure 12. Frobenius norm of Σ̂
−1/2

t ΣΣ̂
−1/2

t −Idq, where Σ̂
−1/2

t is computed
for different thresholds t.

random vectors having a covariance matrix Σ. To achieve this goal, we generate observations
Y according to this multivariate linear model. We choose q = 100, p = 3, n = 30 and bX is
the design matrix of a one-way ANOVA model.We compared our methodology with the one
proposed by Perthame et al. (2016) and implemented in the FADA R package Perthame et al.
(2019). We shall investigate the effect of the sparsity of B and of the signal to noise ratio
(SNR) for the four scenarii defining Σ on the selection of the non null values of B in (11).
Different signal to noise ratios are obtained by multiplying B in (11) by a coefficient κ.

Since the results are barely influenced by the scenario chosen for Σ, only the Extradiagonal-
Equal case is displayed in Figure 15, the other scenarii are available in Annexe 6.1. We can
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see from this figure that when the signal to noise ratio is low and the value of s is high, mean-
ing that there is a lot of non-zero values, the FADA methodology performs better than the
BlockCov methodology. Nevertheless, in the three other cases the performance of BlockCov
is either better or on a par with the one of FADA methodology.
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Figure 15. Means of the ROC curves (left) and Precision Recall curves (right)
obtained from 100 replications comparing the variables selected by the Mul-
tiVarSel strategy using either Σ−1/2 obtained by BlockCov to remove the de-
pendence or the methodology proposed by FADA methodology. κ is linked to
the signal to noise ratio and s denotes the sparsity levels i.e the fraction of
non-zero elements in B.

4. Application to “multi-omic” approaches to study seed quality

Climate change could lead to major crop failures in world. In the present study, we ad-
dressed the impact of mother plant environment on seed composition. Indeed, seed quality
is of paramount ecological and agronomical importance. They are the most efficient form
of dispersal of flowering plants in the environment. Seeds are remarkably adapted to harsh
environmental conditions as long as they are in a quiescent state. Dry mature seeds (so called
“orthodox seeds”) are an appropriate resource for preservation of plant genetic diversity in
seedbanks. It has been reported that the temperature regime during seed production affects
agronomical traits such as seed germination potential, see Huang et al. (2014),MacGregor
et al. (2015) and Kerdaffrec and Nordborg (2017). In order to highlight biomarkers of seed
quality according to thermal environment of the mother plant, Arabidopsis seeds were pro-
duces under three temperature regimes (14-16 oC, 18-22 oC or 25-28 oC under a long-day
photoperiod). Dry mature seeds were analysed by shotgun proteomic and GC/MS-based
metabolomics Durand et al. (2019). The choice to use the model plant, Arabidopsis, was
motivated by the colossal effort of the international scientific community for its genome an-
notation. This plant remains at the forefront of modern genetics, genomics, plant modelling
and system biology, see Provart et al. (2016). Arabidopsis provides a very useful basis to
study gene regulatory networks, and develop modelling and systems biology approaches for
translational research towards agricultural applications.
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In this section, we apply our R packages BlockCov and MultiVarSel Perrot-Dockès et al.
(2019) to metabolomic and proteomic data to better understand the impact of the temperature
on the seed quality. More precisely, we use the following modeling for our observations:

(12) Y = XB + E,

where Y is a n×q matrix containing the responses of the q metabolites (resp. the q proteins)
for the n samples with n = 9, q = 199 (resp. q = 724) for the metabolomic (resp. proteomic)
dataset, X is a n × 3 design matrix of a one-way ANOVA model, such that its first (resp.
second, resp. third) column is a vector which is equal to 1 if the corresponding sample grows
under low (resp medium, resp. elevated) temperatures and 0 otherwise. B is a coefficient
matrix and E is such that its n rows E1,E2, · · · ,En are n zero-mean i.i.d. q-dimensional
random vectors having a covariance matrix Σ. We used our R package BlockCov to estimate
Σ and Σ−1/2 assuming that there exists a latent block structure in the covariance matrix of
the rows of E. More precisely, we assume that there exists some groups of metabolites (resp.
proteins) having the same behavior since they belong to the same biological process. Then,
we plugged this estimator into our R package MultiVarSel to obtain a sparse estimation of
B. Thanks to this estimator of B, we could identify the metabolites (resp. proteins) having
a higher (resp. lower) concentration when the temperature is high or low.

4.1. Results obtained for the metabolomic data. We first estimated the matrices Σ
and Σ−1/2 associated to E defined in Equation (12) by using the methodology developed in
this paper, namely the BlockCov package. By the results of Section 3, we know that the PA
and BL approaches performed poorly when n = 10. Since here n = 9, we used the Cattell and
Elbow criteria to choose r and λ, respectively. The results are displayed in Figure 16. The
Cattell criterion chooses r = 7 and the Elbow criterion chooses λ = 0.472, which implies that
among the 19701 coefficients of the correlation matrix only 6696 values are considered as non
null values.
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Figure 16. Illustration of the Cattell and Elbow criteria.

The estimation of Σ obtained with our methodology is displayed in Figure 17 once the rows
and the columns have been permuted according to the ordering provided by the hierarchical
clustering to make visible the latent block structure.

Using the estimator of Σ−1/2 provided by the BlockCov package in the R package MultiVarSel
provides the sparse estimator of the matrix B defined in Model 12 and displayed in Figure 18.

We can see from this figure that for the metabolite X5MTP the coefficient of the matrix B̂
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Figure 17. Estimator of the correlation matrix Σ of the rows of E once the
rows and the columns have been permuted according to the ordering provided
by the hierarchical clustering.

is positive when the temperature is high which means that the production of the metabolite
X5MTP is larger in high temperature conditions than in low temperature conditions.

In order to go further in the biological interpretation, we wanted to better understand the
underlying block structure of the estimator of the correlation matrix of the residuals based

on metabolite abundances Σ̂. Thus, we applied a hierarchical clustering with 8 groups to this
matrix in order to split it into blocks. The corresponding dendogram is on the left part of
Figure 17. The matrix containing the correlation means within and between the blocks or
groups of metabolites is displayed in Figure 19. The composition of the metabolites groups
is available in Appendix 6.2.

Interestingly, we could observe that X5MTP belongs to Group 6 which displays an high
correlations mean equal to 0.8 between the 14 metabolites that make it up. At least 6
metabolites of this group belong to the same family, namely glucosinolates (i.e. X4MTB, 4-
methylthiobutyl glucosinolate; X5MTP, 5-methylthiopentyl glucosinolate; X6MTH, 6-methylthiohexyl
glucosinolate; X7MTH, 7-methylthiohexyl glucosinolate; X8MTO, 8-methylthiooctyl glucosi-
nolate; UGlucosinolate140.1, unidentified glucosinolate). Glucosinolates (GLS) are special-
ized metabolites found in Brassicaceae and related families (e.g. Capparaceae), containing a
β-thioglucose moiety, a sulfonated oxime moiety, and a variable aglycone side chain derived
from a α-amino acid. These compounds contribute to the plant’s overall defense mechanism,
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Figure 18. Sparse estimator of the coefficients matrix B obtained thanks to
the package MultiVarSel with a threshold of 0.95.
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see Wittstock and Halkier (2002). Methylthio-GLS are derivated from methionine. Methion-
ine is elongated through condensation with acetyl CoA and then, are converted to aldoximes
through the action of individual members of the cytochrome P450 enzymes belonging to
CYP79 family, see Field et al. (2004). The aldoxime undergoes condensation with a sulfur
donor, and stepwise converted to GLS, followed by the side chain modification. The present
results suggest that the accumulation of methionine-derived glucosinolate family is strongly
coordinated in Arabidopsis seed. Moreover, we can see that they are influenced by the effect
of the mother plant thermal environment.

4.2. Results obtained for the proteomic data. The same study was conducted on the
proteomic data. The estimator of the correlation matrix of the residuals based on proteine

abundances Σ̂ obtained with our methodology is displayed in Figure 20 once the rows and
the columns have been permuted according to the ordering provided by the hierarchical
clustering to make visible the latent block structure. To better understand the underlying

block structure of Σ̂, we applied a hierarchical clustering with 9 groups to this matrix in order
to split it into blocks. The corresponding dendogram is on the left part of Figure 20.

Figure 20. Estimator of the correlation matrix of the residuals of the protein
accumulation measures once the rows and the columns of the residual matrix
have been permuted according to the ordering provided by the hierarchical
clustering.
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The matrix containing the correlation means within and between the blocks or groups of
proteins is displayed in Figure 21. We can see from this figure that Group 8 has the highest
correlation mean equal to 0.47. It consists of 34 proteins which are given in Appendix 6.3.

A basic gene ontology analysis (http://geneontology.org/) showed that proteins involved
in response to stress (biotic and abiotic), in nitrogen and phosphorus metabolic processes,
in photosynthesis and carbohydrate metabolic process and in oxidation-reduction process are
overrepresented in this group, see Figure 22. Thus, the correlation estimated within Group 8
seems to reflect a functional coherence of the proteins of this group.

The variable selection in the multivariate linear model using the R package MultiVarSel

provided 31 proteins differentially accumulated in seeds produced under low, medium or ele-
vated temperature. An aspartyl protease (AT3G54400), belongs to both, the Group 8 and to
the proteins selected by MultiVarSel. This cell wall associated protein was up-acccumulated
in dry seeds produced under low temperature. The gene encoding for this protease was
described as a cold responsive gene assigned to the C-repeat binding factor (CBF) regula-
tory pathway, see Vogel et al. (2006). This pathway is requested for regulation of dormancy
induced by low temperatures, see Kendall et al. (2011). Consistently, in Figure 23, two
other proteins related to cell wall organization, a beta-glucosidase (BGLC1, AT5G20950) and
a translation elongation factor (eEF-1Bβ1, AT1G30230) were differentially accumulated in
seeds produced under contrasted temperature. eEF-1Bβ1 is associated to plant development
and is involved in cell wall formation, see Hossain et al. (2012). These results suggest that
cell wall rearrangements occur under temperature effect during seed maturation.
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22 M. PERROT-DOCKÈS, C. LÉVY-LEDUC, AND L. RAJJOU

Photosynthesis 
Carbohydrate metabolic process 

Oxidation-reduction process 
Phosphorus metabolic process 

Response to biotic stimulus 
Response to abiotic stimulus 

Nitrogen compound metabolic process 
Response to stress 

0 5 10 15

Expected from Arabidopsis genome Proteins, group 8(34)

Figure 22. Gene ontology (GO) term enrichment analysis of the 34 pro-
teins belonging to Group 8. Data from PANTHER overrepresentation test
(http://www.geneontology.org); One uploaded id (i.e. AT5G50370) mapped
to two genes. Thus, GO term enrichment was performed on 35 elements. Blue
bars: observed proteins in Group 8; Orange bars: expected result from the
reference Arabidopsis genome.

As displayed in Figure 23, 6 other proteins involved in mRNA translation: AT1G02780,
AT1G04170, AT1G18070, AT1G72370, AT2G04390 and AT3G04840 were selected. The ab-
solute failure of seed germination in the presence of protein synthesis inhibitors underlines the
essential role of translation for achieving this developmental process, see Rajjou et al. (2004).
Previous studies highlighted the importance of selective and sequential mRNA translation
during seed germination and seed dormancy, see Galland et al. (2014), Bai et al. (2017) and
Bai et al. (2018). Thus, exploring translational regulation during seed maturation and ger-
mination through the dynamic of mRNA recruitment on polysomes or either neosynthesized
proteome are emerging fields in seed research.
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Figure 23. Values of the coefficients obtained using the package MultiVarSel
with a threshold of 0.95 on the proteomic dataset.

5. Conclusion

In this paper, we propose a fully data-driven methodology for estimating large block struc-
tured sparse covariance matrices in the case where the number of variables is much larger than
the number of samples without limiting ourselves to block diagonal matrices. Our methodol-
ogy can also deal with matrices for which the block structure only appears if the columns and
rows are permuted according to an unknown permutation. Our technique is implemented in
the R package BlockCov which is available from the Comprehensive R Archive Network and
from GitHub. In the course of this study, we have shown that BlockCov is a very efficient
approach both from the statistical and numerical point of view. Moreover, its very low com-
putational load makes its use possible even for very large covariance matrices having several
thousands of rows and columns.
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24 M. PERROT-DOCKÈS, C. LÉVY-LEDUC, AND L. RAJJOU

and the Plant Observatory-Chemistry/Metabolism platform (IJPB, Versailles; Clement G)
for the analysis of GC/MS-based metabolome analyses.



ESTIMATION OF LARGE BLOCK STRUCTURED COVARIANCE MATRICES 25

6. Appendix

6.1. Variable selection performance.
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Figure 24. Means of the ROC curves obtained from 100 replications com-
paring the variables selected by the MultiVarSel strategy using either Σ−1/2

obtained by BlockCov to remove the dependence or the methodology proposed
by FADA methodology. κ is linked to the signal to noise ratio and s denotes
the sparsity levels i.e the fraction of non-zero elements in B.
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Figure 25. Means of the precision recall curves obtained from 100 replica-
tions comparing the variables selected by the MultiVarSel strategy using either
Σ−1/2 obtained by BlockCov to remove the dependence or the methodology
proposed by FADA methodology. κ is linked to the signal to noise ratio and s
denotes the sparsity levels i.e the fraction of non-zero elements in B.

6.2. Groups of metabolites.
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Group 1 Group 2 Group 3 Group 4
Alanine Arginine Glutamate beta.Sitosterol
Asparagine Cystein alpha.Tocopherol Campesterol
Aspartate Gaba gamma.Tocopherol Eicosanoate
Glycine Glutamine Linolenic.acid Heptadecanoate
Isoleucine Tryptophan H2SO4 Stearic.acid
Leucine Linoleic.acid X2.Oxoglutarate Tetracosanoate
Lysine Quercetin Mannitol BenzoylX.Glucosinolate.3
Phenylalanine BenzoylGlucosinolate.3Breakdown Urea Sulfite
Proline Nonanenitrile.9.methylthio Fructose.6.P U2609.4.361
Serine UGlucosinolatebreakdown140.5 Digalactosylglycerol U3122.4.202.I3M.
Threonine X2.Hydroxyglutarate Galactinol dihydroxybenzoate
Tyrosine Citrate Galactosylglycerol beta.indole.3.acetonitrile
Valine Erythronate Rhamnose U1837.6.368
X5..methylthio.pentanenitrile Galactonate Stachyose U1841.9.394
Octanenitrile.8.methylthio Gluconate Sucrose U2003.8.293
UGlucosinolatebreakdown140.4 Glycerate U1093.6.147 U2371.1.361
Succinate Malate U1124.3.140 U2375.6.191
Threonate Allantoin U1530.2.314 U2513.2.296
Arabitol Erythritol U2053.6.321.1 U2513.2.296.1
myo.Inositol Ethanolamine U2109.3.305 U2692.9.361
Glycerol.3.P Sorbitol U2197.2.494 U2798.377
myo.Inositol.1.P Threitol U2315.2.245 U2942.2.556
Phosphate Xylitol U3898.1.204 U3063.0.361
U2206.2.299 Ethylphosphate U3415.9.498
Fructose Glucose
Glucopyranose..H2O. Mannose
U1154.3.156 Raffinose
U1393.172 Ribose
U1541.8.263 U1127.5.140
U1647.2.403 U1172.9.281
U1705.2.319.pentitol. U1559.4.217
U1729.0.273 U1628.9.233
U1816.2.228 U1849.2.285
U1859.2.246 U1927.0.204
U2076.9.204 U1939.1.210
U2170.6.361 U1983.0.217
U2184.1.299 U1983.0.217.1
U2251.5.361 U2012.7.361
U2278.6.361 U2282.4.349
U2550.7.149 U2400.1.179
U2731.2.160 U2779.9.361
U2857.8.342
U2929.1.297
U3041.1.361
U3080.7.361
U3100.8.361

Group 5 Group 6 Group 7 Group 8
Quercitrin X4MTB BenzoylGlucosinolate.2Breakdown Maleate
Dehydroascorbate X5MTP Hexanenitrile.6methylthio Pentonate.4
Fumarate X6MTH Sinapinate.trans U1408.4.298
Sinapinate.cis X7MTH Anhydroglucose U1617.8.146
Arabinose X8MTO U1125.1.140 U1767.3.243
Galactose UGlucosinolate140.1 U1290.198 U1904.9.204
U1127.4.169 U1129.9.184 U1371.5.151 U2828.8.361
U1718.0.157 U1270.1.240 U1549.7.130 U2839.3.312
U1931.5.202 U1897.2.327 U1568.5.313 U2882.5.297
U2261.0.218 U2473.361 U1592.8.217 U3008.3.457
U2412.1.157 U2529.8.361 U1700.6.288 U3168.2.290
U2588.9.535 U2756.4.271 U1759.4.331 U3218.5.297
U2688.5.333 U2924.3.361 U1852.0.217 U3910.6.597.Trigalactosylglycerol.
U3213.1.400 U3279.7.361 U1872.1.204.methyl.hexopyranoside. U2443.7.217
U1380.5.184 U1958.217

U2053.6.321
U2087.6.321
U2150.9.279
U2271.6.249
U3188.1.361
U3701.368
U4132.5.575
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6.3. Groups of proteins.

Proteins Group
AT1G14170.1 8
AT1G20260.1 8
AT1G42970.1 8
AT1G47980.1 8
AT1G55210.1 8
AT1G75280.1 8
AT2G19900.1 8
AT2G22240.1 8
AT2G28900.1 8
AT2G32920.1 8
AT2G37970.1 8
AT3G12580.1 8
AT3G13930.1 8
AT3G26650.1 8
AT3G26720.1 8
AT3G44300.1 8
AT3G47930.1 8
AT3G54400.1 8
AT3G55800.1 8
AT4G16760.1 8
AT4G20830.1 8
AT4G25740.1 8
AT4G34870.1 8
AT4G35790.1 8
AT5G11880.1 8
AT5G12040.1 8
AT5G14030.1 8
AT5G17380.1 8
AT5G22810.1 8
AT5G26000.1 8
AT5G50370.1 8
AT5G66190.1 8
AT5G67360.1 8
ATCG00480.1 8
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