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Abstract

There is canonical partition of set of critical values of smooth function into pairs ”birth-death” and a separate

set representing basis in Betti homology, as was established in S.Barannikov ”The Framed Morse complex and its

invariants” Adv. in Sov. Math., vol 21, AMS transl, (1994). This partition arises from bringing the gradient (Morse)

complex to so called ”canonical form” by a linear transform respecting the filtration defined by the order of the critical

values. These ”canonical forms” are combinatorial invariants of R� filtered complexes. Starting from the beginning

of 2000s these invariants became widely used in applied mathematics under the name of ”Persistence diagrams” and

”Persistence Bar-codes”. The canonical form of an R� filtered complex is the partition of the set of critical values

(indices of filtration) into ”birth-death” pairs and a separate set representing homology of the complex. The “canonical

form” invariants are obtained by action of upper-triangular matrices, which reduces the R� filtered complex to the

simplest form. In this note I give a short introduction into the subject of these invariants. I also propose application

of these invariants to artificial neural nets.

Notations.

Let F denotes a field, in most our examples below F = R the field of real numbers.

1 Chain complexes.

Recall that a chain complex (C⇤, @⇤) is a sequence of vector spaces over field F and linear operators

! C
j+1

@j+1! C
j

@j! C
j�1

! . . . ! C
0

which satisfy

@
j

� @
j+1

= 0

The j� th homology of the chain complex (C⇤, @⇤) is the quotient

H
j

= ker (@
j

) /im (@
j+1

) .

1.1 Morse complex

Let f : Mn ! R , f 2 C1 , is a generic function such that its sublevel sets {x | f(x)  c} are compact. Then the critical

points p
↵

, df |
Tp↵

= 0 , are isolated, and near such p
↵

the function can be written as f =
P

j

l=1

�(xl)2 +
P

n

l=j

(xl)2 .

Let g be a generic metric. Then define

C
j

= �
index(p↵)=j

⇥

p
↵

, or(T�
p↵
)
⇤

where T
p↵ = T�

p↵
� T+

p↵
is decomposed with respect to the quadratic forms @2f and g .
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The di↵erential is defined as

@
j

[p
↵

, or] =
X

index(p�)=j�1

[p
�

, or] #M(p
↵

, p
�

)

where #M(p
↵

, p
�

) is the number of trajectories

M(p
↵

, p
�

) =

⇢

� : R ! Mn | �̇ = �(grad
g

f)(�(t)), lim
t!�1

= p
↵

, lim
t!+1

= p
�

�

/R

counted with sign given by the ratio of the orientation or(T�
p↵
) transported along the trajectory and or(T�

p�
) ⌦

lim
t!+1 �(t)⇤or(R) .
The di↵erential satisfies @

j

�@
j+1

= 0 . It follows from considering the boundary of 1� dimensional families M(p
↵

, p
�

)

with index(p
�

) = index(p
↵

)� 2 , see [B94] and references therein.

2 Canonical forms (=persistence diagrams/barcodes) of R�filtered chain

complexes.

Let C⇤ is an R� filtered chain complex, an increasing sequence of subcomplexes F
s

C⇤ ⇢ F
r

C⇤ , s < r , indexed by finite

set of real numbers, F
max

C⇤ = C⇤ . It can come with a basis compatible with filtration so that each subspace F
r

C
j

is

the span
D

e
(j)

1

, . . . , e
(j)

ir

E

.

Let C⇤ , {e(j)
i

}i21,...,dimF Cj

j2{0,1,...} be a chain complex together with bases in C
j

.Consider arbitrary upper-triangular changes

of bases in C
j

.

Definition 2.1. Let us call a chain complex C̃⇤ with ordered bases {ẽ(j)
i

}i21,...,dimF Cj

j2{0,1,...} a complex in “canonical form” if

1. For any basis element ẽ
(j)

i

either @ẽ
(j)

i

= 0 or @ẽ
(j)

i

= ẽ
(j�1)

i

0 .

2. In the latter case, for two di↵erent basis elements ẽ
(j)

i1
6= ẽ

(j)

i2
) @ẽ

(j)

i1
6= @ẽ

(j)

i2
.

Theorem 2.2. ([B94]) An R� filtered chain complex C⇤ with bases {e(j)
i

}i21,...,dimF Cj

j2{0,1,...} compatible with the filtration can

be reduced by upper-triangular changes of bases A(j) 2 GL (C
j

)

A(j) =

0

B

B

B

B

B
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f
11

f
12
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C

C

C

C

C

A

to a complex in the “canonical form”. This complex in the “canonical form” is determined uniquely by the original

R� filtered complex .

Proof. For reader convenience we reproduce here the proof from §2,[B94]. Suppose that for p = j and m  i , or p < j

and all m , @e
(p)

m

has the required form. I.e. either @e
(p)

m

= 0 , or @e
(p)

m

= e
(p�1)

l(m)

, where l(m) 6= l(m0) for m 6= m0 .

Let’s simplify @e
(j)

i+1

. Let

@e
(j)

i+1

=
X

k

e
(j�1)

k

↵
k

. (1)

Let’s move all the terms with e
(j�1)

k

= @ej
q

, q  i , from the right to the left in (1). I get

@(e(j)
i+1

�
X

qi

e(j)
q

↵
k(q)

) =
X

k

e
(j�1)

k

�
k
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If �
k

= 0 for all k , then define ẽ
(j)

i+1

= e
(j)

i+1

�
P

qi

e
(j)

q

↵
k(q)

. Then @ẽ
(j)

i+1

= 0 and for m  i and p = j and, or p < j

and all m , @e
(p)

m

continues to have the required form. Otherwise let k
0

be the maximal k with �
k

6= 0 . Then

@(e(j)
i+1

�
X

qi

e(j)
q

↵
k(q)

) = e
(j�1)

k0
�
k0

+
X

k<k0

e
(j�1)

k

�
k

, �
k0

6= 0.

where k
0

6= k(q) for q  i . Since @e
(j�1)

m

has the required form for all m , it follows that @e
(j�1)

k

= 0 for any k such

that �
k

6= 0 . Define

ẽ
(j)

i+1

=

0

@e
(j)

i+1

�
X

qi

e(j)
q

↵
k(q)

1

A /�
k0
, ẽ

(j�1)

k0
= e

(j�1)

k0
+

X

k<k0

e
(j�1)

k

�
k

/�
k0
.

Then @ẽ
(j)

i+1

= ẽ
(j�1)

k0
and for p = j and m  i , or p < j and all m , @e

(p)

m

continues to have the required form. If the

complex has been reduced to canonical form up to index j , then reduce similarly the expression for @e
(j+1)

1

and so on.

Let us prove the uniqueness of the canonical form of C⇤ over F . It follows essentually from the uniqueness at each

step of the described algorithm for calculation of canonical form. Let
n

a
(j)

i

o

,
n

b
(j)

i

o

be two ordered bases of C⇤ for the

two canonical forms. Assume that for all indexes p < j and all n , and p = j and n  i the canonical forms agree, i.e.

if da
(p)

n

= a
(p�1)

k

then @b
(p)

n

= b
(p�1)

k

, or similarly if @a
(p)

n

= 0 then @b
(p)

n

= 0 . Let @a
(j)

i+1

= a
(j�1)

m

and @b
(j)

i+1

= b
(j�1)

l

with m > l . Note that

b
(j)

i+1

=
X

ki+1

a
(j)

k

↵
k

, b
(j�1)

l

=
X

nl

a(j�1)

n

�
n

where ↵
i+1

6= 0 , �
l

6= 0 . Hence

@

0

@

X

ki+1

a
(j)

k

↵
k

1

A =
X

nl

a(j�1)

n

�
n

,

or @
⇣

P

ki+1

a
(j)

k

↵
k

⌘

= 0 . Therefore

@a
(j)

i+1

=
X

nl

a(j�1)

n

�
n

/↵
i+1

�
X

ki

@a
(j)

k

↵
k

/↵
i+1

On the other hand @a
(j)

i+1

= a
(j�1)

m

, with m > l , and @a
(j)

k

for k  i are either zero or some basis elements di↵erent from

a
(j�1)

m

. This gives a contradiction and the canonical forms agree for p = j and n = i + 1 . Similarly if @a
(j)

i+1

= a
(j�1)

m

and @b
(j)

i+1

= 0 , then, analogously, @
⇣

P

ki+1

a
(j)

k

↵
k

⌘

= 0 , where ↵
i+1

6= 0, @a
(j)

i+1

= �
P

ki

@a
(j)

k

↵
k

/↵
i+1

and, since

@a
(j)

k

for k  i are either zero or some basis elements di↵erent from a
(j�1)

m

this gives again a contradiction. This proves

the uniqueness of the canonical form of C⇤ over F .

Remark 2.3. The “canonical form” of an R� filtered complex can be described as the partition of the set of real numbers

which are indexes of the filtration into pairs “birth”-”death” plus a separate set of indexes representing basis in homology.

In many natural cases the critical values are the natural indexes and this theorem gives such canonical decomposition of

the set of crtitical values into pairs “birth”-”death” plus a separate set of critical values (“spectral invariants”) representing

a basis in homology.

2.1 “Canonical form” invariants of Morse complexes.

Consider the complex C⇤(f, g) associated with a Morse function f and its gradient flow with respect to metric g . The

basis elements, given by critical points in each C
i

are naturally ordered by the heights of the critical values. For generic

function the critical values are all distinct. So the complex C⇤(f, g) is a chain complex with ordered bases.

Theorem 2.4. ([B94]) The canonical form of the Morse complex C⇤(f, g) with ordered generators is invariant with

respect to change of the metrics.
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Proof. The only metamorphoses of the complex C⇤(f, gt) in a generic 1-parameter family of metrics g
t

arise when there

is an anti-gradient trajectory leading from a critical point e
(j)

i

to a critical point e
(j)

k

of the same index and with lower

critical value. The change of the complex under such metamorphosis is described by the change of the basis given by

elementary upper-triangular matrix: ẽ
(j)

i

= e
(j)

i

+ e
(j)

k

. Now the invariance follows from the uniqueness of the “canonical

form” of the complex with ordered generators.

2.2 Classification and structure theorems for R�filtered complexes.

The theorem 2.2 gives also the classification and the structure theorems for R� filtered chain complexes:

Corollary 2.5. (Classification) Two R� filtered chain complexes are isomorphic if and only if their “canonical form”

invariants coincide.

Corollary 2.6. (Structure theorem) The category of R� filtered chain complexes is semi-simple: any R� filtered chain

filtered complex over a field F can be brought by a linear transformation preserving the filtration to “canonical form”, a

canonically defined direct sum of R� filtered complexes of two types: one-dimensional complexes with trivial di↵erential

d(e
ti) = 0 and two-dimensional complexes with trivial homology d(e

sj ) = e
rj .

2.3 Algorithm.

The proof of the theorem 2.2 from (§2.1, [B94]) is constructive and contains the algorithm for calculation of the “canonical

form”.

Corollary 2.7. The algorithm for calculation of the “canonical form” invariant was described in (§2.1, [B94]). The

algorithm takes as input an R� filtered chain complex and gives as output its “canonical form”, a canonically defined

direct sum of filtered complexes of two types: one-dimensional complexes with trivial di↵erential d(e
ti) = 0 and two-

dimensional complexes with trivial homology d(e
sj ) = e

rj . It acts via the action by upper-triangular matrices.

2.4 Deformations and stability of the canonical form.

Corollary 2.8. (Stability). Under continuous deformation of the filtration the canonical form is changed by the natural

shifting of the indices of the filtration for each one-dimensional complexes with trivial di↵erential d(e
ti) = 0 and two-

dimensional complexes with trivial homology d(e
sj ) = e

rj , and by removing or/and adding a two-dimensional complexes

with trivial homology d(e
sj ) = e

rj on the same level: r
j

= s
j

.

It is straightforward then to express this stability stattement in "� � language.

2.5 Comparison with “persistence diagrams” or “persistence bar-codes”.

There are three equivalent visualizations of the same invariants. ”Persistence Bar-codes”/”Persistence di-

agrams” were introduced in the beginning of 2000s (H.Edelsbrunner, J.Harer, A.Zamorodian “Hierarchical

Morse complexes for piecewise linear 2-manifolds” Proc. of Symp on Comput Geometry, June 2001).

4



There are more than ten software packages for computing these invariants of a finite filtration. The principal algorithm

is based on the bringing of the filtered complex to its canonical form by upper-triangular matrices from (§2.1, [B94]).

3 The invariants d(pi) of local minima.

I give in this section three equivalent definitions of the invariants d(p
i

) 2 R
>0

attached to local minima p
i

.

3.1 Pairs “minimum - saddle point of index 1” in the canonical form.

The 0� th homology of the gradient (Morse) complex of l are 1� dimensional. Each local minimum p
i

which is not

global is paired in the canonical form with an index 1 saddle point q
i

of “death” type:

p
i

$ q
i

.

The invariant d(p
i

) 2 R
>0

of the local minimum p
i

is by definition the di↵erence of the critical values

d(p
i

) = l(q
i

)� l(p
i

).

3.2 New global minimum on one of connected component of {x | l(x)  l(qi)� ✏} .

If q
i

is a saddle point of the “death” type then the number of connected components of the set {x | l(x)  l(q
i

)� ✏} is

equal to the number of connected components of the set {x | l(x)  l(q
i

) + ✏} increased by 1 . The restriction of l to

each connected component has its global minimum. The minimum p
i

paired with q
i

is the new global minimum of the

restriction of l to one of the connected component of the set {x | l(x)  l(q
i

)� ✏} .

3.3 The lowest saddle on a way to a lower minima.

The index 1 saddle q
i

paired with a local minimum p
i

is the lowest saddle which belongs to a 1-parameter path

connecting p
i

with a lower local minimum. In other words d(p
i

) is the minimal height which must be climbed from the

local minimum p
i

in a 1-parameter path from p
i

to a lower local minimum.

4 Characterisation of generalisability and trainability of artificial neural

nets via the invariants d(pi) of local minima of loss.

I propose the following characterisation of generalisability of the neural net. In the previuos section I have associated

with each local minimum p
i

the positive real number d (p
i

) . The generalisability of the neural net is good if and only if

for any local minimum p
i

with low l(p
i

) the invariant d (p
i

) is small:

(l(p
i

)� l
min

) is small ) d (p
i

) is small
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Arbitrary local minima with big value of d (p
i

) a↵ect trainability of the neural net. The bigger d (p
i

) at some local

minima p
i

is, the higher are the chances that the trajectory of gradient descent may get stucked at p
i

.

5 Calculation of the invariants d(pi) of local minima via “1-parameter

gradient descent”.

To find local minima of the loss function in situations when number of parameters is very big the gradient descent is

applied successfully. A kind of “1-parameter gradient descent” can be applied in this situation to determine the invariants

d(p
i

) of local minima. Each index 1 saddle point has two descending anti-gradient trajectories going to two local minima.

Let s(t) be a path between two local minima p and p0 . The curve is deformed by the vector field �grad l . Namely

apply the modified gradient descent with respect to �grad
n

l (t) , the normal component of �grad l at s(t) , to s(t) , or

more precisely to a set of points approximating s(t) . The maximum value of the loss function on the curve

l
max

(s) = max
t

l (s (t))

decreases in each iteration. In the simplest case the curve converges to a curve s
lim

(t) passing through one index-one

saddle point and consisting of two anti-gradient trajectories each going from the saddle to one of two minima. In general

the curve converges to a curve s
lim

(t) passing through j index-one saddle points and consisting of 2j anti-gradient

trajectories each going from one of the index-one saddles to one of several minima. The saddles correspond to local

maxima of the loss function on the limiting curve. The maximum of the loss l on such limiting curves connecting p with

a lower minimum p0 minus l (p) is the invariant d (p) :

max
p

0
:l(p

0
)<l(p)

⇣

max
t

l (s
lim

(t))
⌘

� l(p) = d(p)

6 Behaviour of the invariants d(pi) under adding of extra layer.

Proposition 6.1. The invariants d(p
i

) of the loss function of the neural nets decrease with adding of an extra layer.

Proof. It follows from the fact that the loss as function of the added weights and biases of the extra layer is picewise

quadratic and everywhere nonnegative.
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