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Abstract—Accurately representing the sea clutter amplitude or
intensity distribution is important for achieving a constant false
alarm rate in a detection scheme. This can be difficult as the
backscatter statistics change with the sea surface characteristics,
the geometry of acquisition and the radar parameters. Recently,
a new compound distribution model has been proposed which
models the sea clutter texture discretely, with each component
representing different scattering components. In this paper, the
tri-modal discrete texture (3MD) model is explored using real
aperture data from the Defence Science and Technology Group
Ingara radar and synthetic aperture radar data from the French
Aerospace Laboratory (ONERA) SETHI radar. Both the model
fitting accuracy and the variation of the texture components are
studied to better understand how to relate the model to the
underlying sea-clutter characteristics.

I. INTRODUCTION

The study and analysis of sea clutter is important in many
different applications such as oceanography, maritime surveil-
lance and target classification. The problem of detecting ships
in either real or synthetic aperture radar (SAR) data is typically
approached with constant false alarm rate (CFAR) detection
algorithms using a probability density function (PDF) model
to characterise the target free data. Models for the amplitude
distribution of sea clutter are usually developed empirically
from measurements of real data as it is not currently possible
to accurately predict the PDF of sea clutter under different
conditions using physical models of the sea surface.

There has been a long development of PDF models used
to fit both real aperture radar and synthetic aperture radar.
With coarse range resolution, a reasonable model for the sea-
clutter PDF is the Gaussian distribution, with the envelope
of the returns given by a Rayleigh distribution. As the range
resolution becomes finer, the variation of the sea swell is better
resolved and the effect of breaking waves and other discrete
events (sea-spikes) are more pronounced. These returns have
a larger magnitude which has led to the development of newer
PDF models with longer ‘tails’ such as the log-normal and
Weibull distributions. A popular and widely used framework
for developing PDF models is the compound Gaussian model
which was originally proposed for use in sea-clutter by Ward
[1]. This model includes a temporal or fast varying component
known as speckle which relates to the Bragg scattering, and a
slowly varying component which captures the underlying swell
and models the texture.

Compound distribution models include the K or K+noise
[2], KA [2], KK [3], Pareto or Pareto+noise [4]-[7] and the
K+Rayleigh [8]. While the KA and KK distributions model the
sea clutter very accurately, they are difficult to implement in
practice. Consequently, the Pareto model has become popular
due to its smaller number of parameters and ability to account
for thermal noise. The K+noise distribution has also been
extended to a K+Rayleigh [8] distribution by taking into
account any extra Rayleigh scattering not captured by the
thermal noise. This model has been shown to fit both real
and synthetic aperture radar data very accurately and over a
wide range of geometries [9]. Note that many of these are only
first order compound Gaussian models as they cannot model
the speckle correlation independently of the thermal noise.

The tri-modal discrete texture (3MD) model [10], [11] is
another candidate which has demonstrated great potential for
modelling synthetic aperture radar (SAR) sea-clutter and is
unique in the way it models the sea clutter texture as a combi-
nation of discrete components. The two main contributions in
this paper are to first investigate the suitability of this model
on two different airborne datasets and to study the distribution
modes to determine their relationship to the characteristics
of the underlying sea-clutter. The two data sets include the
Ingara X-band medium grazing angle data set collected by the
Defence Science and Technology (DST) Group in Australia
and both L-band and X-band synthetic aperture radar (SAR)
data collected by the SETHI radar of the French Aerospace
Laboratory (ONERA). This contrast is important as the process
of SAR image formation alters the radar backscatter with the
SAR representation of ocean waves being different from that
of real aperture radar [9].

In Section II, a number of key PDF models are described
with details on how their parameters are estimated and the
model fits assessed. The two datasets are then presented in
Section IIT with a study of the model fits and modes used for
the 3MD model. Section IV then looks further at the texture
estimates of the 3MD model over a wide parameter space.

II. AMPLITUDE DISTRIBUTION MODELS

To understand the development of the compound distribu-
tion, consider a radar receiving in-phase and quadrature data
from an external clutter source with its amplitude defined
by Gaussian statistics with zero mean and variance, z. In
addition, thermal noise from the radar will add a component
o2 which is included by offsetting the variance z. In target



detection analysis, the envelope of the received pulses is often
converted to power (square law) and the clutter distribution
becomes exponential. This component is known as speckle
in the compound representation. For a frequency agile or
scanning radar with sufficient time between looks, a common
method to improve the detection performance is to sum a
number of looks. If there are M independent exponential
random variables, z = Z%:l Ym, then the received power
is described by a gamma PDF,
z

Pl = gy |-

where 0 < z < oco. To include the texture component which
modulates the speckle, we integrate over the speckle mean

power,
= / P(z|z)P(z
0

where P(z) is the distribution of the texture component. While
there are analytic solutions in many cases, when noise is
included in the model, numerical integration must be used to
evaluate the compound distribution.
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A. K+Rayleigh model

The most commonly used PDF model for sea-clutter in
both real and synthetic aperture radar is the K-distribution, or
K+noise when thermal noise is included. However, in many
cases the K-distribution is not able to capture the long tails
present due to high magnitude spiky sea clutter returns. The
K+Rayleigh distribution was formalised in [8] and includes a
further Rayleigh component to better capture these returns. It
is defined by explicitly separating the speckle mean into two
components, x = x,-+02, where the extra Rayleigh component,
02 is modelled in the same fashion as the thermal noise. The

T
K+Rayleigh model uses a gamma distribution for the texture,
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where v; is the shape and b, = 1,/ O’C2 is the scale with the
mean clutter power, o2. The influence of the extra Rayleigh
component can be measured by the ratio of the mean of the
Rayleigh component, o2 to the mean of the gamma distributed
component of the clutter and is defined by k, = 02 /02, For
the Ingara data, it has typical values in the range 0 < k, < 4.
To calculate the compound distribution in (2), the integration
is then performed with the modified speckle mean level, x.
instead of the total speckle x. To estimate the distribution
parameters, there are a number of techniques such as the
method of moments, the (z log z) method or a least squares
minimisation between the data and model complementary
cumulative distribution functions (CCDF) [12].

P(a|vp, be) = exp by, 0<z,<oo (3)

B. Pareto model

The Pareto model is described by only two parameters
(shape and scale), yet can reasonably model the long tails
present in sea-clutter distributions. It was first used for sea-
clutter modelling by Balleri et al. [4] and later by others at

US Naval Research Laboratory (NRL) and DST Group [5]-[7].
For the Pareto distribution, the texture has an inverse gamma
distribution
Ca

P _ —a—1
where a is the shape and ¢ = o2(a — 1) is the scale. Similarly
to the K+Rayleigh model, the distribution parameters can be
estimated using method of moments, the (z log z) method or
least squares minimisation.

exp [—c¢/z], a>1lc>0 (4

C. 3MD model

The compound models in the literature all assume a con-
tinuous texture distribution function which suggests a small
probability of infinite texture values. This is not physically
sound as it cannot be measured by any real radar system. The
3MD model [10], [11] instead proposes the use of a discrete
texture model that assumes the sea clutter consists of a finite
number of distinct modes or scatterer types, I. This implies
that the scatterers in the observed scene are realisations from
homogeneous clutter random variables with different texture
values. In the original work, it was found that I = 3 modes
were sufficient to model distributions from the spaceborne
SAR imagery, hence the tri-modal in the name. One of the
consequences of this discretisation is that spatial and long-
time correlation cannot be modelled as part of the texture, and
hence the model is less suitable for clutter simulation. The
texture PDF is given by

I
= Z cnd(z — ay),
n=1

I

ch,1 Ap,Cn >0 (5)

n=1
where 40(-) denotes the delta-function, a = [ay, ..., as] are the
discrete texture intensity levels and ¢ = [cq,..., ¢y are the
corresponding weightings. The continuous distribution is then
given by
exp | —————
Py + pa (6)
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D. Error metrics

To evaluate how well a model fits a set of observations,
there are many statistical tests and measurement techniques
in the literature including the mean squared error of the
distribution model compared to the data [7], the chi-square
and Kolmogorov-Smirnov tests and the Bhattacharyya distance
[13]. The first metric used in this paper is the Bhattacharyya
distance (BD) which captures the similarity between the actual
PDF, P(-) and the theoretical distribution, Q(-)

Dpp = —In (Z \/P(xk)Q(:ck)> @)



where xj represents the data samples. The BD ranges from
0 to co, where equal distributions have a distance measure of
0. To have more readable results, the BD is reported in dBs.
The second metric is the threshold error which is determined
by first calculating the CCDF for both the empirical data and
the data fit. The threshold error is then the absolute difference
between the two results at a fixed CCDF value. This view of
the data is important due to its relationship with the threshold
in a detection scheme used for distinguishing between targets
and interference. In this context, it is commonly referred to as
the probability of false alarm.

III. DATA SELECTION
A. Ingara real beam data

Ingara is a polarimetric radar system maintained and oper-
ated within the DST Group in Australia [14]. During the ocean
backscatter collections in 2004 and 2006, it was operated at
X-band in a circular spotlight-mode where the aircraft flew
a circular orbit in an anti-clockwise direction (as seen from
above) around a nominated point of interest. Each day the
radar platform performed at least six full orbits around the
same patch of ocean to cover a large portion of grazing
angles between 15° and 45°. The Ingara data has a 200 MHz
bandwidth (0.75 m range resolution) and an azimuth resolution
of approximately 63 m. Alternate pulses transmitted horizontal
(H) and vertical (V) polarisations resulting in a nominal PRF of
300 Hz. For the analysis in this paper, data from a single 2004
flight has been chosen with a Douglas sea state 5 (wind speed
of 10.3 m/s and a wave height of 2.6 m). The data has been
pooled into blocks of 5° azimuth and 3° grazing with each
block containing approximately 106 samples. An example of
the data is shown in Fig. 1 for the downwind direction and
30° grazing.
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Fig. 1. Ingara data in the downwind direction and 30° grazing.

Fits of the three models from Section II are then shown in
Fig. 2. For each model, the parameters are estimated by a least
squares fit to the data CCDF in the log domain. For the 3MD
model, the fitting process first assumes a single mode (I = 1)
and the threshold error is compared with a threshold value of

0.5 dB. If the error is greater than this threshold, the parameters
for a bi-modal fit (/ = 2) are then estimated. Only if this error
is greater than the threshold value, are the parameters estimated
for the full 3MD model (I = 3). The model components,
Cn, are then ordered from largest to smallest and any modes
where the weightings, a,, < 1072 are removed. Table I shows
the estimated parameters of the three models. In this example,
both the HH and HV polarisations require 3 modes, while VV
only requires 2. The associated error metrics are then reported
in Table IT where the threshold error is determined at a CCDF
value of 10~%. The BD results focus on the overall fit and
show that the K+Rayleigh model is slightly worse than the
Pareto+noise and 3MD models. However, the threshold errors
which focus on the distribution tail, reveal that the K+Rayleigh
and Pareto+noise models have a similar fitting error, while the
3MD model is significantly lower.
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Fig. 2. Ingara CCDF model fits for downwind data and 30° grazing. Blue -

data, red - K+Rayleigh, magenta - Pareto+noise, black - 3MD. Right column
is a zoomed version of the left.

TABLE 1. INGARA PARAMETER ESTIMATES FOR EXAMPLE IN FIG. 2.
HH HV VvV
CNR (dB) 11.89 6.51 21.29
K+Rayleigh shape 0.10 0.35 8.57
K+Rayleigh k;-value 0.70 0.54 0
Pareto shape 32 4.83 12.58
3MD mode 1 (a, c) (0.64, 0.76) (0.51, 0.74) (0.75, 0.90)
3MD mode 2 (a, c) (0.35, 1.24) (0.47, 1.16) (0.25, 1.27)
3MD mode 3 (a, c) (0.012, 2.74) | (0.021, 2.04) -

TABLE II. INGARA MEASUREMENT ERRORS FOR EXAMPLE IN FIG. 2.
THRESHOLD ERROR IS MEASURED AT 10™4.

HH HV \'AY

K+Rayleigh BM (dB) 30.83 | 3438 | -36.21
Pareto BM (dB) -34.97 -36.67 36.88
3MD BM (dB) -35.94 -36.02 36.26

K+Rayleigh threshold error 0.25 0.14 0.20

Pareto threshold error 0.24 0.24 0.18

3MD threshold error 0.095 0.096 0.086

B. SETHI Synthetic Aperture Radar data

SETHI is an airborne remote sensing laboratory developed
by ONERA [15] and operates as a pod-based system on a



Falcon 20 Dassault aircraft. In 2015, fully polarimetric SAR
data was acquired off the French coast at both X- and L-
bands simultaneously. The SAR imagery has range resolutions
of 0.5 m and 1.0 m for the X and L-bands respectively,
and the imaged area is processed with an azimuth (along-
track) resolution equal to the range resolution. The aircraft SETHI L-band: HV-pol o
flew at 2743 m (9,000 ft) with an imaged area of 8.8 km in

azimuth and 1.1 km in slant range, covering grazing angles -20
from 38°-56°. For this paper, the employed SAR data have 20
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been collected over the sea surface in the upwind direction with
a wind speed of 10.8 m/s (sea state 5-6). Example imagery is
shown in Figs. 3 and 4 for the X- and L-band radar systems.

The same PDFs as for the Ingara dataset are now in-
vestigated in Fig. 5 for the dual-frequency SAR data. The
K+Rayleigh, Pareto+noise and 3MD models have been fitted to
the data with the model parameters shown in Tables IIT and IV
for the X-band and L-band data sets. These results are similar Azimuth (km)
to the Ingara data with a poor match for the Pareto+noise, ] ) S
while the K+Rayleigh and 3MD provide better fits. The BD ~ Fig- 4 SETHI L-band SAR data in the upwind direction.
and threshold errors are then given in Tables V and VI. Overall,
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0

we find a very good correspondence with the BD being lower 0
than -33 dB for each result, implying a consistently good fit - -
to the distribution body. When focusing on the tail of the z
distribution, low threshold errors are observed for both the -4 ~
K+Rayleigh and 3MD distributions, while the Pareto+noise 6 -6
model has a greater mismatch. 0 0
-2 -2
>
SETHI X-band: HH-pol ] d T, 4
E36 ' =
<3 : 20 6 -6
o v = 0 0
x | '
< 44 “0 > 2 2
0 1 2 3 4 5 6 7 8 9 - 4
SETHI X-band: HV-pol
ESA -6 -6
236 0 5 10 15 20 0 5 10 15 20
o 38 Threshold (dB) Threshold (dB)
€4
© 44 Fig. 5. SETHI SAR CCDF model fits for upwind data and 45° grazing,
0 1 2 3 4 5 6 7 8 9 X-band (left) and L-band (right). Blue - data, red - K+Rayleigh, magenta -
st SETHI X-band: VV-pol - 7 Pareto+noise, black - 3MD.
€3 =3 = == = = e
53 gg TABLE IV. SETHI L-BAND PARAMETER ESTIMATES FOR EXAMPLES
3 3
e, IN FIG. 5.
G 4.2
o 42 HH HV VvV
CNR (dB) 4193 36.83 4522
Azimuth (km) K+Rayl§igh shape 2.06 4.05 4.32
K+Rayleigh k.-value 0.27 0.21 0.12
. . . L Pareto shape 5.30 7.86 6.75
Fig. 3. SETHI X-band SAR data in the upwind direction. 3MD mode 1 (a,¢) | (0.72,0.28) | (0.70, 0.86) | (0.68, 0.84)
3MD mode 2 (a,c) | (0.28,1.37) | (0.30, 1.28) | (0.33, 1.28)
3MD mode 3 (a, c) - - -
TABLE III. SETHI X-BAND PARAMETER ESTIMATES FOR EXAMPLES
IN FIG. 5.
i 0V Vv IV. 3MD TEXTURE ANALYSIS
CNR (dB) 33.66 2845 36.90 A
K+Rayleigh shape 0.76 0.43 273 . Ingara data set
K+Rayleigh k;-value 0.29 0.53 0.04
Pareto shape 205 3ol 403 In order to further study the modes of the 3MD model,
3MD mode 1 (a,c) | (051, 1.17) | (0.49,0.72) | (0.61, 1.04) we compare the product of the texture locations a, and the
3MD mode 2 (a,¢) | (046,063) | (048, 1.15) | (030, 0.61) proportion ¢,. Fig. 6 shows this result for each polarisation,
3MD mode 3 (a,c) | (0.018,2.35) | (0.02,2.23) | (0.088, 1.59)

over all azimuth angles and 15°-45° grazing. The dashed lines
indicate either missing data or regions where no mode was



TABLE V. X-BAND SETHI SAR MEASUREMENT ERRORS FOR
EXAMPLES IN FIG. 5. THRESHOLD ERROR IS MEASURED AT 104,
HH HV VvV
K+Rayleigh BM (dB) -36.34 -37.09 -44.38
Pareto BM (dB) -33.29 -42.56 -33.32
3MD BM (dB) -35.44 | -41.24 | -41.91
K+Rayleigh threshold error 0.53 0.41 0.01
Pareto threshold error 1.72 0.11 1.89
3MD threshold error 0.09 0.12 0.02

TABLE VI L-BAND SETHI SAR MEASUREMENT ERRORS FOR
EXAMPLES IN FIG. 5. THRESHOLD ERROR IS MEASURED AT 10_4.
HH HV NAY%
K+Rayleigh BM (dB) -37.54 | -3791 -38.48
Pareto BM (dB) -35.81 -36.99 -36.72
3MD BM (dB) -34.52 | -36.62 -36.60
K+Rayleigh threshold error 0.12 0.03 0.13
Pareto threshold error 1.07 0.56 0.91
3MD threshold error 0.24 0.11 0.06

required for the model fit. From this result, the HH polarisation
always needs at least 2 modes, with 57% requiring 3. For the
HV polarisation, 96% requires at least 2 modes, while 16%
requires 3. For VV, 86% requires 2 modes, while only 5%
requires 3.

To highlight common trends between the distributions, the
K+Rayleigh shape estimates are shown in Fig. 7. The first
point to highlight is the low grazing angle region in the HH
polarisation, where there are nearly always 3 modes required
and an even proportion spread between the first two modes
(ancn, ~ 0.5). This matches where the K+Rayleigh shape
value is low indicating the spikiest clutter. Secondly, there are
a number of regions where the K+Rayleigh shape is high and
the 3MD estimates are nearly uni-modal, such as in the HV
upwind direction and VV upwind and downwind directions.

N
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Grazing (deg)
8 8

HV
Grazing (deg)

1
e 1 ‘.‘"4"1“/“
-100 0 100 -100 100 -100 0 100
Azimuth (deg) A2|muth (deg) Azimuth (deg)

Fig. 6. Ingara data weighted texture modes, ar cy as a function of geometry.

B. SETHI data set

We now investigate the 3MD parameters for the SETHI
data sets, where the data is pooled into blocks of 0.1° grazing

K+Rayleigh shape

10

-150 -100 -50 0 50 100 150
Azimuth (deg)

Fig. 7. Ingara data K+Rayleigh shape values as a function of geometry.

containing approximately 10* —10° samples. At X-band, the 3
polarisations always require at least 2 modes, with 3 required
in 95% of HH and HV and 62% in VV. Similarly to the Ingara
data analysis, we observe that the third mode is required less
for the VV polarisation, while the HH and HV polarisations
nearly always require 3 modes, which is not the case for the
Ingara dataset. At L-band, 2 modes are always needed, with
the third required in 11%, 4% and 6% for the HH, HV and
VV polarisations respectively. These results are highlighted
in Fig. 8 with fits to the SETHI HH data using different
numbers of modes. This also confirms the need to take into
account more complex backscattering mechanisms at higher
frequencies [16], [17].

The weighted texture parameters (a,c,) are then studied in
Figs. 9-10 over the grazing angle range 38°-56°. In each case
and for each mode, the weighted texture is almost constant
with the grazing angle. This is not unexpected as the data lies
in the plateau scattering region where there is little variation
with grazing angle. We can expect more variation for data
collected at either lower or higher grazing angles.

SETHI X-band: HH-pol SETHI L-band: HH-pol

0.1

20 -40 -20 0 20
Intensity (dB)
\
\
-10 0 10 20 -10 0 10 20

Threshold (dB) Threshold (dB)

Fig. 8. SETHI SAR data examples of 3MD models fitting. Left panel:
X-band, right panel: L-band. Blue: data, black: first mode, magenta: first and
second modes, red: all three modes.



SETHI X-band weighted texture
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Fig. 9. X-band SETHI SAR data weighted texture modes (ancy) variation
with grazing angle. Magenta - mode 1, red - mode 2, blue - mode 3.

1 SETHI L-band weighted texture

0 L : 1 . L . L |
38 40 42 44 46 48 50 52 54 56
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Fig. 10. L-band SETHI SAR data weighted texture modes (aycy,) variation
with grazing angle. Magenta - mode 1, red - mode 2, blue - mode 3.

V. CONCLUSION

In this paper, the 3MD model has been explored using
data from the DST Group Ingara radar and the ONERA
SETHI SAR. The 3MD model was shown to fit each data
set extremely accurately over a wide range of geometries, two
different frequency bands and both real aperture and synthetic
aperture data. The model texture values were then studied
to better understand their relationship to the underlying sea-
clutter characteristics. For the Ingara data, it was found that
57% of data from the HH polarisation requires 3 modes, which
was significantly less than the HV and VV polarisations. This
is in contrast to the ONERA data which required 3 modes
for nearly all fits to the HH and HV polarisations. For the
Ingara data, the spiky clutter region at low grazing angles in the
HH polarisation nearly always required 3 modes with an even
proportion spread between the first two modes (a,c, ~ 0.5).
There were also a number of regions where the 3MD estimates
were nearly all uni-modal, such as in the HV upwind direction
and VV upwind and downwind directions. For the ONERA

data, it was found that less modes were required for the L-
band data implying less complex backscattering mechanisms.
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