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Abstract

The first goal of this article is to identify, for different defaultable claims, the fundamental
processes which uniquely determine the pre-default price and therefore require to be modelled.
The main message to the reader is that although the use of the default intensity or hazard
process is ubiquitous, it may not uniquely characterise the price of some defaultable claims. The
second goal is to better consolidate the reduced form approach with the structural approach,
by extending the reduced form approach to allow for default times which can occur at stopping
times and do not satisfy the immersion property.
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Introduction

In this article, we discuss and extend in a self-contained manner the reduced form approach for
credit risk modelling. The current work is motivated by the observation that, in the literature of
credit risk modelling, there are two main streams of approach:

1. The default time is assumed to exist and satisfy some probabilistic conditions. This is done in
the recent works of Gehmlich and Schmidt [17], Fontana and Schmidt [11] and Jiao and Li [23].

2. The default time is constructed from some processes which are given in advance. For example
through the Cox construction in the reduced form approach (presented in Section 1.4) and hitting
times in the structural approach.

In the first approach, the question of whether one can construct a random time with the assumed
probabilistic conditions are rarely asked and answered. While in the second approach there appears
to be a lack of general consensus on what is the fundamental process or object that requires modelling.
More specifically, in the reduced form models, many works start by either modelling the default
intensity, the survival process or the conditional density of default with little to no justification for
their choice. On the other hand, in the structural approach, the default time is modelled using
the exit time of some process which in principle should reflect the default mechanism. However in
practice, it is not clear what is the most appropriate way to model the default mechanism.

Additionally, it is also widely agreed that the reduced form models and structural models do
not mix well with each other. This is mostly because in the classic reduced form models, due to
the continuity assumption placed on the default intensity process, the default event is not allowed
to happen at stopping times (avoidance property). On the other hand, although in the structural
approach the default events are allowed to happen at stopping times or first hitting times, but
unlike the reduced form approach, it suffers from the fact that the default intensity process or the
compensator becomes extremely difficult to compute for complex models of the underlying default
mechanism. It also does not take into account that the moment of default can potentially happen
at other stopping times.

To this end, the first goal of this article is to identify, for different defaultable claims, the funda-
mental processes which uniquely determine the pre-default price (and therefore require modelling).
Our main message to the reader is that although the use of the default intensity or hazard process
is ubiquitous, it may not uniquely characterise the price of some defaultable claims. As original
contribution, we revisit the formula of Duffie et al. [10] and the work of Coculescu and Nikeghabli
[6] to make precise the role of the hazard process and the assumptions under which the default
intensity or the hazard process is sufficient in determining the pre-default price. Finally, we explain
why the modelling of the survival process or the conditional distribution of default appears to be
the more natural choice in certain situations.

To better consolidate the reduced form approach with the structural approach, the second goal
of this work is to extend the reduced form approach by providing constructions of default times
which can occur at stopping times and do not satisfy the immersion property1. That is, given a
financial market with information modelled by a given filtration F, we extend the Cox-construction
in order to construct default times which can occur at a family of F-stopping times, each with a
positive probability. This extends the models considered in Gehmlich and Schmidt [17], Fontana
and Schmidt [11], where although the hazard process can be discontinuous, however it can only
be discontinuous at predictable stopping times. To the best of our knowledge, given a family of
F-stopping times, it is not clear (until now) how to construct a random time or default time whose
graph is contained in that family of F-stopping times and does not satisfy the immersion property.
From a practical point of view, this is an important extension since it has long been argued that,
in certain applications, default times should not be allowed to happen at predictable stopping times
as default events in principle should happen without warning.

1We recall that F is immersed in G, where F ⊂ G if any F-martingale is a G-martingale. In the literature, this is
also called hypothesis (H)
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The structure of this work is as follows. We first introduce in Section 1 the necessary tools and
background from the general theory of processes, stochastic calculus for optional processes and the
standard Cox-construction of a random time.

In Section 2, we take a bottom up approach to identify the key assumptions on the default time
and the key processes which uniquely determine the pre-default price of a defaultable claim. In
particular, we revisit and extend the results of Coculescu and Nikeghbali [38] in Corollary 2.5 and
Corollary 2.14 and identify the exact assumptions on the default time (and the claim) such that
the hazard process will uniquely determine the pre-default price. In addition, we revisit and extend
results on the multiplicative decomposition of the Azéma supermartingale in Proposition 2.3 and
Proposition 2.9. The main message of this section is that, in general, the hazard process is not
sufficient in determining the pre-default price and depending on the form of the claim it could be
more natural to model the conditional distribution of the default.

In Section 3 we take a top-down approach and present several methods to construct random
times which satisfy the desired properties which were previously identified in Section 2. From
a mathematical point of view, the existence of a random time (which can be constructed on an
extended probability space) having the requested properties is a main concern. As our main original
contribution, we present in subsection 3.3.1 a construction of the optional multiplicative system
associated with a positive optional supermartingale. We then extend the previous works of Jeanblanc
and Song [20, 21], Li and Rutkowski [29] on the construction of random times with a given dual
predictable projection and illustrate, in subsection 3.3.2, how the optional multiplicative system
can be used to construct a random time with a given dual optional projection. From a modelling
perspective, this allows one to construct default times for which the default event is allowed to
happen at a pre-determined family of stopping times. Finally, we also extend the \-model or the
natural-model of Jeanblanc and Song [21] and Song [40] to the optional setting.

1 Tools, Notations and Terminologies

We work on a probability space (Ω,G,P) endowed with a filtration F satisfying the usual conditions.
Therefore all martingales are assumed to be right continuous. Given an integrable process X, we
adopt the standard notation o,FX and p,FX for the optional and predictable projection of a process
X and V o,F and V p,F for the dual optional and dual predictable projection of a finite variation
process V . For a càdlàg process X, we denote by ∆Xt = Xt −Xt− its jump at time t.

Given a random time τ (a positive G-measurable random variable), we set At = 1{τ≤t} and call
this process the default process. In the rest of the article, we shall assume that the random time τ
is finite. We denote by G the smallest filtration containing F satisfying the usual conditions such
that τ is a stopping time in G. The filtration G is called the progressive enlargement of F with τ .
We recall that, for any G-predictable process Y there exists an F-predictable process y such that
Yt1{t≤τ} = yt1{t≤τ} (see Jeulin [22, lemma 4.4]). The process y is called an F-predictable reduction
of Y . If Y is a G-optional process, there exists an F-optional process y such that Yt1{t<τ} = yt1{t<τ}.
The process y is called an F-optional reduction of Y , or the predefault value of Y . In the rest of
the paper, if not mentioned, the filtration F is always taken to be the base filtration and in order to
reduce notation, whenever there is no confusion, we will not explicitly write the dependence on the
filtration F when writing the projections and the dual projections.

The main tool used in this study is the stochastic calculus for optional semimartingales developed
by Gal’cǔk [13] [14] [15] or the A-semimartingale developed by Lenglart [27]. For more details on
the general theory for stochastic processes we refer to He et al. [12], for results from the theory of
enlargement of filtrations to Jeulin [22]. The reader can also refer to Aksamit and Jeanblanc [2] for
a modern exposition, in the english language, of the theory of enlargement of filtration.

4



M. Jeanblanc and L. Li Characteristics and constructions of default times

1.1 Stochastic calculus for optional semimartingales

In this work we adopt the notation and framework of Gal’cǔk in [13, 14]. However we stress that we
do not use the full power of the calculus for optional semimartingales as the filtration F is assumed
to satisfy the usual conditions. We present below some useful results from the stochastic calculus
for optional semimartingales specialised to our setting.

In the case where the filtration F satisfies the usual conditions any F-optional semimartingale X
is of the form X = X0 + M + A, where M is a (càdlàg) local martingale and A is a làglàd process
of finite variation. For a given optional semimartingale X we denote its right and left jumps by
∆+X = X+ −X and ∆X = X −X−. For a finite variation làglàd process A, we can decompose A
into A = Ac +Ad +Ag where Ad =

∑
∆As, A

g =
∑

∆+As and Ac is continuous, and we introduce
the right-continuous part of A as Ar := Ac+Ad. For any optional semimartingale X = X0 +M+A,
we can write X = X0 +Xr +Xg where Xr := M +Ar and Xg := Ag are called the right-continuous
and left-continuous part of X respectively. We denote by E (X) the optional stochastic exponential
of X, defined as the solution of

Yt = 1 +

∫
(0,t]

Ys−dX
r
s +

∫
[0,t)

YsdX
g
s+

which satisfies

Et(X) = 1 +

∫
(0,t]

Es−(X)dXr
s +

∫
[0,t)

Es(X)dXg
s+

or, in a closed form

Et(X) = E0(X)eXt− 1
2 〈X

c,Xc〉t
∏

0<s≤t

(1 + ∆Xs)e
−∆Xs

∏
0≤s<t

(1 + ∆+Xs)e
−∆+Xs .

The optional stochastic logarithm of a strictly positive optional semimartingale X satisfies

Lt(X) =

∫
(0,t]

1

Xs−
dXr

s +

∫
[0,t)

1

Xs
dXg

s+.

Given two optional semimartingales X and Y , the quadratic variation of X and Y is defined by

[X,Y ]t = 〈Xc, Y c〉t +
∑

0<s≤t

∆Xr
s ∆Y rs +

∑
0≤s<t

∆+Xg
s ∆+Y gs

and similarly to the càdlàg case, the following formula is satisfied

E (X + Y + [X,Y ]) = E (X)E (Y ). (1.1)

For a strictly positive optional semimartingale X, it can be shown that X0E (L (X)) = X. In
the case where the process X is a càdlàg semimartingale the optional stochastic exponential and
the optional logarithm, both reduce to the standard càdlàg stochastic exponential and logarithm.
Therefore we shall not introduce two sets of notations.

Note that given a supermartingale which is not càdlàg, i.e., an optional supermartingale, the usual
Doob-Meyer decomposition can not be applied. However, we can use the Mertens decomposition
(see Gal’cǔk [14] and Mertens [32, Theorem T3]) which we recall below.

Definition 1.1 An F-adapted làglàd process X is said to be F-strongly predictable if X is F-predictable
and X+ is F-optional.

Theorem 1.2 (Doob-Meyer-Mertens-Gal’cǔk decomposition, [14] [32]) An optional super-
martingale X admits a decomposition X = M−A, where M is a (local) uniformly integrable martin-
gale and A is an increasing strongly predictable (locally) integrable process with A0 = 0 if and only if
X belongs to the class-(D) (class-(DL)). This decomposition is unique to within indistinguishability.
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1.2 The Azéma (optional) supermartingale

Given a random time τ and the increasing process A = 1J τ,∞J , we introduce:

1. The F-dual predictable (resp. optional) projection of A denoted by Ap,F (resp. Ao,F) or simply
Ap (resp. Ao) when there is no confusion about the filtration.

2. The Azéma supermartingale Z = 1− oA and the Azéma optional supermartingale Z̃ associated
to τ , that is,

Zt = P(τ > t | Ft) and Z̃t = P(τ ≥ t | Ft) = Zt −∆Ao,Ft .

3. The F-conditional cumulative distribution of τ defined by Ft(u) := P(τ ≤ u | Ft) and the F-
conditional survival distribution of τ given by Gt(u) := 1− Ft(u) = P(τ > u | Ft).

It is well known that the processes Z− and Z̃ do not vanish on the set J 0, τ K. Furthermore, the

process Z is càdlàg and Z̃ is làdlàg with the properties that Z̃+ = Z+ = Z and Z̃− = Z−. Also
the conditional cumulative distribution and the conditional survival distribution are clearly valued
in [0, 1] and from tower property, for u ≥ t, one has Ft(u) = E[1− Zu | Ft]. Moreover, for any fixed
u, the process F (u) is an F-martingale and, for any fixed t, the map u→ Ft(u) is non-decreasing.

We present below the additive decomposition of the supermartingales Z and Z̃. It is well known
that Z +Ao and Z +Ap are uniformly integrable martingales (see Corollary 5.31, page 152 of He et
al. [12]) and we denote by m and M , the F-martingales

m := Z +Ao (1.2)

M := Z +Ap. (1.3)

From the above, the Doob-Meyer decomposition of Z is given by

Z = M −Ap . (1.4)

The Doob-Meyer-Mertens-Gal’cǔk decomposition of the optional supermartingale Z̃ is given by

Z̃ = m−Ao− . (1.5)

Note that Z̃ is an optional process as it is the difference between the càdlàg process m and the
predictable process Ao−.

Remark 1.3 We stress that mathematically, the knowledge Z allows one to uniquely identify Ap

and vice versa. This is because in principle Ap can be obtained from the Doob-Meyer decomposition
of Z and conversely if the dual optional projection Ap is known, then the Azéma supermartingale
Z can be, in principle, obtained by computing o(Ap∞ − Ap). Similarly the knowledge of Z̃ allows
us to uniquely identify Ao and vice versa. This is because in principle Ao− (and thus Ao) can

be obtained from the Doob-Meyer-Mertens-Gal’cǔk decomposition of Z̃ and conversely if the dual
optional projection Ao is know then the Azéma optional supermartingale Z̃ can be obtained by
computing o(Ao∞ −Ao−).

Finally, from the Azéma optional supermartingale Z̃, one can compute the Azéma supermartin-
gale Z by computing Z̃+. However it is not evident that Z̃ can be obtained from Z. The main
message we hope to convey here is that the dual optional projection Ao is the process which con-
tains the most information.

Definition 1.4 We say that τ avoids F-stopping times (F-predictable stopping times) if, for any
finite F-stopping time (F-predictable stopping time) ϑ, one has P(τ = ϑ) = 0.

6
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This is important to consider default times which do not enjoy the above avoidance property
[17, 23]. In particular, from a financial modelling perspective this means that the default is allowed to
happen at F-stopping times and therefore allowing the modeller to introduce features from structural
models of default. We recall some facts related with the avoidance property. If τ is a random time,
then it avoids F-stopping times if and only if Ao is continuous [2, Th. 1.43]. In that case, Ao = Ap.
On the other hand, if Ap is continuous, then τ avoids all F-predictable stopping times and the only
F-stopping times which are not avoided by τ are the jumps times of Ao.

For example, suppose F is a Poisson filtration and we take τ = T1 where T1 is the first jump of
the Poisson process N (so that F = G). In this case, one has Apt = λ(t∧T1) which is continuous and
Aot = 1{t<T1}

2. It is clear that τ does not avoid the F-stopping time T1 (which is not predictable).

1.3 The compensator and the hazard process

The compensator and the hazard process are ubiquitous in the credit risk literature. However their
role is not always clear and we shall later see that, in general, the knowledge of the hazard process
does not uniquely characterise the Azéma supermartingale and hence the price of defaultable claims.
In order to be precise, we present below a self contained section on the notion of compensator and
hazard process.

Let K be a filtration satisfying the usual conditions on (Ω,G,P) and let τ be a K-stopping time.
The K-compensator of A is defined to be the unique K-predictable non-decreasing process ΓK such
that ΓK

0 = 0 and A− ΓK is a K-martingale. It is clear that ΓK is stopped at time τ , i.e., ΓK
t = ΓK

t∧τ ,
and depends on the choice of K (as well of the probability and, if needed, we shall write ΓK,P). If ΓK

is continuous, the K-stopping time τ is a K-totally inaccessible stopping time, and if ΓK is absolutely
continuous w.r.t. the Lebesgue measure then its derivative is called the K-intensity rate.

Given a random time τ , we recall the form of the G-compensator of the G-adapted non-decreasing
process A (see [2, Prop. 2.15]).

Lemma 1.5 (Jeulin-Yor formula) The G-compensator of A is the process ΓG given by

ΓG
t :=

∫
(0,t]

1{τ≥u}Z
−1
u−dA

p
u,

we shall also refer to ΓG as the compensator of τ .

Note that the process ΓG is well defined (we use that E(ΓG
τ ) = E(

∫∞
0
dAps), see Jeulin [22], page 64).

It is not hard to see that an F-predictable reduction of the compensator ΓG is given by

Γt =

∫
(0,t]

Z−1
u−dA

p
u,

which we define to be the hazard process.

Definition 1.6 The process Γ is called the F-hazard process or simply the hazard process

We note that although the process Z might vanish, the process Γ, as it is non-decreasing, is
always well defined, except that it can take the value infinity. It is also important to stress that the
F-predictable reduction of ΓG is not unique. One can also consider for any a > 0 the process∫

(0,·]
(Zs− + a1{Zs−=0})

−1dAps

or the process
∫

(0,·] 1{Zu−>0}Z
−1
u−dA

p
u which are both F-predictable reduction of ΓG.

2The equality holds from Theorem 5.30 in [12] and the fact that P(T1 <∞) = 1
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Example 1.7 In the case where τ is an F-stopping time, then G = F, and Z = 1−A, Z̃ = 1−A−
and Ao = A. The equality Ap = A holds if and only if τ is an F-predictable stopping time and in
that case ΓG = A.

(i) If τ is a stopping time in a Brownian filtration, then since the optional σ-algebra is equal to the
predictable σ-algebra, we have ΓG = A.

(ii) If F is a Poisson filtration generated by N with intensity rate λ, and τ = T1, the first jump time

of N , then ΓG
t =

∫ T1∧t
0

λds = λ(T1 ∧ t) and Γt = λt. In this case Z̃t is equal to 1−Aot− which is
left continuous and not càdlàg.

For convenience of the reader, we recall the following key lemma [2, Lemma 2.9, Corollary 2.10]

Lemma 1.8 (i) Let X be a G-measurable integrable r.v. Then, for any t ≥ 0,

E[X|Gt]1{τ>t} = 1{τ>t}
1

Zt
E[X1{τ>t}|Ft] .

(ii) Let h be a bounded F-predictable process. Then, using the fact that τ if finite (hence Z∞ = 0)

E[hτ |Gt] = hτ1{τ≤t} + 1{τ>t}
1

Zt
E
[ ∫ ∞

t

hudA
p
u

∣∣∣Ft] . (1.6)

(iii) Let h be a bounded F-optional process. Then,

E[hτ |Gt] = hτ1{τ≤t} + 1{τ>t}
1

Zt
E
[ ∫ ∞

t

hudA
o
u

∣∣∣Ft] . (1.7)

1.4 The Cox construction

The most commonly used method, in the credit risk literature, to construct a default time is the
Cox-construction which enables one to construct a random time which admits a given compensator
or hazard process. In general, one needs to enlarge the given probability space to do so: Indeed,
suppose that F is a Brownian filtration and ΓF an F-adapted continuous non-decreasing process, it
is not possible to construct an F-stopping time τ with compensator equal to ΓF

t∧τ , t ≥ 0, since such
a stopping time would be totally inaccessible stopping time, and it is well known that all stopping
times in a Brownian filtration are predictable.

Given a non-decreasing F-adapted process X, the Cox-construction models the default time as
the first time a non-decreasing process X crosses a barrier U which is independent of F∞. We first
consider the case where X = Xr is right continuous. In this case, we set

τ = inf{s : Xr
s ≥ U}

where U is a uniform random variable (constructed on an extended space)3 taking values in [0, 1]
and is independent from F∞. In this case, the following equality holds

{τ ≤ t} = {U ≤ Xr
t }. (1.8)

From this equality and the fact that U is independent from F∞, we can deduce that Z = 1−X
and the cumulative conditional distribution of τ is given by

P(τ ≤ u | Ft) = E[Xr
u | Ft], ∀u, t ∈ R+.

In particular, P(τ ≤ u|Ft) = P(τ ≤ u|Fu) = Xr
u = 1− Zu for t ≥ u.

3Here we find it more convenient to use a uniform random variable rather than an exponential random variable,
but this is not essential.
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In the case where X = Xg is left continuous, the previous set equality (1.8) is no more valid and
we define τ as

τ = inf{s : Xg
s > U}

and the set equality {τ < t} = {U < Xg
t } leads to Z̃t = P(τ ≥ t | Ft) = 1−Xg

t . By taking the limit

from the right, we have Z = Z̃+ = 1−Xg
+.

In both of the above cases, the filtration F is immersed in F ∨ σ(U), hence in G, and the Azéma
supermartingale Z is non-increasing (see [2, Chapter 3]). Any random time τ constructed using the
above method will be called a Cox-time.

In the case where X = Xr is right-continuous and F-predictable, then the Azéma supermartingale
Z of the constructed random time τ is the predictable non-increasing process Z = 1−X and from
uniqueness of the Doob-Meyer decomposition of Z, we have Ap = 1 − Z = X. Therefore the
G-compensator of A is

ΓG
t =

∫ t∧τ

0

1

Zs−
dAps = −Lt∧τ (1−X)

and it admits Γ = −L (1−X) as the F-hazard process.

The above shows that if one wants to model directly the hazard process Γ, which is a right-
continuous F-predictable non-decreasing process, then one can take X = 1 − E (−Γ) in the Cox-
construction. In the literature, it is common to assume that the hazard Γ is continuous and consider
X = 1−e−Γ. In this setting, the constructed random time τ is then a G-totally inaccessible stopping
time and Ao = Ap = 1−Z. We point out that in the classical intensity setup [33], the default intensity
process is modelled using a non-negative F-adapted process γ and we take Γt =

∫
(0,t]

γsds.

In the case where X is right continuous and not predictable then, although from the Cox-
construction the equality Z = 1−X is still valid, however it is not always true that Ap = X. This
is because X is optional and, in this case, the dual predictable projection Ap is equal to Xp. In this
special case, we can identify X with the dual optional projection Ao. This is due to the fact that
any Cox-time is a pseudo-stopping time (see Definition 2.11), which implies that Z = 1 − Ao and
therefore X = Ao (see for example [2, Theorem 3.35]).

Remark 1.9 We want to again stress that the ability to identify the dual optional (predictable)
projection Ao (Ap) with the model input X in the case where X is non-continuous is crucial for
the purpose of modelling default times. The reason is that it allows us to model the behaviour of
the dual optional (predictable) projection Ao (Ap) through the modelling of X. This allows one
to model the probability that the constructed default time is equal to a pre-determined family of
(predictable) stopping times, i.e., the jump times of X.

2 Credit Risk Pricing - Bottom Up Approach

In this section, we take a bottom up view and suppose that we are given a default time τ . The aim
is to show that depending on the structure of the defaultable claim and the assumptions placed on
the default time, different processes are required to be modelled in order to uniquely determine the
price a default claim. In the following, we suppose that P is the pricing measure and the interest
rate is zero. Otherwise, the assumptions and the definition of the characteristics of τ have to be
considered under the pricing measure.

9
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2.1 Claims of Type I

Given a finite time horizon [0, T ], we say that a defaultable financial contract is of type I if the payoff
is given by

C(T, τ) = YT1{τ>T} + Cτ1{τ≤T}

where τ , YT and C are given in advance, and we suppose that YT ∈ FT and C is either an F-
predictable or an F-optional process.

The default payment C is F-predictable: Let us suppose that C is bounded and F-predictable,
then from direct computation using the key lemma, we see that

E[C(T, τ) | Gt] = Z−1
t E[YTZT +

∫
(t,T ]

CudA
p
u | Ft]1{τ>t} + Cτ1{τ≤t}

and the pre-default value of the claim is given by

πt = Z−1
t E[YTZT +

∫
(t,T ]

CudA
p
u | Ft] = Z−1

t E[YTZT −
∫

(t,T ]

CudZu | Ft].

From the above, we see that the pre-default value is uniquely determined by the Azéma supermartin-
gale Z or equivalently by the dual predictable projection Ap.

The default payment C is F-optional: In the case where C is bounded and F-optional, then
one has to replace Ap with Ao to obtain

πt = Z−1
t E[YTZT +

∫
(t,T ]

CudA
o
u | Ft].

From the above, we see that in the case where the default payment is optional, the pre-default price
is uniquely determined by the quantities Ao and Z. In this situation, we note that it is sufficient
to know Ao, since the Azéma supermartingale Z can be, in principle, retrieved by computing Z =
o(Ao∞ −Ao). However, unlike the case where the defaultable claim C is an F-predictable process, it
is not sufficient to model the Azéma supermartingale Z. This is because the process Ao cannot be
uniquely determined from Z (via the Doob-Meyer decomposition).

In the following, we adopt the following notation for the pre-default price of type I claim,

πt = Z−1
t E[YTZT +

∫
(t,T ]

C(j)
u dAju | Ft] j ∈ {o, p}, (2.1)

where process C(j) is a predictable (optional) claim if j = p (j = o).

In the literature of credit risk modelling, the hazard process or the intensity process is ubiquitous.
This is mainly due to the fact that in the classic reduced form approach to credit risk modelling,
given some non-decreasing continuous hazard process Γt =

∫ t
0
γudu where γ is the intensity process,

by using the Cox construction one can construct a random time τ such that Z = Ap = Ao = e−Γ and
τ satisfies the immersion property. In this setting, we clearly see that for Cox-times the pre-default
price πt given above in (2.1) is uniquely determined by the hazard process Γ.

However for an arbitrary random time or default time, the Azéma supermartingale Z is in general
not continuously decreasing and Z 6= Ap 6= Ao 6= e−Γ. In fact a long standing question is under
what assumptions, on the default time τ , can the pricing formula for type I claims be uniquely
characterized by the hazard process or the intensity process. This question was explored in the work
of Coculescu and Nikeghbali [6] under continuity assumption and, in the following, we extend their
work and identify the most general conditions under which the hazard process uniquely determines
the pre-default price of type I claims.

10
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2.1.1 The predictable case

In order to be precise, we recall, from Definition 1.6, that the hazard process is an F-predictable
process Γ such that the G-compensator of τ is given by Γτ . To proceed we introduce the following
class of random times which is inspired by the definition of pseudo-stopping times.

Definition 2.1 (Strict pseudo-stopping time) A finite random time τ is called an F-strict pseudo-
stopping time if for all uniformly integrable F-martingale Y , we have E[Yτ−] = E[Y0].

The class of strict pseudo-stopping time has already appeared in the literature as a special case of the
recently introduced invariance time in Crépey and Song [7]. In short, an invariance time is a random
time for which there exists a probability Q equivalent to P such that τ is a strict pseudo-stopping
time under Q.

Proposition 2.2 Given a finite random time τ , the following conditions are equivalent
(i) The random time τ is a strict pseudo-stopping time.
(ii) The Azéma supermartingale Z of τ is non-increasing and predictable or equivalently oA = Ap.
(iii) For all uniformly integrable F-martingale Y , the process Y τ− is a uniformly integrable G-
martingale where Y τ−t = Yt1{t<τ} + Yτ−1{τ≤t}.

Proof: To see that (i) is equivalent to (ii), we first suppose that τ is a strict pseudo-stopping time

E[Yτ−] = E[

∫
[0,∞)

Yu−dA
p
u]

= E[

∫
[0,∞)

p(Y∞)udA
p
u]

= E[Y∞A
p
∞] = E[Y0]

which implies that Ap∞ = 1. It follows that the Doob-Meyer decomposition of Z is given by Z =
1−Ap, since Zt = E[Ap∞−A

p
t |Ft]. Conversely, the equality oA = Ap and the finiteness of τ implies

that Ap∞ = 1, and from E[Yτ−] = E[Y∞] = E[Y0] we see that τ is a strict pseudo-stopping time.

To see that (i) and (iii) are equivalent, we first suppose that Y is a uniformly integrable F-
martingale. For every G-stopping time ν, from page 186 of Dellacherie et al. [8], we know there
exists an F-stopping time σ such that τ ∧ ν = τ ∧ σ. Therefore, from the fact that τ is a strict
pseudo-stopping time we have

E[Y τ−ν ] = E[Y στ−] = E[Y0]

which shows that Y is a uniformly integrable G-martingale by Theorem 1.42 [19]. To show the
converse, it is sufficient to consider Y τ− at τ and apply the optional sampling theorem in G.

In the following, we study the relationship between the hazard process Γ and the Azéma su-
permartingale Z. We present a result on the multiplicative decomposition of a strictly positive
supermartingale, which can be found on page 138 of Jacod and Shiryaev [19], but here we provide
a specialized proof for the Azéma supermartingale, which is more insightful for our purposes.

Proposition 2.3 Suppose that Z is strictly positive then

Z = E (−Γ)E (N)

where N is a local martingale given by Nt =
∫

]0,t]
( pZu)−1dMu, the martingale M being defined in

(1.3) and Γ being the hazard process.

11
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Proof: Starting from the F-hazard process Γ, we write

Γt =

∫
(0,t]

Z−1
u−dA

p
u =

∫
(0,t]

Z−1
u−dA

p
u −

∫
(0,t]

Z−1
u−dMu +

∫
(0,t]

Z−1
u−dMu

= −Lt(Z) +

∫
(0,t]

Z−1
u−dMu

= −Lt(Z) +Nt −
∫

(0,t]

∆Apu
Zu−(Zu− −∆Apu)

dMu

= −Lt(Z) +Nt − [Γ, N ]t

where Nt :=
∫

]0,t]
(Z− − ∆Ap)−1

u dMu. The last equality above follows from Yœurp’s lemma (see

Proposition 1.16 [2]) and we point out that Z− −∆Ap = pZ so that Nt =
∫

]0,t]
( pZu)−1dMu. Then

by taking the stochastic exponential of both sides above, we obtain from (1.1) the equality

Z = Z0E (−Γ +N + [−Γ, N ]) = Z0E (−Γ)E (N).

which concludes the proof.

Corollary 2.4 A random time τ is a finite strict pseudo-stopping time if and only if its Azéma
supermartingale takes the form Z = Z0E (−Γ).

Corollary 2.5 If τ is a finite strict pseudo-stopping time then the pre-default value for a financial
product of Type I with a payoff C(p) is uniquely obtained in terms of the hazard process. That is

πt = Et(−Γ)−1E[YTET (−Γ) +

∫
(t,T ]

C(p)
u dEu(−Γ) | Ft].

Remark 2.6 Here it is important to note that if τ is not a strict pseudo-stopping time then the pre-
default price π is only uniquely characterized by the Azéma supermartingale Z. Although the hazard
process is ubiquitous in the literature, however one can construct many random times with the same
hazard process but different Azéma supermartingales. Such examples are given in subsection 2.1.3.

2.1.2 The optional case

To study claims which are optional, we introduce below the optional hazard process. The optional
hazard or more specifically the optional Jeulin-Yor formula given in Lemma 2.7 have also appeared
in the recent working paper of Choulli et al. [5] where the martingale representation theorem in the
filtration G was studied. The shift from the hazard process to the optional hazard process allows
one to model random times which can happen at F-stopping times.

Lemma 2.7 (Optional Jeulin-Yor formula) Given a random time τ , the G-adapted process

1{τ≤t} −
∫

(0,t]

1{τ≥u}Z̃
−1
u dAou

is a G-martingale.

Proof: To prove this decomposition, viewed as an optional Jeulin-Yor formula, note that for s ≤ t,

E[1{τ≤t} | Gs] = 1{τ≤s} + E[1{s<τ≤t} | Gs]

12
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For any Gs ∈ Gs, there exists Fs ∈ Fs such that Fs1{τ>s} = Gs1{τ>s}. Then we have

E[1Gs1{s≤τ<t}] = E[1Fs

∫
1{s<u≤t}dA

o
u]

= E[1Fs

∫
1{s<u≤t}1{τ≥u}Z̃

−1
u dAou]

= E[1Gs

∫
]s,t]

1{τ≥u}Z̃
−1
u dAou]

which concludes the proof.

Definition 2.8 An F-optional hazard process of τ is the process Γ̃ given by Γ̃t :=
∫

[0,t]
Z̃−1
u dAou.

To understand the relationship between the F-optional hazard process Γ̃ and the Azéma optional
supermartingale Z̃, we consider Γ̃− and suppose that Z̃Z̃− > 0. The optional multiplicative decom-
position of the Azéma supermartingale Z has previously been considered in Kardaras [25].

Proposition 2.9 Suppose Z̃ is strictly positive then

Z̃ = E (−Γ̃−)E (Ñ).

where Ñt :=
∫

]0,t]
Z̃−1
u−dmu with m defined in (1.2).

Proof: Given the F-optional hazard process Γ̃, we write

Γ̃t− =

∫
[0,t[

Z̃−1
u dAou −

∫
]0,t]

Z̃−1
u−dmu +

∫
]0,t]

Z−1
u−dmu

=

∫
]0,t]

Z̃−1
u−dA

o,c
u −

∫
]0,t]

Z̃−1
u−dmu +

∫
[0,t[

Z̃−1
u dAo,gu+ +

∫
]0,t]

Z−1
u−dmu

= −Lt(Z̃) + Ñt

where L (Z̃) is the optional stochastic logarithm of Z̃ and Ñt :=
∫

]0,t]
Z̃−1
u−dmu. By taking the

optional stochastic exponential of both sides above, we obtain from (1.1)

Z̃ = E (−Γ̃− + Ñ)

= E (−Γ̃−)E (Ñ)

where the second equality holds since [−Γ̃−, Ñ ] = 0 as ∆Γ̃− = 0 and ∆+Ñ = 0.

Remark 2.10 Note that E (Ñ) is càdlàg, E (−Γ̃−) is càglàd and therefore Z̃ is not càdlàg.

Definition 2.11 (Pseudo-stopping time) A random time τ is called an F-pseudo-stopping time
if for all uniformly integrable F-martingale Y , we have E[Yτ ] = E[Y0].

Theorem 2.12 (i) A finite random time τ is a pseudo-stopping time if and only if its Azéma’s
optional supermartingale can be expressed as

Z̃ = E (−Γ̃−).

(ii) Let τ be a finite honest time, then the Azéma optional supermartingale can be expressed as

Z̃ = E (−Γ̃−)M̃

where M̃ is a local martingale.

Note that the above equalities are valid even in the case when Z̃ is allowed to vanish.

13
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Proof: (i) Suppose that τ is a pseudo-stopping time then from Theorem 1 of Nikeghbali and Yor

[37] or Aksamit and Li [1] we know that m = 1 and thus Ñ = 1. The representation of Z̃ is then

obtained by applying Proposition 2.9 to Z̃ + ε for ε > 0, and taking the limit as ε ↓ 0 using the
monotone convergence theorem. For the converse, by Theorem 1 of Aksamit and Li [1], if the Azéma

optional supermartingale Z̃ is left continuous and decreasing then τ is a pseudo-stopping time.

(ii) The validity of the multiplicative decomposition on the whole real line for honest times is
rather involved. Therefore we refer the readers to Lemma 2.1 in Li [28].

Remark 2.13 Theorem 2.12 (i) extends Theorem 3.8 of Coculescu and Nikeghbali [6] and gives
complete characterization of pseudo-stopping times in terms of the associated F-optional hazard
process. From Proposition 2.9 and Theorem 2.12, we see that the knowledge of the F-optional
hazard process is insufficient in retrieving the associated Azéma optional supermartingale (and thus
the Azéma supermartingale) and is sufficient only when the default time is a pseudo-stopping time.

Corollary 2.14 If τ is a finite pseudo-stopping time then the pre-default value for a financial prod-
uct of Type I with a payoff C(o) is uniquely characterised by the optional hazard process, that is

πt = Et+(−Γ̃−)−1E[YTET+(−Γ̃−) +

∫
(t,T ]

C(o)
u dEu+(−Γ̃−) | Ft].

Finally, we revisit Proposition 3.3 in Coculescu and Nikeghbali [6], where it is stated that if Z
is continuous then the random time τ avoids all F-stopping times. Unfortunately, the proof is not
fully correct, to illustrate this we give a constructive counter example in Example 3.13.

Proposition 2.15 Let τ be a finite random time such that its associated Azéma’s supermartingale
Z is continuous, then τ avoids all predictable stopping times.

Proof: If Z is continuous then ∆M = ∆Ap. However since M is a martingale, the size of a jump
at predictable time is zero, then for any predictable stopping times T , ∆ApT = P(τ = T | FT−) = 0,
which implies that P(τ = T ) = 0.

2.1.3 The hazard process and the Azéma supermartingale

From Corollary 2.4 and Theorem 2.12, we note that the knowledge of the (optional) hazard process
does not uniquely characterize the Azéma (optional) supermartingale unless the random time is a
strict pseudo-stopping time (pseudo-stopping time). In other words, one can have two different ran-
dom times with the same (optional) hazard process, but different Azéma (optional) supermartingale.

Example 2.16 For any honest time in a Brownian filtration which avoids stopping times, one can
compute its hazard process Γ and E (−Γ) which is finite on the whole real line. Taking X = 1−E (−Γ)
in the Cox construction, one obtains a random time (on an extended space) such that the hypothesis
(H) holds and its Azéma supermartingale Z is equal to the predictable non-increasing process E (−Γ).
The corresponding F-hazard process is given by Γ.

This example gives two random times, one being the honest time and the other a Cox-time. They
have the same hazard process, but different Azéma’s supermartingale (the Azéma supermartingale
of the honest time is not decreasing).

Example 2.17 Constructive example. Suppose one first models the hazard process Γ as an abso-
lutely continuous process with derivative γ, in a Brownian filtration. Then, it is shown in [31] that,
for any F-adapted bounded b, the solution of

dYt = −γtYtdt+ btYt(1− Yt)dBt
is a supermartingale valued in [0, 1] with multiplicative decomposition Y = Ne−Γ, hence Γ is the
hazard process of the associated τ .

14
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2.2 Claims of Type II

Given a finite time horizon [0, T ], we say that a defaultable financial contract is of type II if it the
terminal payoff is given by

YT1{τ>T} + Cτ (ζ)1{τ≤T}

where YT ∈ FT and for any y, the process C(y) is F-optional, ζ ∈ FT so that Cτ (ζ) ∈ GT and the
terminal payoff is GT -measurable. Then the pre-default price of a claim of type II is given by

πt1{τ>t} = E[YT1{τ>T} + Cτ (ζ)1{τ≤T} | Gt]1{τ>t}
= E[YT1{τ>T}|Gt]1{τ>t} + E[Cτ (ζ)1{t<τ≤T} | Gt]
= Z−1

t E[YTZT + Cτ (ζ)1{t<τ≤T} | Ft]1{τ>t}

where the last equality follows from the key lemma. In order to further compute the pre-default
value, i.e., Z−1

t E[YTZT +Cτ (ζ)1{t<τ≤T} | Ft], it is evident that one requires the knowledge of the FT -
conditional cumulative distribution of τ denoted by FT (u). If we suppose that the FT -conditional
distribution is known, then the pre-default price of the claim is given by

πt = Z−1
t E[YTZT +

∫
(t,T ]

Cu(ζ)FT (du) | Ft]. (2.2)

From the above, we see that the Azéma (optional) supermartingale and the dual projections are
insufficient in determining the pre-default price and one requires the knowledge of the FT -conditional
distribution FT (u) for u ≤ T .

In view of this, we collect below some simplifying assumptions on the FT -conditional distribution
of τ which have appeared in the literature.

Hypothesis (H): If the random time τ satisfies the hypothesis (H) or the immersion property,
then Ft(u) = Fu(u) = 1− Zu = 1− Eu(−Γ).

πt = Z−1
t E[YTZT −

∫
(t,T ]

Cu(ζ)dZu | Ft]. (2.3)

In this case the pre-default price is uniquely determined by the hazard process Γ.

Hypothesis (HP): The random time τ satisfies the hypothesis (HP ) if there exists a random field
(Cu,t)u≤t, increasing in u and decreasing and adapted in t such that Ft(u) = Cu,tFt for all u ≤ t,
where Ft = Ft(t). In this case, the pre-default price is then given by

πt = Z−1
t E[YTZT + FT

∫
(t,T ]

Cu(ζ) dCu,T | Ft]. (2.4)

For modelling purposes, one often consider the case where Cu,t is completely separable in u and t,
that is Ft-conditional distribution takes the form Ft(u) = CuMt, where M is a martingale and C is
a non-decreasing adapted process.

The random field (Cu,t)u≤t is also called the multiplicative system associated with the submartin-
gale F (see Definition 3.8) which we will study in more detail in subsection 3.3.1 (we refer also to
Meyer [35] and the references within). For more details and examples in applications we refer to
Gapeev et al. [16], Jeanblanc and Song [20] and Li and Rutkowski [29]. In the special case where
τ is an honest time then it is well known that, for all t ≥ 0, there exists an Ft-measurable random
variable τt such that for u ≤ t, we have the equality P(τ ≤ u | Ft) = 1{τt≤u}P(τ ≤ t | Ft) and the
random field Cu,t is given by 1{τt≤u}.
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Jacod’s Hypothesis [Jacod’s absolute continuity hypothesis]: There exists a non-negative
O(F)⊗ B(R+)-measurable function (ω, t, u)→ pt(ω, u) càdlàg in t such that
(1) for every u, the process (pt(u), t ≥ 0) is a non-negative F-martingale,
(2) denoting by η the law of τ , for every t ≥ 0, the measure pt(u)η(du) equals P(τ ∈ du | Ft), in
other words, for any Borel (bounded) function f

E[f(τ)|Ft] =

∫
R+

f(u)pt(u)η(du) .

In particular Zt =
∫

]t,∞[
pt(u)η(du). Such a family is called the conditional density and there are

not so many explicit examples of random times where this density exists, except those of Chaleyat
Maurel and Jeulin [3] and Mansuy and Yor [34, p.34]. Note that if τ is a honest time then it satisfies
Jacod’s hypothesis if and only if it takes only countable values (see [2, Remark 5.31b]).

The equivalence Jacod’s hypothesis is the same as the above except that the conditional density
is strictly positive.

Extended Jacod’s Hypothesis: There exists a non-negative O(F)⊗ B(R+)-measurable function
(ω, t, u)→ pt(ω, u) càdlàg in t and a F-adapted non-decreasing process D such that for u ≤ t

Ft(u) =

∫
[0,u]

pt(s)dDs.

where D is an F-adapted increasing process and for every u, the process (pt(u), t ≥ u) is a F-
martingale. For details and examples, we refer to Li and Rutkowski [30] and Song [42] and [23] for
a particular case.

2.2.1 The Azéma supermartingale and the conditional law

To conclude the first part of the article, we point out that unless the default time τ satisfies the
hypothesis (H) then the Azéma (optional) supermartingale does not uniquely characterise the pre-
default price of a claim of type II. Mathematically, one can construct infinitely many random times
with the same Azéma (optional) supermartingale but each with a different F-conditional distribution.

Example 2.18 We examine the extension of the William’s path decomposition example studied
in Nikeghabli and Yor [37]. Let F be a Brownian filtration and L be an honest time, with Azéma
supermartingale Z, such that Zt := infu≤t Zu is continuous. We consider the pseudo-stopping time
(see [37]) given by

ρ = sup{t < L : Zt = Zt}.

The Azéma supermartingale of ρ is given by Z, and the F-conditional distribution of ρ can be easily
computed and is given by

Gt(u) := P(ρ > u | Ft) = Zt1{Tu<t} + Zt 1{Tu≥t} + (1− Zt)1{Tu<Lt≤t} ∀t ≥ u,

where Lt is an Ft-measurable random variable such that for t ≥ 0 satisfies L1{L≤t} = Lt1{L≤t} and
Tu = inf{t > u : Zt ≤ Zt}.

On the other hand, one can apply the Cox-construction described in subsection 1.4 withX = 1−Z
and construct a random time τCox with a non-increasing Azéma’s supermartingale ZCox = Z.
Therefore ρ and τCox have the same Azéma supermartingale. However for t > u,

P(τCox > u | Ft) = P(τCox > u | Fu) = ZCox
u = Zu

whereas, for t > Tu, Gt(u) is different from Zt.
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3 Credit Risk Pricing - Top Down Approach

In this part of the article, having derived the formula for the pre-default price of claims of type I and
type II, we proceed to take a top down view. In the following, we do not assume that a default time
is given, instead, we consider as model inputs the objects which uniquely determines the pre-default
price and show that it is possible to construct a random time which is consistent with these model
inputs. To remind the reader, we summary below some results from section 2.

Claim of type I: We recall that the pre-default price of type I claim is given by

πt = Z−1
t E[YTZT +

∫
(t,T ]

C(j)
u dAju | Ft] j ∈ {o, p}, (3.1)

where process C(j) is a predictable (optional) claim if j = p (j = o).

Predictable claim: The pre-default price is uniquely determined by the Azéma supermartingale Z or
equivalently the dual predictable projection process Ap.

Optional claim: The pre-default price is uniquely determined by the Azéma supermartingale Z and
the dual optional projection process Ao. In fact the pre-default price is uniquely determined by Ao,
since the Azéma supermartingale Z can be computed by setting Z = o(A∞ −Ao).
Question: Given a non-decreasing optional process B such that E(B∞ − Bt−|Ft) takes values in
[0, 1], does there exist a random time τ (on a possibly extended space) such that Ao = B and does
not satisfy the hypothesis (H).

Remark 3.1 In view of the uniqueness of the Doob-Meyer (Doob-Meyer-Mertens-Gal’cǔk) decom-
position, the existence of a random time with a given dual predictable (optional) projection is
equivalent to the existence of a random time with a given Azéma (optional) supermartingale.

Claims of Type II: We recall that the pre-default price of a claim of type II is given by

πt = Z−1
t E[YTZT +

∫
(t,T ]

Cu(ζ)FT (du) | Ft]. (3.2)

The pre-default price is thus uniquely determined by the FT -conditional distribution (FT (u))u≤T
and it should be considered as model inputs. Note that the Azéma supermartingale (Zu)u≤T can
be retrieve from FT -conditional distribution (FT (u))u≤T by taking conditional expectations.

Question: Given a random field (Ft(u), u, t ∈ R+), valued in [0, 1] which is increasing in u and, for
fixed u, is a martingale in t, does there exist a random time τ such that P(τ ≤ u | Ft) = Ft(u).

Definition 3.2 A predictable (optional) non-decreasing process B is said to be a valid dual pre-
dictable (optional) projection if X := 1− o(B∞ −B) takes value in [0, 1].

Definition 3.3
(i) A supermartingale is said to be a valid Azéma’s supermartingale if it takes values in [0, 1].
(ii) An optional supermartingale is said to be a valid Azéma’s optional supermartingale if it takes
values in [0, 1] and the unique strongly predictable no-decreasing process in the Doob-Meyer-Mertens-
Gal’cǔk decomposition is left continuous.

Definition 3.4 A random field (Ft(u), u, t ∈ R+) is called a valid F-conditional distribution if it
takes values in [0, 1], is right continuous and non-decreasing in u and is such that, for a fixed u,
(Ft(u))t≥0 is an F-martingale .
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3.1 The extended Cox construction

As shown in the previous subsection, Cox-times satisfy the hypothesis (H) and in that setting one
can easily identify the dual optional projection of the constructed time. However, to the best of our
knowledge, it is still a open question as to whether one can construct a random time τ with a given
dual optional projection but does not satisfy hypothesis (H).

Given an F-conditional distribution (Ft(u), u, t ∈ R+) and a random variable U which is uniformly
distributed on [0, 1] and independent from F∞, we consider an extension of the Cox-construction.
That is we construct a random time τ by setting

τ := inf {u : F∞(u−) > U}.

From the above definition we can deduce the set equality {τ < t} = {U < F∞(t−)} and therefore

P(τ < u | F∞) = F∞(u−) and P(τ ≤ u | F∞) = F∞(u).

By taking the Fu-conditional expectation of both hand sides in the above, we retrieve the Azéma
optional supermartingale and the Azéma supermartingale. That is4

P(τ < u | Fu) = Fu(u−) and P(τ ≤ u | Fu) = Fu(u). (3.3)

The above shows that given a valid F-conditional distribution (Ft(u), u, t ∈ R+), it is always possible
to construct a random time τ such that P(τ ≤ u | Ft) = Ft(u) and P(τ < u | Ft) = Ft(u−).

Definition 3.5 Given a valid Azéma supermartingale Y (resp. Azéma optional supermartingale

Ỹ ), an F-conditional distribution (Ft(u), u, t ∈ R+) is said to be consistent with Y (resp. Ỹ ) if

1− Fu(u) = Yu (resp. 1− Fu(u−) = Ỹu).

Remark 3.6 To this end, in view of (3.3), the uniqueness of the Doob-Meyer decomposition and
Theorem 5.30 in [12], in order to construct a random time with a given in advanced dual predictable
projection B, it is sufficient to construct an F-conditional distribution (Ft(u), u, t ∈ R+) which is
consistent with the Azéma supermartingale o(B∞ −B).

Similarly, in view of (3.3), the uniqueness of the Doob-Meyer-Mertens-Gal’cǔk decomposition and
Theorem 5.30 in [12], we see that in order to construct a random time with a given in advanced dual
optional projection B, it is sufficient to construct an F-conditional distribution (Ft(u), u, t ∈ R+)
which is consistent with the Azéma optional supermartingale o(B∞ −B−).

3.2 Random times with given dual predictable projection

From Remark 3.6, we see that in order to construct a random time with given in advanced dual
predictable projection B, it is sufficient to construct a valid F-conditional distribution which is con-
sistent with the Azéma supermartingale Y = o(B∞−B). The construction of a valid F-conditional
distribution which is consistent with a given in advanced valid Azéma supermartingale was first
considered in Gapeev et al. [16] and was later extended in Jeanblanc and Song [20] [21], Li and
Rutkowski [29, 30] and Song [40, 41]. Without going into all the details, we will survey the literature
and present below some existing methodologies.

In Gapeev et al. [16] and later Jeanblanc and Song [20] [21], the authors have considered the
case where the Azéma supermartingale is of the form Z = µe−Λ where µ is a local martingale and
Z, µ,Λ are continuous. In this case a closed form of a valid conditional F-conditional distribution
which is consistent with given in advanced Azéma supermartingale Z is obtained and is given by

Ft(u) = (1− Zt) exp

{
−
∫ t

u

Zs
1− Zs

dΛs

}
. (3.4)

4By monotone convergence theorem it is clear that Ft(u−) is +a martingale for t ≥ u.
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In this setting, the F-conditional distribution Ft(u) is differentiable w.r.t. u and the dynamics for
t > u is given by

dFt(u) = − Ft(u)

1− Zt
dMt, t ≥ u

Fu(u) = 1− Zu

where M is the martingale part of the Doob-Meyer decomposition of Z. From this, one can construct
a random time τ on an extended probability space and a probability Q such that ∀t, Q|Ft

= P|Ft
and

Q(τ ≤ u | Ft) = Ft(u). Obviously, for t ≤ u one has Ft(u) = E(Fu(u)|Ft), hence we pay attention
only to the family for t ≥ u.

In Jeanblanc and Song [21], under the assumptions that Z > 0 is continuous and 1 − Z > 0, a
non-linear extension of the above model was considered. That is for any continuous local martingale
Y and any bounded Lipschitz function f with f(0) = 0, a conditional distribution Mt(u) which is
consistent with 1−Z can be constructed as a solution of the following stochastic differential equation

dFt(u) = −Ft(u)

(
1

(1− Zt)
dMt + f(Mt(u)− 1 + Zt)dYt

)
, t ≥ u

Fu(u) = 1− Zu .

On the other hand, in Li and Rutkowski [29], for a valid Azéma supermartingale Z, it was shown
that an F-conditional distribution can be constructed using the predictable multiplicative system
associated with 1 − Z introduced in Meyer [35]. In particular, if 1 − Z > 0 then the constructed
F-conditional distribution satisfies the following system of differential equations: For any u ≥ 0,

dFt(u) = − Ft−(u)

(1− pZt)
dMt t ≥ u

Fu(u) = 1− Zu

and it can be shown that

Ft(u) = (1− Zt) exp(−
∫

(u,t]

dAp,cs
1− pZs

) ∏
u<s≤t

(
1− ∆Aps

1− pZs

)
where Ap,c is the continuous part of Ap. We point out here that random times which are constructed
using multiplicative systems satisfy the hypothesis (HP ).

Finally, in Song [40], inspired again by Meyer [35] and Yœurp and Meyer [43], the following
non-linear system of stochastic differential equations (referred to as the \-equation or the natural
equation) was considered under the assumptions that ZZ− > 0 and 1− pZ > 0,

dXu,x
t = −

Xu,x
t−

(1− pZt)
dMt + σ(t,Xu,x

t− )dYt, t ≥ u (3.5)

Xu,x
u = x .

where Y is an F-local martingale. It was shown in [40] that if the pair (σ, Y ) satisfies the following

hypothesis 3.7 then, (σ, Y ) is referred to as a \-pair, and the family of solutions Xu,1−Zu

t for t ≥ u
can be considered as a model for an F-conditional distribution which is consistent with the given
Azéma supermartingale Z.

Hypothesis 3.7 For every u ≥ 0, on the interval [u,∞[, we assume that the pair (σ, Y ) satisfies
(i) for given initial point x, the process σ(·, Xu,x

− )(1− pZ −Xu,x
− )−11{1− pZ−−Xu,x

− 6=0} is integrable

with respect to Y and

−(1− pZ)−1∆M − σ(·, Xu,x
− )(1− pZ −Xu,x

− )−11{1− pZ−Xu,x
− 6=0}∆Y > −1,
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(ii) the process −σ(·, Xu,x)(Xu,x
− )−11{−Xu,x

− 6=0} is integrable with respect to Y and

−(1− pZ)−1∆M + σ(·, Xu,x
− )(Xu,x

− )−11{−Xu,x
− 6=0}∆Y > −1,

(iii) given another F-adapted process X ′ taking values in [0, 1], the process (σ(·, X ′−)−σ(·, Xu,x
− ))(X ′−

X−)−11{X′−Xu,x
− 6=0} is integrable with respect to Y and

−(1− pZ)−1∆M − (σ(·, X ′−)− σ(·, Xu,x
− ))(X ′− −X

u,x
− )−11{X′−−X

u,x
− 6=0}∆Y > −1.

To conclude, we point out that it was shown in Theorem 3.7 of [40] that the set of \-pairs or
natural-pairs is non-empty.

3.3 Random times with given dual optional projection

From Remark 3.6, we see that to construct a random time with given in advanced dual optional
projection B, it is sufficient to construct a valid F-conditional distribution which is consistent with
the Azéma optional supermartingale Ỹ = o(B∞ −B−).

3.3.1 Optional multiplicative systems

To construct a random time which does not satisfy hypothesis (H) and has a given dual optional pro-
jection, we introduce below results on the optional multiplicative system associated with a positive
optional submartingale.

The notion of a predictable multiplicative system was first introduced in Meyer [35] and later
extended to the optional case in Li and Rutkowski [29]. However, in [29], the existence of an optional
multiplicative system was only established for the case of the Azéma submartingale, that is we need
a given in advance random time τ . In the following, given a positive optional submartingale X, we
show the existence of an optional multiplicative system associated with X+.

Recall that any positive optional submartingale X and its right continuous modification X+ are
of class-(D), therefore X∞ = limt↑∞Xt+ exists and is in L1. For the reader’s convenience, we recall
below the definition of a multiplicative system.

Definition 3.8 A multiplicative system is a positive random field (Cu,t)u,t∈[0,∞] satisfying the fol-
lowing conditions:
(i) for all u ≤ s ≤ t the equality Cu,sCs,t = Cu,t holds; moreover, Cu,t = 1 for u ≥ t,
(ii) for any fixed u ∈ R+, the process (Cu,t)t∈[0,∞] is adapted and non-increasing,
(iii) for any fixed t ∈ R+, the process (Cu,t)u∈[0,∞] is right-continuous and non-decreasing.
A multiplicative system is called predictable (resp. optional) when for each u, the process (Cu,t)t∈[0,∞]

is predictable (resp. optional).

Definition 3.9 Suppose that X is a positive optional submartingale, we say that (Cu,t)u,t∈[0,∞] is a
multiplicative system associated with X+ if, in addition to conditions (i)-(iii) of Definition 3.8, we
have, for all t ∈ [0,∞],

E[Ct,∞X∞|Ft] = Xt+. (3.6)

The main tool used to obtain the existence of an optional multiplicative system associated with
a submartingale is the Doob-Meyer-Mertens-Gal’cǔk decomposition. Given any positive optional
submartingale X, we can write X = X0+MX+AX , where MX is an uniformly integrable martingale
and AX is a strongly predictable process of integrable variation and we can decompose AX into
AX,r +AX,g, where AX,r is càdlàg and AX,g is càglàd.
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Lemma 3.10 Let X be a strictly positive optional submartingale, bounded below by a strictly positive
constant. Let the random field C̄u,t be defined by C̄u,t = 1 for all u ≥ t and satisfy the equation

C̄u,t = 1−
∫

]u,t]

C̄u,s−( pXs)
−1 dAX,rs −

∫
[u,t[

C̄u,s(Xs+)−1 dAX,gs+ , ∀ t ≥ u.

Then, for any u, the process (Q̄u,t := C̄u,tXt)t∈[u,∞] is a positive uniformly integrable martingale
and it satisfies

dQ̄u,t = −C̄u,t− dMX
t (3.7)

and Cu,t := C̄u+,t+ is a multiplicative system associated with X+.

Proof: We will first show that, for any fixed u, the process (C̄u,t)t∈[0,∞] is positive and bounded
by one. To this end, it suffices to observe that it is a non-increasing process with C̄u,t = 1 for

t ≤ u and from (3.10), the left jump satisfies C̄u,t = C̄u,t−(1 − ( pX)−1
t ∆AX,rt ) for t > u. Since

Xt− = (pX)t −∆AX,rt , we obtain

0 < (pX)t−X
−1
t− = 1− (pX)−1

t−∆AX,rt ≤ 1,

while the right jump satisfies C̄u,t+ = C̄u,t(1−X−1
t+ ∆AX,gt+ ) for t ≥ u. Since Xt = Xt+ −∆AX,gt , we

obtain similarly
0 < Xt+X

−1
t = 1−X−1

t+ ∆AX,gt+ ≤ 1.

Thus we conclude that the process (C̄u,t)t∈[u,∞] is positive and bounded by one. Therefore, for
any u, the process (Q̄u,t = C̄u,tXt)t∈[u,∞] is positive. Next, we show that, for any u the process
(Q̄u,t)t∈[u,∞] is a uniformly integrable martingale. To this end, from the Itô formula we obtain

dQ̄u,t = −C̄u,t− dMX
t

which is a uniformly martingale since C̄u,t is bounded by one and MX is uniformly integrable. For
ease of notation we set

Yt := 1−
∫

(0,t]

( pXs)
−1 dAX,rs −

∫
[0,t)

(Xs+)−1 dAX,gs+ .

From the form of the stochastic exponential, we have

C̄u,t = exp

{
Yt − Yu −

1

2

∫
(u,t]

d 〈Y c, Y c〉s

} ∏
u<s≤t

(1 + ∆Ys)e
−∆Ys

∏
u≤s<t

(1 + ∆+Ys)e
−∆+Ys .

From the above, it is clear that C̄u,t = C̄0,tC̄
−1
0,u and C̄u,u = 1.

Strictly speaking the random field C̄u,t is not a multiplicative system associated with X since it
is not right continuous in u. Therefore we need to regularise the random field by considering for all
u ≤ t and ε > 0

C̄−1
0,u+εC̄0,t+εXt+ε = Xu+ε + C̄−1

0,u+ε

∫
(0,t+ε]

C̄0,s−dM
X
s − C̄−1

0,u+ε

∫
(0,u+ε]

C̄0,s−dM
X
s .

The right continuity of the stochastic integral gives for all t ≥ u

C̄−1
0,u+C̄0,t+Xt+ = Xu+ − C̄−1

0,u+

∫
(0,t]

C̄0,s−dM
X
s + C̄−1

0,u+

∫
(0,u]

C̄0,s−dM
X
s

= Xu+ −
∫

(u,t]

C̄−1
0,u+C̄0,s−dM

X
s .

We note that for s > u, the term C̄u+,s− = C̄−1
0,u+C̄0,s− is positive and bounded by one. Therefore

Cu,t := C̄−1
0,u+C̄0,t+ is a multiplicative system associated with the submartingale X+.
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Corollary 3.11 For any optional submartingale X, there exists an optional multiplicative system
associated with X+.

Proof: We set Cu,t := limε↓0 C
ε
u,t where Cεu,t is defined in Lemma 3.10 for Xε = X + ε. It is

obvious that the family Cεu,t is non-increasing in t and non-decreasing in u. Moreover,

EP
[
X∞Cu,∞

∣∣Fu] = EP

[
lim
ε↓0

(X∞ + ε)Cεu,∞
∣∣Fu] = lim

ε↓0
EP

[
Xε
∞C

ε
u,∞

∣∣Fu]
= lim

ε↓0
(Xu+ + ε) = Xu+

where we used the monotone convergence theorem and the third equality follows from Lemma 3.10.

Remark 3.12 The significance of the above results is of two folds. Firstly, the existence of the
optional multiplicative system Cu,t associated with X+ generalises the Madan-Roynette-Yor formula
(see for example [39]). That is the Madan-Roynette-Yor formula or the equality

E[1{τt<u}(K − St)
+|Fu] = (K − Su)+ (3.8)

where K > 0 is the strike and S is the stock (a continuous uniformly integrable martingale),
can be retrieved as a special case of (3.6) as soon as one sets5 X∞ = Xt := (K − St)

+ and
Cu,∞ = Cu,t = 1{τt<u} where τt = sup {s ≤ t : Xs = 0}.

In general equation (3.6) extends the equality E[1{τ∞<u}X∞|Fu] = Xu (resp. E[1{τ∞<u}X∞|Fu] =
Xu+) where X is a (resp. optional) semimartingale of class-(Σ) and τ = τ∞ = sup{s : Xs = 0}. For
more details, we refer the reader to Cheridito et al. [4], Li [28] and the references within.

Secondly, given a valid Azéma optional supermartingale X, the random field C̄u,t constructed in
Lemma 3.10 can be used to construct a F-conditional distribution which is consistent with X.

3.3.2 Application to construction of random time

Given an adapted integrable càdlàg non-decreasing process B such that Xt := 1−E[B∞ −Bt− | Ft]
is positive, we present a method to construct a random time τ such that the dual optional projection
of A := 1J τ,∞J is given by B. As in the Cox-construction of random times, we suppose that there
exists an uniformly distributed random variable U on [0, 1] which is independent of F∞. We note
that since B− is left continuous we have B− = Bc +Bg.

Let Xε := X + ε, one can construct a random field C̄εu,t as done in (3.10) and by applying
monotone convergence theorem as done in Corollary 3.11 to show that there exists a random field
C̄u,t such that XtC̄u,t is a martingale for u ≤ t. Furthermore for a fixed t, C̄u,t is left continuous in
u, since C̄εu,t is left continuous in u and this property is preserved in the limit.

The important observation is that Ft(u) = XtC̄u+,t is an F-conditional distribution which is
consistent with the valid Azéma optional supermartingale 1 − X = o(B∞ − B−). Therefore we
can define τ := inf {u ≥ 0 : X∞C̄u,∞ > U} and for every t ≥ 0, we have {τ < t} = {X∞C̄t,∞ > U}.
From (3.7) and independence of U , we have

P(τ < t | Ft) = E[X∞C̄t,∞ > U | Ft] = E[X∞C̄t,∞| Ft] = Xt.

We deduce from the uniqueness of the Doob-Meyer-Mertens-Gal’cǔk decomposition, B− = (Ao)−
and since both B and Ao are càdlàg (or one can apply Theorem 5.30 in [12]) we obtain B = Ao.

We now provide a counter example to Proposition 3.3 in Coculescu and Nikeghbali [6].

5We assume that all processes are stopped at t.
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Example 3.13 Let K be some continuous non-decreasing process which takes value zero at time
zero and limt→∞Kt =∞, We consider the non-decreasing continuous process

Yt := λ(t ∧ T1) +Kt

where T1 be the first jump of a Poisson processN with parameter λ. For any continuous differentiable
cumulative distribution function F : R+ → [0, 1] with F (0) = 0 and bounded derivative f = F ′ > 0,

F (Yt) = λ

∫
(0,t]

f(Ys)d(s ∧ T1) +

∫
(0,t]

f(Ys)dKs

=

{
−
∫ t

0

f(Ys)d (Ns − λs)T1

}
+

{∫ t

0

f(Ys)dN
T1
s

}
+

{∫ t

0

f(Ys)dKs

}
=: µdt + ζdt + ζct

where µd is a purely discontinuous martingale, ζd a purely discontinuous non-decreasing process and
ζc a non-decreasing continuous process. The process F (Y ) is a continuous submartingale valued in
[0, 1] such that F (Y0) = 0 and F (Y∞) = 1.

To construct a random time τ whose Azéma supermartingale is equal to 1− F (Y ), we consider
the optional submartingale

F̃ = µd + ζd− + ζc .

By using Lemma 3.10 with the optional submartingale F̃ , we can construct a random time τ which
has the property that P(τ < t | Ft) = F̃ and P(τ ≤ t | Ft) = F (Yt). The constructed random time
τ has a continuous Azéma supermartingale but does not avoid the first jump time of the Poisson
process N since the dual optional projection of τ is given by

Aot = ζdt + ζct =

{∫
(0,t]

f(Ys)dN
T1
s

}
+

{∫
(0,t]

f(Ys)dKs

}
.

To this end we point out that it is not difficult to include a continuous martingale component in F .

Moreover, the constructed time τ is an example of a random time where a non-increasing Azéma
supermartingale does not imply that the random time is a pseudo-stopping time. It is also an
example of a strict pseudo-stopping time which is not a pseudo-stopping time and do not satisfy the
immersion hypothesis.

3.3.3 Extension of the natural-model

From (3.7), for every u ≥ 0, we see that if (1− Z̃−)(1− Z̃) > 0, then the dynamics of the constructed
F-conditional distribution satisfies the following linear differential equation

dFt(u−) = −Ft−(u−)

1− Z̃t−
dmt, t ≥ u

Fu(u−) = 1− Z̃u.

In the following, by mimcing the predictable case presented in Song [40] we present an optional
extension of the \-model or natural model. That is for a given F-local martingale Y and real valued
Borel function σ, we consider a non-linear extension of the above system of equations given by

dXu,x
t = −Xu,x

t− (1− Z̃t−)−1dmt + σ(t,Xu,x
t− )dYt, t ≥ u (3.9)

Xu,x
u = x .

where x is an Fu-measurable random variable.
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Then given the appropriate conditions on the pair (σ, Y ), the solution to the above system of

equations with initial condition 1 − Z̃ (after regularisation in u) should provide a model of the F-

conditional distribution distribution which is consistent with 1− Z̃. That is sups<uX
s,1−Z̃s

t should

provide a model for Ft(u−) = P(τ < u | Ft), which satisfies the property that Fu(u−) = 1 − Z̃u =

sups<uX
s,1−Z̃s
u .

Lemma 3.14 Given an F-local martingale N such that ∆N > −1 and an F-adapted non-decreasing
process V , the non-negative solution to the following làglàd linear stochastic differential equation

Y u,xt = x+

∫
]u,t]

Y u,xs− dNs +

∫
[u,t[

dVs, t ≥ u (3.10)

is given by

Y u,xt = Eu,t(N)
(
x+

∫
[u,t[

[Eu,s(N)]−1dVs

)
, t ≥ u

where Eu,t(N) := Et(N)[Eu(N)]−1.

Proof: For fixed u ≥ 0, it is sufficient to apply integration by parts formula to Eu,t(N)Ku,t where
Ku,t = x+

∫
[u,t[

[Eu,s(N)]−1dVs. By noticing that Ku,t = Ku,t− = Kg
u,t, we obtain

Eu,t(N)Kt = x+

∫
[u,t[

Eu,s(N)dKg
u,s+ +

∫
]u,t]

Ku,s−Eu,s−(N)dNs

= x+

∫
[u,t[

dVs +

∫
]u,t]

Eu,s−(N)Ku,s−dNs.

By standard results on stochastic exponentials, the solution is non-negative if ∆N > −1.

For simplicity, let us set dm̃s = −(1− Z̃s−)−1dms then we have

1− Z̃t =

∫
(0,t]

(1− Z̃s−)dm̃s +Aot− (3.11)

which satisfies equation (3.10). To this end, we present below similar hypothesis on the pair (σ, Y )
as those given in hypothesis 3.7 or on page 8 of Song [40]. The difference here is that we consider

(1− Z̃−) and dm̃t = (1− Z̃t−)−1dmt instead of (1− pZ) and dM̃t = (1− pZt)
−1dMt respectively.

Hypothesis 3.15 For every u ≥ 0, on the interval [u,∞[, we assume that the pair (σ, Y ) satisfies

(i) for given initial point x, the process σ(·, Xu,x
− )(1 − Z̃− − Xu,x

− )−11{1−Z̃−−Xu,x
− 6=0} is integrable

with respect to Y and

∆m̃− σ(·, Xu,x)(1− Z̃− −Xu,x
− )−11{1−Z̃−−Xu,x

− 6=0}∆Y > −1,

(ii) the process −σ(·, Xu,x)(Xu,x
− )−11{−Xu,x

− 6=0} is integrable with respect to Y and

∆m̃+ σ(·, Xu,x
− )(Xu,x

− )−11{−Xu,x
− 6=0}∆Y > −1,

(iii) given another F-adapted process X ′ taking values in [0, 1], the process −(σ(·, X ′−)−σ(·, Xu,x
− ))(X ′−

X−)−11{X′−Xu,x
− 6=0} is integrable with respect to Y and

∆m̃− (σ(·, X ′−)− σ(·, Xu,x
− ))(X ′− −X

u,x
− )−11{X′−−X

u,x
− 6=0}∆Y > −1.
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Lemma 3.16 Suppose that the pair (σ, Y ) satisfies Hypothesis 3.15. Then,

(i) if x ≤ 1− Z̃u, one has Xu,x
t ≤ 1− Z̃t for all t ∈ [u,∞[,

(ii) if x > 0, one has Xu,x
t > 0 for all t ∈ [u,∞[,

(iii) if x ≤ y, one has Xu,x
t ≤ Xu,y

t for all t ∈ [u,∞[.

Proof: By taking the difference between (3.11) and (3.5) we obtain

1− Z̃t −Xu,x
t = 1− Z̃u − x+

∫
]u,t]

(1− Z̃s− −Xu,x
s− )

[
dm̃s +

1{1−Z̃s−−Xu,x
s− 6=0}σ(s,Xu,x

s− )

(1− Z̃s− −Xu,x
s− )

dYs

]
+Aot−

= 1− Z̃u − x+

∫
]u,t]

(1− Z̃s− −Xu,x
s− ) dÑs +Aot−.

The result then follows from Lemma 3.14 and Hypthesis 3.15 (i). Similarly (ii) follows from Lemma
3.14 and Hypthesis 3.15 (ii), and finally (iii) follows from Lemma 3.14 and Hypothesis 3.15 (iii).

Theorem 3.17 Suppose that the pair (σ, Y ) satisfies Hypothesis 3.15 and that Xu,x
t is a family of

solutions to the system of stochastic differential equations (3.9). Let us set Mu
t := Xu,1−Z̃u

t , then
the family

Ft(u−) :=

{
1− Z̃u t = u

sups<uM
s
t ∧ (1− Z̃t), t ∈]u,∞[

is an F-conditional distribution which is consistent with 1− Z̃.

Proof: For all F-stopping times T such that 0 < u ≤ T ≤ ∞, we have

0 ≤ E[Mu
T − sup

s<u
Ms
T ∧ (1− Z̃T )] = E[Mu

T − sup
s<u

Ms
T ]

= E[1− Z̃u]− sup
s<u

E[1− Z̃s]

= Aou− −Aou− = 0.

The above computation implies that Mu and sups<uM
s are indistinguishable on [u,∞[ and therefore

the map [0, t] 3 u→Mt(u) is left continuous and non-decreasing function.

To this end, we can proof an analogy of Theorem 3.7 in Song [40] which gives sufficient conditions
for Hypothesis 3.15 to be satisfied. However we do not do it here, and as an example, one can take
Y to be a continuous F-local martingale, σ(t, x) = x · f(1− Z̃t− − x) where f is bounded, Lipschitz
continuous and f(0) = 0. Then Hypothesis 3.15 will be satisfied.
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