unilateral problems: the symmetric case. Let H be a real Hilbert space. We denote by (u, v) the scalar product in H and by JJuJJ the norm of the vector u of H. Let B(u, v) be a symmetric bounded bilinear form defined on H xH. From the elementary theory of Hilbert spaces it is well known that there exists one and only one symmetric, bounded linear operator T from H into H such that B(u, v) = ( Tu, v) for any u and v of H. Let N( T) be the kernel of the operator T, i.e.

N(T)={v; T(v) =O}.

1 See this volume, pp. 347-389.

1

3 Suppose that B(u, v) is a symmetric bounded bilinear form and B(v, v) �0. Suppose that {w,.} converges weakly to the limit w. We have B(w,., w,.) = B(w, w) + 2B(w, w,.-w) + B(w -w, w -w). Since B(w,, -w, w11 -w) �o. lim B(w, w11 -w) = 0 , then n n n�oo minlim B(w11, w11) �B(w, w).

n-+oo

Of course the hypothesis of the symmetry of B(u, v) is not restrictive. In fact, if B(u, v) is not symmetric, we can apply the argument to t{B(u, v) + B(v, u)}.

The linear subspace N(T) is also the kernel of the nonnegative quadratic form B(v, v), i.e.

N( T) ={v; B(v, v) = O} . Let Q be the orthogonal projector of H into the kernel of B(v, v) and set P= l -Q (I = identity operator) . We shall assume the following hypotheses.

(I) Semi-coerciveness hy pothesis: B(v, v) �ci1 Pv ll 2 VvEH, where cis a positive constant independent on v.

(II) Th e kern el of the quadratic form B(v, v) is finite dimensional.

(1.1)

Let F(v) be a bounded linear functional defined on Hand V a closed convex set of H. 2

1.I Let us consider the functional f(v ) = t B(v, v) -F(v) . Th ere exists in V a vector u which minimizes f(v) in V, if and only if there exists a solution of the unilateral pr oblem . B(u, vu) �F(vu) , uEV, VvEV.

(1 .2)

If f(v) has a minimum for v =u, given any vEV, the function of t (O �t�1) g(t) = f[u + t(vu) J has a minimum for t=O. The condition g ' (O) �0 exactly coincides with (1.2). Conversely if (1 .2) is satisfied for any vEV, we have

f(v) -f(u) =f[u + (v -u) ] -f(u) = B(u, v -u) -F(v -u) + i B(v -u, v -u) �0.
Remark that in the proof of this lemma only the condition B(v, v) � 0 has been used.

Let U be a point set of H containing some u =I= 0. Let us consider for any uc: U, u=!= 0, the set of nonnegative numbers t such that tilull-1u is contained in U. We shall denote by p (u, U) the supremum of this set, i.e.

p (u, U) = sup{t; uE U, u=l= 0, tll u l l -1 u E U}.

If Tis a mapping from H into Hand U a set of H, by T[ UJ we shall indicate the image of U under the mapping T.

Let N(F) be the kernel of the functional F, i.e.

Set N(F) = {v ; F(v) =O}.

L= N(F) nN( T) , N(T)=L (:£>L1•

Let Q be the orthogonal projector of H onto L. Set P =l -Q. Let Q11 be the orthogonal projector of H onto L1.

1.II The functional f(v) has an absolute minimum in V if there exists u0E V such that the fo llowing conditions are satisfied (i) F(e) < O for eEN( T) n V(u 0), p{Q1 f!, Q1[N(T) n V(u 0) ] }= + oo. (ii) The set P [V(u 0) ] is closed.

Set Q=l -P. Since L is a subspace of N( T) , we have Q <Q and therefore P > P. Let i be the infimum (finite or not) of J(v) in V.

Let {u , .} be a minimizing sequen c e for J(v) in V, i.e.

lim..F(u , .)=i, u,.EV.

n�oo Set z , .=u,.-u0• The sequence {z,.} is minimizing for the functional J(w+u0) for wE V(u0). Suppose we have proved that {P z , .} contains a bounded subsequence.

Then we may extract a subsequence, which we still denote by {z , .}, such that {Pz , .} converges weakly to some limit. This limit must belong to P[V(u0) ], since this set is closed and convex and, in consequence, weakly closed. Let P z be the weak limit of {Pz , .}. Since F(Q v)=O, we have J(z,.+u0)=J(P z, .+u0).

On the other hand, since B(v, v) is lower semicontinuous with respect to weak convergence3 and we may suppose zE V(u0), we have i = lim J( Pz,.+u0) �J(Pz+u0) =J (z+u0) �i.

n�oo Assuming u=z+u0, we have uEV and J(u)=i. Thus we have to prove that, from the sequence {Pz, .}, we may extract a bounded subsequence. Set a,.=I I Pz,.ll and suppose lim a,.= + oo. We have, using (1 .1) n�oo ci 1 P z ,.l l 2 � B( z ,., z,.) = 2J(u,.)-2J(u0)+2F(z,.)-2B(u0, z , .).

(

Set w,. = a;; 1 z,. . We have, denoting by c1 a suitable constant, c a ! II Pw" 11 2 � C 1 + 2 ( IIFII+ II T II IIuoll ) a,. IIP w ,. ll which implies lim I I Pw, . II =O. We have Q1 =P-P. Q 1 is a projector which is orthon-+oo gonal to P. Hence 11P w,. ll2= 11P w, .ll2+ 11 Q t w,. ll2=

SinceQ1 w,.EN ( T ), we may extract (because of Hypothesis (II)) from {w, .} a sub sequence, which we still denote by {w,.}, such that {Q 1 w,.} converges (strongly)

to some vector (} belonging to Q 1 [ N ( T)] and such that II (} II = 1. We have z,. E V ( u0).

Moreover {O}EV(u0). Hence, for any t>O and n large enough, t w, .EV(u0). Then tPw, .EP [V(u0)] and, for condition ii), t e= lim tPw, .EP [V(u0)].

n�oo Let e' be a vector of V(u0) such that P e'=e.

We have e'=e+(e'-e), (}EQ 1 [N( T) ], e'-eEQ[N(T)]; thus e'EN( T)n V(u0) andF(e) =F(e)+F(e' -e) = F(e') < O.

From (1. 3) we deduce the inequality 2 ca n i 1Pw nll 2 ;;::; ; a [.f(u n ) -.f(u0) ] + 2F(Pw n ) +2F(Q1 wn )-2B(u0 , Pwn ), n which is absurd since the minlim of the left hand side is nonnegative while the max lim of the right hand side is negative.

Re mark. If the set N(T) n V(u0) is bounded [and ii) holds], the existence of the minimum holds for any given F. In particular this condition is satisfied if V is bounded. In this case the condition (1.1) is not needed, but only B(v, v) �0. In fact, if V is bounded, any minimizing sequence is bounded and, in consequence, weakly compact.

1.III If .f(v) has a minimum in V, for any u0 E V and any e such that (!E N( T) n V(u0) , p{Q1 (!, Q1 [N(T) n V(u0) ]} =+ oo one must have F(e) < 0.

Let e(t) be such that Q1 e(t)=tQ1e, e(t) EN( T)nV(u0)t>O. From (1.2) we have : B (u, e(t) +u0-u ) �F [e (t) + u0-u ]. Since F[e (t ) ]= t F(e )=l=O, we have tF(e) ;;:=;; B(u, u0) -B(u, u) +F(u -u0), which implies F(e) <O. This theorem proves that condition i) of Theorem 1.III is necessary for the existence of the minimum. Let us prove, by an example, that, if condition ii) does not hold, the theorem could fail to be true.

Let H be a two dimensional space, and let v 1 and v2 be two orthogonal unit vectors of H. Assume B=(u, v 1) (v, v 1). Let V be the convex set defined by the conditions Assume that 0 ;;::; ; (v, v 1) < 1 (v, v2) [1 -(v, v 1) ] � (v, v 1) .

F(v) = a(v, v 1) + b(v, v2) with a� 1. The kernel N(T) is defined by the condition (v, v 1) = 0. For any choice of u0 the set N(T) nV(u0) is formed by the vectors e such that (e,v1) = 0, ((!, v2) �a, where a is a constant depending on u0 • If b=!=O the condition F(e) <O can be satisfied only if we assume (u0 , v2) [ 1 -(u0 , v 1) ]= (u0 , v 1).

In this case F(e) < 0 is equivalent to b < 0. In the case when b < 0 the space L coincides with {0}, and the functional .f(v) has a minimum in V, as is easily checked by elementary arguments. If b=O, the space LM is the space ( v, v 1) = 0. Then the set P [V ( u0) J is defined by the conditions (v, v2) = 0,cx. 2 ;;::; ; (v, v 1) < 1cx. 2

and it is not closed, i.e. condition ii) of Theorem 1.III is violated. It is easily seen that in this case .f(v) has no minimum in V.

1.IV If for any wE P[H J th ere exists a (!EN(T) such that w+eE V, and if F(e) =0 for every eEN( T) , then .f(v) has a minimum in V and the vector u which minimizes Jf(v) in V minimizes .f(v) in the whole H.

The existence of the vectors u and u0 minimizing .f(v) respectively in V and in H, follows from Theorem 1.II.

Let eEN(T) and Pu0+eEV. We have .f(u0) = f(Pu0) =f(Pu0 + e) �.f(�t) ; hence .f(u) = .f(u0).

1.V If u minimizes ...f (v) in V, the vector Pu is uniquely determined by F. Any other vector u' minimizing ...f(v) in Vis given by u'=u+e, where e is a vector of N(T) such that F( e) =0, u+ eE V.

Let u be a solution of the unilateral problem (1.2), i.e. a vector minimizing ...f(v) in V. Let u' be a solution of the unilateral problem

B(u', v-u') �F'(v-u'), u'EV, 'v'vEV .
F' is a linear bounded functional. From (1 .2), (1.4) we deduce 

B(u, u' -u) �F(u' -u) B(u', u-u') �F'(u -u') ; hence B(u-u', u -u') � F(u-u')-F'(u-u')
...f(v) in V.
2. Abstract unilateral problems: the nonsymmetric case. We maintain in this section all the hypotheses stated for B(u, v) , for V and for F, in Sect. 1, but we no longer assume B(u, v) to be symmetric. As in Sect. 1 we denote by Q the orthogonal projector of H onto the kernel of the quadratic form B(v, v) and set P=l -Q. Thus B(u, v) is a bounded bilinear form defined on H xH and satis fying Hypotheses I and II of Sect. 1. Vis a closed convex set of H. F is a bounded linear functional defined in H.

We have B(u, v) = (Tu, v) where T is a bounded linear operator from H into H. We shall denote by T* the adjoint operator of T, i.e. the bounded linear operator defined by the condition (Tu, v)=(u, T* v), 'v'u,vEH.

We have

B(v, v) =(Tv, v) = (T* v, v) = j ((T + T*) v, v).
Since B(v, v) is nonnegative, its kernel coincides with the kernel N(T + T*) of the symmetric operator T+ T*, and moreover

N( T)-N(T*)CN(T + T*).

We shall consider the unilateral problem (1 .1) under these more general hypotheses on B.

Let us denote by K( T) the orthogonal complement of N(T) with respect to N(T + T*), i.e.

N(T + T*) =N( T) EBK(T).

The following theorem generalizes Theorem 1.III to a nonsymmetric form B(u, v) . As in Sect. 1 we set L= N(F) nN( T), N( T)=L EBL1 , Q, P, Q1 have the same meaning as in Sect. 1.

2.1

The unilateral problem

B(u,v-u)�F(v-u), uEV, 'v'vEV (2.1)
for the (not necessarily symmetric) bilinear form B(u, v) has a solution u if there exists a u0E V such that the following conditions are satisfied:

(i) F(e) < 0 for eEN( T) n V(u0), p{Q 1 (!, Q 1 [ N(T) n V(u0)]}= + oo. (ii)
The set P [ V(u0)] is closed. (iii) Let Q0 be the orthogonal projector of H onto K(T). For every (! satisfying the conditions Q0 e =l= 0, (!EN( T + T*) n V(u0), p{ (Q0+Q 1 ) (!, (Q0+Q 1 ) [N(T + T*) n V(u0)]}= + oo there exists a vector vl!E V such that F(e) + B(e, v e) <O.

Let f be a vector of H such that

F(v)= (f, v) , V vEH.
Let us consider the unilateral problem

(u, w-u) � (f, w-u), uEP [ V(u0)], V wEP [ V(u0)]. {2.2)
This is a particular case of the problem solved by Theorem 1.11, when we assume B(u, v)=(u, v), as Hilbert space the space P[H] and as convex set P [V(u0)] . Since in this case the kernel of the quadratic form is {0}, we have a solution for any given f. This solution is unique and, in this particular case, (1.5) gives llux ll � 11 / -gjj ;

(2.3)

x is the solution of the unilateral problem

(x,w-x)�(g,w-x), xEP[V(u0)], 'v'wEP[V(u0)].
Let us denote by Rf the solution u of the unilateral problem {2.2).

For every positive integer n set T,= T +n-1 I . Consider the unilateral problem

(T, C. w-C) � (f-T u0, w-C), C EP [ V(u0)], V wEP [ V(u0)].
(2.4)

Let A. be a positive constant. We can write (2.4) as follows

( C , w-C) � ( C -A T,C + A. f-A. Tu0, w-C), CEP [V(u0)], V wEP [V(u0)].
Then a solution of (2.4) exists if and only if there exists a solution C of the equation

(2.5)
Set Sn C =R( C-A. T, C+ A.f-A.T u0) and consider S, as a mapping from P[V(u0)] into P[V(u0)]. We have, because of (2.3) IIS n C -Sn x l i � II ( I -A.T,) ( Cx )l l �III -A T.. ll IICx ll .

It is easily seen that, by assuming A < 2 n-1 II T.. II -2 , we have III -A T.. l l < 1. Thus Sn is a contraction, and (2.5) has one and only one solution. Let us denote by zn the unique solution of (2.4). Suppose we have proved that {zn} contains a bounded subsequence. We may extract from {zn} a weakly convergent sub sequence, which we still denote by {zn}• Let P z be the weak limit of {zn}• We may suppose ZE V(u0). Set u=z+u 0 • Keeping in mind that (Tv , v) is lower semi-continuous with respect to weak convergence and setting P(v-u0) =w (vE V), we have

(Tu, v-u) = (T z, (v-u0)-(u-u0)) + (Tu0, v-u) = (TPz, w-Pz)+ (Tu0, v-u) �-minlim (Tzn,zn-w)+(Tu0,v-u) n-+oo �-lim {(f-Tu0, zn-w )-__!__ (zn, zn-w)} +(Tu0, v-u) n �oo n = (f-Tu0, w-P z) + (Tu0, v-u) = (f-Tu0, v-u0-z)+ (Tu0, v-u) = (f, v-u).
Thus we have to prove that {zn} contains a bounded subsequence. Set O'n = llzn ll and suppose that lim an=+ oo.

n-+oo

From (2.4), assuming w=P(v-u0) (vE V), we deduce that cliP znll2;;;:; (zn, T* v-T* u0) + • � (zn, v-u0) + {f-Tu0 , zn)-{f-Tu0, v-u0). Thus we may extract from {xn} a subsequence, which we still denote by {x n }, 

+ (P Xn, f-Tu0)+ (Q0xn+ Q 1 x,.. f +T* v)--1 (f-T u0 , v-u0) ,

Gn

which is absurd since the minlim of the left hand side is nonnegative while the limit of the right hand side is negative.

Remark. If the set N(T + T*) n V(u0) is bounded [and (ii) holds], the uni lateral problem (2.1) has a solution for any given F. In particular this condition is satisfied if V is bounded. In this case the condition (1 .1) is not needed but only B(v, v) �0. In fact, if Vis bounded, the sequence {zn} is weakly compact.

The following theorem proves the necessity of condition i) of Theorem 2.I.

2.II

If the unilateral problem (2.1) has a solution u, for any u0E V and any (! such that

(! EN(T) n V(u0), P {Q 1 (!, Q 1 [N ( T) n V(u0) ] } = + oo, one must have F(e) < 0.
The proof is exactly the same as for Theorem 1.III. Concerning condition ii), the same example as given in the symmetric proves that if condition ii) is dropped the theorem may fail to be true.

With respect to condition iii ) we can only prove the following 2.III If for every u0E V and for some e satisfying the conditions we have Q0 e =!= 0, (! EN(T + T*) n V(u0) ,

P {(Q o+ Q t ) (! , (Q0+Q 1 ) [N(T + T *) n V(u0) ] } = + oo , case (2. 9 ) 
F(e) + B(e, v) > o (2.10)

for every vE V, then the unilateral problem (2.1) has no solution. Suppose, contrarywise, that problem (2.1) has a solution u. Let us have, for every t > 0, (Q0+Q 1 ) (! (t) =t(Q0 +Q1) (! , (! (t) EN(T + T*) n V(u0) . Then (Tu+ T*u , e(t) +u o -u) �t(f+ T* u, e (t) ) + (f+ T* u , U o -u) .

Since T e (t) + T * e (t) =0, (I+ T* u, e (t) ) =t(f+ T* u, e), we conclude that (Tu, Uo-u) -(f, Uo-u) �t (f+ T* u, e) which implies (f+ T* u, e) = F (e) + B (e, u) � 0 in contradiction with (2.10). (2.1) the vector Puis uniquely determined by F.

2.IV If u is a solution of the unilateral problem

Arguing as in the proof of Theorem 1.V, we get (1 . 5) and the proof of Theo rem 2 .IV. 

IIG(F) -G(F') I I� c -1 IIF -F'II • Remark.
For the uniqueness of the solution of the unilateral problem (2.1), it is sufficient the quadratic form B(v, v) be strictly positive on H. In fact, if u and u' are two solutions of ( 2.1), we have B(u, u'-u) ;;;. . F(u' -u), B(u', u-u') ;;;._ F(u-u'). Hence B(u-tt', u-tt' ) � 0 , which implies u=u'.

3. Unilateral problems for elliptic operators. Let A be a bounded domain of the cartesian space xr, and let B(u, v) be the bilinear form considered in Sect. 5 of

E.T.E. c, 1n
B(u,v)=(-1)'n L.: (-1)1P i fapq(x)D q uDPv dx .

I Pl. lql

A We now assume that the n x n matrices apq have real entries which are bounded and measurable functions in A; u and v are real n-vector valued functions of Hm(A) which we now consider as a real Hilbert space.4

Let H be a closed, linear subspace of Hm (A), and suppose that the bilinear form, when restricted to H X H, satisfies Hypotheses I and II considered in Sects. (II) The kernel of B(v, v) is finite dimensional. Let V be a closed convex set of H. We can apply the theory of Sects. 1 and 2 to this particular case and give existence theorems for the unilateral problem O, m ( -1) m L ( -1) 1 P I J a p q(x) D q u DP(v-u) dx ;;;. . F(v-u), u:c V, Vv:c V, (3.1)

IPI. lql

A where F is a given bounded linear functional defined on H.

Suppose that the following further hypotheses are satisfied.

(III) The convex set V containsHm(A).

(IV) The differential operator L(x,D)=(-1)"'DPapqD q , (o�IPI�m), (o�lql�m) is elliptic for every xEA.

In addition assume that ap q (x)EC"'(A) and F(v)=(f, v) 05 for any vEHm(A), where f is a function of Hv (A). We have the following theorems:

3.I Under the assumed hypotheses, if u is a solution of the unilateral problem (3.1), then u belongs to H2 m +v(B), where B is any domain such that BcA, and u is a solution in A of the differential system Ltt= f. If vEC00 (A) and tis an arbitrary real constant, from (3.1) we deduce tB(u, v) B(u, u) ;;;. . t(f, v)0-(f, u)0 . Hence, since tis arbitrary, B(u, v)=(f, v) 0 , and after integrations by parts we obtain

J u L * v dx = J f v dx .
From Theorem 3.I of E.T.E. we get the proof.

3.II The space N(T) consists in all the functions (! such that L e=o, eEOI!H.6 

(3.2)

We obtain the proof of this theorem by observing that gEN( T) if and only if B(g, v)=O, (!EH, 'VvEH.

From the results of Sect. 6 of E.T.E. it follows that gEN( T) when and only when e satisfies (3.2).

We have a similar result for characterizing the functions e which belong to N(T + T*). In fact we have to use the same argument but referred to the sym metric bilinear form B(u, v) + B(v, u). As a consequence we deduce that N( T + T*) is formed by all the solutions of the equation Lu+L*u=O that belong to a certain subspace 011 � of H; L * is the operator L * = ( -1) m DP rxpq D q where 1X pq=(-1) 1 P I +I q la qp • o Let A' be an open subset of A and consider the function space Hm(A'). We may consider Hm(A') as a subspace of Hm(A) if we suppose that each function u of Hm(A') is continued into the whole set A by assuming ti=O in A -A'.

Suppose we have, instead of (III) the weaker hypothesis (III') The convex set V contains Hm(A').

If we retain unchanged the other hypotheses on the ellipticity of L and on the smoothness of the coefficients apq and of f (or, at most, we restrict them to A'), Theorem 3.I still holds, provided we read A' instead of A in its statement.

Let us now suppose that the domain A is C'"-smooth at the point x 0 of oA (see E.T.E., Sect. 6). Let I0 be a neighborhood of x 0 containing the neighborhood I of x 0 which is involved in the definition of C"'-smoothness. Let Vo be a class of functions v which are defined on the whole s p ace X' and which have their (iii) for every vE"Vo(A ni0), the following inequality holds

supports in I0• If B is
B(v, v) � Y o ll v I I!, A ( Y o> 0 ); (3.3) 
(iv) Hypothesis (IV)x, of Sect. 6 of E.T.E. is satisfied for the class 'Vo(A).

Let us now assume that (III") The convex set V contains the subspace Vo (A).

Let us remark that Hypothesis (III") implies Hypothesis (III') (with A' =A ni0), because of ii) , and implies Hypothesis (IV) (restricted to A ni0), because of inequality (3-3) (see E.T.E. Theorem S.II).

Let us assume that apqEC"'(Xr) and that for every vE"Vo(A) we have F(v)= (f, v)0 where f is a function of H. (A). The following theorem holds.

3.III Under the assumed hypotheses, every solution u of the unilateral prob lem (3.1) belongs to H 2 m +v(B) for any domain B such that BCA n (A vi).

Arguing as in the proof of Theorem 3. I we see that B(u, v) = (f , v)0 for every vE"Vo(A). Then the proof of our theorem follows from Theorem 6.VI of E.T.E. Theorem 3.I and the analogous theorem relative to Hypothesis (III') , give results concerning the interior regularity of u, while Theorem 3.I II concerns the boundary regularization of u. Of course these theorems are obtained under the strong assumption that V contains linear subspaces such as to permit us to carry over the results of the regularization theory developed for linear problems. When this assumption is not satisfied, the regularization theory becomes much more difficult, as we shall see later, and the solution has, in general, only a mild degree of regularity even if the data are very smooth.

Remark. Suppose that a solution u of ( 3.1) exists such that B(u, u)=F(u). The proof is readily obtained by an easy modification of the proof of Theo rem 3.I.

4.

General definition for the convex set V. Let us now consider three definitions for the convex set V that include the unilateral problems which generally arise in the theory of elasticity.

Let f/Jh (x, z0, z1 , ... , zs) (h=1, ... , l) be a real valued function defined for x EX' and for every choice of the vectors z0, .. , Zs. We suppose that z0, ..• , Z5 are such that for every n-vector valued function vE coo (X') we may consider the functions <Ph[x, v(x), ... , DPv(x), ... ] for 0 � JPJ � m.

We suppose that every <Ph depends continuously on the variables x, z0, ••• ,z5• Moreover we suppose that, for t1�0, t2�0 and t1+t2=1 and for any choice of x, z� 1 ) , ... , z�1l , z� 2 ) , ••. , z� 2 ) , <Ph(x, t1 z� 1 l +t2z� 2 l , ... ,t1 z1 1 l +t2 z�2) ) � t1 <Ph(x, z& 1 l , ... , zPl ) +t2 <Ph(x, z� 2 l , ... ,z�2) ) <Ph(x, 0, ... , 0) � 0. (4.1)

Let H be a closed linear subspace of Hm ( A ) , and let Ah be a measurable subset of A (h=1, ... ,l).

Let rph (x) (h=1, ... , l) be a real valued function, nonnegative and measurable in Ah.

We define V as follows.

()() Vis the set of all the functions v of H such that almost everywhere on Ah (h=1, ... ,l). (4.2)

From (4.1) we deduce that Vis not empty and is convex. Let {vn} be a con verging sequence (in the topology of Hm (A )) of functions belonging to V. Let v be the limit of this sequence. Since from {vn} we can extract a subsequence, which we still denote by {vn}, such that {D P vn} converges to DP v almost every where on A, we see that the function v satisfies condition (4.2), i.e. belongs to V.

Thus we have proved that Vis closed.

Thus we may apply to the bilinear form B(u, v) and to the convex set V the theory developed in the preceding sections. In particular if we choose 1=1,

O, m <P1 (x, v, ... , DP v, ... ) = L J DPvJ 2 , IPI Handbuch der Physik, Bd. VI a/2.
26 take A1 =A and suppose that <p1 (x) is bounded in A, we have a bounded closed convex set V. In this case the unilateral problem ( 3.1) has a solution for any given F.

Let us now consider a second general definition for the convex set V. Let us suppose that A is properly regular (see E.T.E. Sect. 2) and let lf'11 (x, z ) (h=1, ... , l') be a real valued function defined for xE oA and for any choice of the vector z. We suppose that z has as many components as needed for considering the function (h=1, ... 'l')

where v (x) is ann-vector valued function belonging to e m (A} and -r is the "bound ary value operator" defined in Sect. 2 of E.T.E. We suppose that the boundary oA is decomposable into a finite number of non-overlapping differentiable (r -1} cells7 and that lf'11 (x, z ) is continuous when x varies in any of these cells and z varies arbitrarily. Moreover for t1 �0, t2 �0, t1 +t2 =1 and any x, z<1l, z<2l, we have lf'11 (x, t1 z ( l) + t2 z< 2 l) � t1 lf'11 (x, z<1 l ) + t 2 lf'11 (x, z<2l ) lf'11 (x, 0) � 0.

Let H be a closed linear subspace of H m (A) and 1:11 (h=1, ... , l') a subset of oA composed by non-overlapping differentiable (r -1)-cells. Let tp11 (x) be a real valued function nonnegative and measurable on 1:11•

We now define V as follows. {3) V is the set of all the functions v of H such that almost everywhere on 1:11 we have (h=1, ... , l') .8

(4.3}

As for the definition oc:) it is easy to prove that Vis non-empty, closed and convex.

As third definition we take the one corresponding to the set which is the intersection of the two convex sets defined, respectively, by oc:) and by {3). y) Vis the set of all the functions of H satisfying conditions (4.2) and (4. 3).

Since the intersection of two closed convex sets is closed and convex, so is the set V defined by y).

Unilateral problems for an elastic body.

Let A be a bounded domain of X' which we suppose properly regular and with a boundary oA that can be decom posed into a finite number of non-overlapping (r-1)-cells of class C"(n � 1). Let

A represent the natural configuration of an r-dimensional elastic body, which we denote by the same letter A. Using the notations of Sect. 12 of E.T.E., for every pair of r-vectors u, v of H1 (A) we consider the bilinear form B(u, v) j a ,h,ik(x) u; 111 u i/k dx, 7 It is convenient to recall here the definition of a differentiable (r -1 ) -cell. Let x = x (t) """ [x 1 (t), ... , x,(t)] be ar-vector valued function defined in the closed domain rr-1, o�t.� 1

(i = 1, ... , r-1) 0 �t 1 + •••+t,_1�1
of the (r -1)-dimensional space, satisfying the following conditions: i) x = x(t) belongs to the class C»(P-1 ) (n�1); ii) the jacobian matrix 8xf8t has rank r-1 at every point of rr-1; iii) the function x = x (t) is univalent in p-1 . The range r of the function X = X (t) is, by definition, a differentiable (r -1 )-cell of class en. The set of all the points of r, which correspond to the boundary (JP-1 of rr-1, is the border or of r. When we say that two (r -1)-cells are non-overlapping, we mean that they have in common, at most, points of their borders. 8 It is evident that now the concepts "measurable function" and "almost everywhere" must be understood with respect to the hypersurface measure on oA.

where the functions a.,, , ; k (x) are the ones introduced in Sect. 12 of E.T.E. and satisfy the hypotheses stated in that section. Let f be a given r-vector belonging to H0 (A) and g a given r-vector belonging to 2"2(8A). Let the energy functional to be associated with the body A be the following

J(v) =! B(v, v) -F(v),
where Let f/Jk(x; z0; z1) (h=1, ... , l ) be a real valued function depending on the r-vector x, the r-vector z0, and the r2-vector z1, defined in the whole (2r+r 2 ) dimensional cartesian space and continuous at every point (x; z0; z1).

For the functions f/Jk we assume that condition (4.1) is satisfied, i.e. for t 1 ;?;0, t2;?;0, t1 +t2=1 and any choice of x, zb 1 >, zi1>, zb2l, zi2>, we have q,,. (x; t1 Zb1l + t2 Zb2l; t1 zi 1 > + t2 zi 2 >) ;;;; ;; t1 fP,. (x; Zb1l; zi1>) + t 2 f/Jk (x; Zb2l; zi1l)

f/Jh(x; 0; 0) ;;;; ;; 0.

Let 9/k(x) be a nonnegative, bounded measurable function in the subdomain Ah of A.

We suppose that the elastic body is subjected to the following internal con straints

(5.1)
almost everywhere in Ah (h=1, ... , l ).

Let 'Ph(x, z) (h=1, ... , l') be a real valued function defined for xE8A and for every r-vector z. Let the function 'Ph (x, z) be continuous when x varies in each (r-1)-cell of 8A and z in the r-dimensional cartesian space. Moreover for t 1 ;?; 0, t2;?; 0, t1 +t2=1 , for each xE oA and every choice of z<1l and z<2l 'Ph (x, t1 z( l ) +t2 z< 2 l) ;;;; ;; t 1 'Ph (x, z< 1 >) +t2 'P,. ( x, z ( 2l ) 'Ph (x, 0) � 0.

Let I11 (h=1, ... , l') be a subset of oA formed by non-overlapping differ entiable (r-1)-cells of 8A. Let 1p,.(x) be a nonnegative bounded measurable function in rh.

The elastic body be subjected to the following boundary constraints

(5.2 )
almost everywhere on rk (h=1 , ... , l ').

Let H be a closed linear subspace of H1 (A).

The following one is a very general problem in the classical theory of elasticity.

To minimize the functional J(v) in the subset V of H formed by all the functions v that satisfy the conditions (5.1) and (5.2).

The problem consists in finding the equilibrium configuration of an elastic body subjected to the body forces determined by f, to the surface forces deter mined by g, and subjected to the bilateral constraints, imposed upon the admis sible displacements by requiring that they belong to H, and to the unilateral constraints represented by (5.1 ) and (5.2).

The problem stated, although very general in elasticity, is a particular case of the theory developed in the previous sections of this article. The convex set V is the one determined by condition y) of the preceding section. Of course, since we do not exclude either the case when l' =O or the case when l= O, we may have convex sets either of the kind !X) or of the kind (3). If we take l= l' = 0, we have the problems discussed in Sect. 1 2 of E. T.E.

Of particular relevance is the case when l=O, l' =1; lf'1(x, z) = -v(x) z [v(x) is the unit inward normal to oA J ; 1:1 -1: [subset of oA composed by non-over lapping (r-1)-cells] ; 1p 1{x) -O; g 0 on 1:; H=H1(A). The unilateral constraint is now the following V ; V ;�O a.e. on l:. This particular case defines what is nowadays known in the literature as the Signorini problem. It corresponds to the equilibrium problem of an elastic body, which in its natural configuration is supported by a rigid frictionless surface 1:. We shall study this problem in full detail in the sequel.

Let us now assume l= 2, l' = 0. Let 1: be a subset of oA formed by non-over lapping (r-1)-cells. Set g-0 on 1:. Let H be the subspace of H1(A) formed by the functions of H1 (A) vanishing on oA . Assume 4>1 (x; v; v 1 1,

• • • , v 1, ) --4>2 (x; v; v 1 1 , ••• , v 1 
, ) == v; 1; , A 1=A2 =A and IJ?1(x) ==IJ?2 (x) -O. In this case the two unilateral constraints given by (5.1) are equivalent to the unique bilateral constraint V;;;=O in A. This is the incompressibility condition for the elastic body A. The equilibrium problem concerns now an incompressible elastic body, fixed along the part 1:

of its boundary, subjected to given surface forces IP on the remaining part of the boundary and to given body forces f on A. Theorem 1.III gives readily an exist ence theorem for the minimum of J(v) in this particular case. Let us now suppose that uEH2 (A).9 From (6.1) we easily deduce -B(u, u) = (f, u) 0, -B(u, v) � (f, v) 0• Moreover we have (see E. T.E., Sect. 10, III) B(u, v) =-f fvdx+ f ve :; da. Let cp (x) be a continuous function defined in A which takes non positive values on oA . Assume H = H 1 (A), and let the closed convex set V be defined by the condition u � cp in A .11 There exists one and only one solution u of the unilateral problem

The function u minimizes in V the Dirichlet integral in the set V. In the case when r = 2, u gives the equilibrium configuration of a membrane (coinciding with the domain A in its natural configuration) which is stretched over an obstacle represented by the function cp (x) .

(III) Elastic plastic torsion problem. This problem leads to a unilateral problem relative to a bounded domain A of X'. Also in this case, the bilinear form B(u, v) is given by (6.2). His again HdA). The closed convex set Vi s defined by the condition ju 1 ; u fi i ;;;: :; a where a is a positive constant. From the general theory we know that there exists one and only one solution of the unilateral problem.

f u/i( v 1;-ufi) dx � b f (v-u) dx A A
1o Boundary conditions of this kind were indicated for the first time by SrGNORINI in his problem in elasticity. He proposed the term "ambiguous boundary conditions" because it is not known a priori what set of conditions at a given point of the boundary is satisfied by the solution u of the problem. 1 1 For a more general formulation of this problem see [START_REF] Lewy | On a variational problem with inequalities on the boundary[END_REF].

(b given constant). The function u minimizes in V the functional t J v1.v11 dx-b J vdx.

A A (IV) Clamped plate, partially supported on a subdomain. Let A be a bounded domain of the plane x, y, and let B(u, v) be the bilinear form defined in Sect. 11 of E.T.E. which is used for proving Theorem 11. 1. Let H= H 2 (A). Let A0 be a subdomain of A, and let V be the closed convex set defined by the condition v > 0 in A0 • There exists one and only one solution u of the unilateral problem The function u minimizes in V the functional � j { ( ::� r + 2 ( a::Y r + ( �:� n dx dy -f tv dx dy .

f(a2u az(v-u) a2u a2(v-u) a2u -- + 2 --- +--
A A Let us observe that in this example, if A0 is a proper subdomain of A, the convex set V satisfies the condition (III') of Sect. 3 for every domain A'cA -A 0 (if there is any). Then uEH H .(A') if /EH.(A') and L14v =f in A'. Moreover if oA is C00-smooth in xO , Hypothesis (III") of Sect. 3 is satisfied by assuming as l{; the space H 2 (A n/0) 1 2 provided we can take /0at a positive distance from A 0 • It follows that u is smooth in the neighborhood of xO according to the smooth ness of f.

(V) Elastic, perfectly locking body. A is the domain considered in Sect. 5 and B(u, v) the bilinear form defined in that section. Hi s one of the following three spaces: H 1{A ), H1(A ), HE={v ; vEH1(A ), v=O onE} ( Eis a subset of OA formed by ( r-1)-cells of oA).

Let 91(e) be a function depending on the symmetric tensor e={e.;} which is continuous for every e, is a convex function of e and is such that 91 (0) < 0.

Let V be the closed convex subset of H formed by all the functions v such that lp [ . .. , 2-1 

(v i f•+ v11;) • ••• ]�0 a.e. inA.
The kernel N(T) of the quadratic form B(v, v) is constituted by all the rigid displacements e=a+ Cx (a constant r-vector, C skew-symmetric constant rxr matrix) belonging to H. From the Korn 2nd inequality, which we suppose to hold in A, it follows that Hypothesis (I of Sect. 1 is satisfied. [START_REF] Kellogg | Foundations of potential theory[END_REF] If R is the space of all the rigid displacements we have N( T) =RnH. Define F(v) as in Sect. 5, takingg=O on oA if H= H 1(A), andg=O on oA -Eif H = Hx . A necessary condition for the existence of the minimum of Jf(v) in Vi s F(e) =O for every eERnH.

If L, Q and P are defined as in Sect. 1, and if we assume u0=0, we see that L=RnH and P [V]cV. Hence, from Theorem1.1 1, it follows that Jf(v) has a minimum in V. The minimizing function is determined up to a vector of RnH.

It must be remarked that Rn H=l={O} only in the case when H = H 1(A ).

7. Existence theorem for the generalized Signorini problem. Let us now con sider the problem stated in Sect. 5 under more specific assumptions on the func tions (/Jh and Ph, f/J h, "Ph. We shall suppose that (i) (/Jh(x; z0; z1) is a continuous function of (x; z0; z1) for every choice of these variables;

(ii) (/Jh ( x; z0 ; z1) for any x EX' is a convex function of (z0; z1) ; (iii) W11 (x; z0 ; z1) for any xE X' is a homogeneous function of degree1 of (z o ; z l ).

It follows that for t1 � 0, t2 � 0 we have (ph (x; t1 Zb 1 l + t2 z�l; t1 z�1) + t2 zi 2 l) � t1 (/Jh (x; Zb 1 ); zi 1 l) + t2 (/Jh (x; Zb 2 l; zi 2 l) (7.1) and moreover W11(x; 0; 0) = 0. We assume similar hypotheses on the Ph(x; z) :

(i) P11(x; z) is a continuous function of (x; z) when x varies in each tr-1)cell of oA and z is an arbitrary r-vector;

(ii) Ph (x; z) for any x E oA is a convex function of z;

(iii) Ph (x; z) for any x E oA is a homogeneous function of degree 1 of z.

We have for t1�0, t2�0 P11(x, t1z( l l+ t2 z( 2 l) �t1 P(x, z( 1 l) + t 2 P(x, z( 2 l) P(x, 0) = 0.

Let H be the space H1 (A), and let }; be the subset of oA considered in stating the Signorini problem in Sect. 5.

Let A11 (h =1, . . . , l) be a subdomain of A and };11 a subset of}; composed by (r-1)-cells of oA . 

We have

The kernel of B(v, v) is the space R of the rigid displacements. Let Q be the projector of H1 (A) onto R. For any vector vEH1(A ) such that Q v = O, we have, as it is easily seen, Then, if we assume that Korn's second inequality holds in A, 1 4from the remark contained in Sect. 12 of E. T. E. and from the footnote 1 7 of that paper it follows that B(v, v) satisfies Hypothesis (I) of Sect. 1. Since R is finite dimensional, Hypothesis (II) is satisfied too.

Let us now consider the subset R' = R n V. Let R* be the subset of R' formed by all the vectors of R' which are bilateral, i.e. R* is defined as follows R*= {e; eER', eER ::::} -eER} .

It is easy to prove that R* is a linear space. Let /EH0{A ), gE .P 2 (E*) [E*=oA -E].

By the generalized Signorini problem we shall mean the following unilateral problem B(u,v-u)�Jf(v-u)dx+Jg(v-u)da, uEV, 'v'vEV.

(7.5)

A l.:* It is equivalent to minimize J ( v ) = !B ( v, v )-J f v d x-J gv da A l.:* in V.
The Signorini problem is a particular case of this more general problem, as is easily seen.

If for every (!ER'

F(e) == J I e d x+ J g e da � o (7. 6)

A l.:* and if the sign = holds when and only when e E R*, the generalized Signorini problem has a solution. If u is a solution of (7. 5), any other solution u' is given by u' =u+ (!, where e is a rigid displacement such that F(e) = 0, u+ (!E V.

We may apply Theorem 1.11, assuming u0=0. We need only to show that, if Q is the projector of H1 (A) onto R* and P=I-Q,

then P[V] is closed. If vEV, from (7.1) we have tP h (x; Pv; (P v )1 1, ••• , (P v )1,) � tP"(x; v; v, 1 , ••• ,vi, )
+tP"(x; -Qv; (-Qv )1 1, ••• , (-Qv ) 1, ) � o a.e. inA" (h=1, ... ,l ) and, analogously, from (7. 2) we deduce that lJi h(x ;7:Pv ) � O a.e. on.E" (h=1, . . . ,l ') .

This means P [ V] ( V. Hence P [ V] is closed. The statement about uniqueness follows from LVII.

Let us explicitly note the following particular case of Theorem 1.1V. Let P=I-Q.

7. 11 If for every w EP[H1(A)] there exists a (!ER such that w+eEV, and if F ( e ) =O for every eER, there exists a solution of the unilateral problem (7.5).

8. Regularization theorem: interior regularity. We consider now a regularity theorem which, under suitable hypotheses, is able to guarantee a certain regu larity to a solution of a unilateral problem in the neighborhood of an interior point x 0 of A. We consider a bilinear form of the following kind B(u, v ) = J {ot u (x) u/h v /k+ {Jh(x) u1h v + {J�(x) u v 11,+y (x) u v} d x , (8.1)

A
where A is a bounded domain of X', and assume that the n X n matrices ot u belong to C 2 {A), the matrices {J� belong to C 1 ( A ) 1 5 and the matrices {J ,., y are bounded and measurable in A. Moreover Let us suppose that there exists a solution u of the unilateral problem

B(u,v-u) � F(v-u), uEV, 'v'vEV, (8.2)
that Vis a closed convex set of the space H1 (A) (of then-vector valued functions) and that F(v) is a bounded linear functional in H1 (A) such that, for every vEH 1 (A),

F(v)= J f v dx A with /EH0(A).
Let us assume the following hypotheses :

1) If v is any function of V and q; a nonnegative scalar function of coo, the function q; v belongs to V;

2) There exists a subdomain E of A such that (c > O).

3 ) Let vE V and spt vEE. Let y be such that spt v(x+y)cE. Then v(x+y)E V.

Observe that these conditions are satisfied in the generalized Signorini prob lem if we assume the further hypothesis that the functions tP11 do not depend on

x and on z1 but are functions of the variable z0 alone. Hence B(u, 1p u) =F('Ifl u). Fixed x 0 EE, let t5 > 0 be such that I;,dEE. Let q; (x) be a scalar function of coo such that q;(x) �0, q;(x)=1 for lx-x0l �t5. q;(x)=O for lx-x0l � (3/2) t5. Set U(x)= q;(x) u(x). Using arguments employed in E.T.E., it is easy to see that for 0 < I YI � t5f2 

I YI 1 , A (c1 > O ) • Moreover, if g E C 2 (A') 1 1 2g(x) U(x) -g(x-y) U(x-y) -g(x+y) U(x+y) I I IYI 2 O ,A < 1 1 2U(x)-U(x-y)-U(x+ y) I I =C 2 jyj 2 O,A
where c 2 depends on the C 2 norm of g(x). From (8.3), keeping in mind that

B [ u (x), 1J1 2 (x) u (x)] = ( 1fJ (x) f (x), U(x) )o -B [u (x), IP (x) IP (x-y) u (x-y)] � -( lfJ(X) f(x), U(x-y))0 ,
we deduce an inequality which we write briefly as }, (y) �p, (y). On the other hand we have A (y) =A (-y)+a(y), where a(y Denoting by p1 , p 2 , ••• positive constants and by II I I norms over A, we have for O<IYI � �/2 c I I U(x + cl -U(x ) II: � Pl II <P i l l \ U(x + r;l -U(x ) I ll +P2 11ul kra• I \!:" L: + f�1 = U(x ) 1 \ 1 +P a llull�. rs• (8.4) We can choose � such that + � sup l ahk (x) -ahk (�) l\1 U(x + �) l -U(x ) 11 2 . h, k x, t;Er,.

)= J { [txhk(x-y)-txhk(x)] [U(x-y) -U(x)J1�o [U(x-y)-U(x)]1k A + [{J" (x-y) -fJ�o(x)] [U(x-y) -U(x)]1" [U(x-y) -U(x)] + [{J�(x -
y 1 1 ,, L sup lahk (x) -ahk (�) l < c . h, k x, i;EF26
Then the proof of the theorem is an obvious consequence of (8.4).

9. Regularization theorem: regularity near the boundary. The technique used in the preceding section can be extended so as to get analogous results concerning regularization near the regular points of the boundary of A.

We consider the bilinear form B(u, v) given by (8.1) and impose on the matrices rx.h k ,f3h , {J� , Yh the hypotheses of Sect. 8.

Let x 0 be a point of 8A , and suppose that A is C3-smooth in xO. This means that there exists a neighborhood I of x0 such that the set ] =1 n.tf can be mapped C3-homeomorphically onto the closed semiball I+ : IYI2+t2 � 1, t � 0 of the r-dimensional (y, t)-space in such a way that the set In 8A is mapped onto the (r -1)-dimensional ball t=O, IYI � 1 .

As in Sect. 8, we assume that there exists a solution u of the unilateral prob lem (8. 2). We suppose that the functional F(v) for every vEH1(A) such that spt vE], admits the following representation

F(v) = J f v dx A with /EH 0 (A) .
We now assume the following hypotheses :

1) If v is any function of V and ((J a nonnegative scalar function of coo, the function ((JV belongs to V. The proof parallels the one of Theorem 8.I. We have first to transform the bilinear form B(u, v), for any v such that spt v EE, by using the homeomorphism x = x (�) . We get a bilinear form which we indicate as follows

From now on we exactly follow the proof of Theorem 8.I with the only differ ence that now y must be parallel to the hyperplane t = O. Thus we arrive at inequality (8.4) . However the boundedness of is only able, in this case, to insure that all second derivatives of U except Cfee belong to 22 (.E+) . Since u satisfies the differential equation ( 9 .1), after writing this equation in the variables y , t, we deduce, since, for Hypothesis 2) , the equa tion is elliptic, that Cfee c22 (.E+) and, in consequence, the proof of the theorem.

Remark. In the proof of Theorem 8.I we considered in the integrand of the bilinear form (8.1 ) the presence of the term {3� u v 1 ". This could have been avoided by an integration by parts. However since this term cannot be eliminated in the proof of Theorem 9 .I, we have retained it also in the proof of the earlier theorem.

In the case of the generalized Signorini problem, assuming that tP" does not depend on z1 , the hypotheses assumed in this section are satisfied if we suppose that : i) the domains A" (h=1, ... , l) (see Sect. 7) are all disjoint from ]; ii) for each h (h = 1 , . . . , l') either the subset .E" is disjoint from If"\ oA or the function P,.(x, z) does not depend on x (for xElf"\OA).

In the original Signorini problem there is no question about the tP�r.'s since l = O; the condition ii) concerning the P,'s is not satisfied if x!I EL' since l'=1, lf{=-v (x) z, L'1 = L'. However, we may overcome this difficulty by introducing in the set E an orthogonal system of unit-vectors v1 (x), ... , v, (x) such that :

1) v.(x) E C2 (E) (i =1, . .. , r) ; 2) v, (x) = v (x) for xEI f"\OA. If oA is C3-smooth in x!l
the construction of this set of vectors is trivial. For each vEH 1 (A) and for xEE, set v(x) =v. (x) v. (x) . Let a u= {a1�} = {a ih, ik} ( i, f =1, ... , r) be the matrices considered in Sect. 12 of E.T.E. in connection with problems of elasticity and employed in Sect. S- 1 8 If spt vEE we have a u ulh vlk = a h k v , uil h v i vflk + au v , uil h '�� ilk v i + a u '�� ilhui v i v ilk +a u '�� il h ui v flkui.

Let us define the matrices rx.h k • {3 ,. , {3� . y as follows : rx.,. ,.= {a h k v i v ; } , f3 ,.= {a u v , '�� ilk } , /3� = {a k h '�� i lk vi } , y = {a ,.,. '�� ilk '�� ilk } • If we denote by u and v the r-vectors having as components ul ' ... 'u, and v1 , ... , v, , we have, if spt vEE, B(u, v) = f (rx.,.k u1,. v1k+f3,. u1,. v+f3� u v1,.+y u v) dx A and the constraint of the Signorini problem is expressed by -v,(x) �0 (xE 1 n 8A). Then the above condition ii) is satisfied and we can apply the regu larization theory developed in this section.

10. Analysis of the Signorini problem. On the regular bounded domain A we shall assume the following more specific hypotheses :

1 ) 8A is decomposable into a finite set of non-overlapping differentiable (r -1 )-cells of class coo : I;_, ... , �.

2) It is possible to define a unit vector p, (x) which is a function of the point x variable on 8A, which is a continuous function of x on 8A and which always points inside A, while -p, (x) points into the complement of A. Denoting by w the angle (between 0 and n) which p, (x) forms with the inner unit normal vector v (x), we always have 0 � w � w 0 < n/2 in every point x of I;.-81;. (k = 1, ... , q; 81;.border of I;.) .

3) Denoting by x = x k (t) the parametric representation of I;. on r-1 (see Footnote 7, p. 402) we suppose that p, [xk(t)]EC00 (T'-1 ).

4) There exists a positive number Ao such that for every A such that 0 < A � Au the range described by y=x + A p,(x) as x varies on 8A is entirely contained in A and is in one-to-one correspondence with 8A.

It is easy to prove that conditions 1), 2), 3), 4), imply that A is properly regular.

We shall consider in the domain A the Signorini problem. Assume E= I;.ui;u ... u�, (q' �q) . Let f E H0(A), g E!l' 2 (E*) (E*=8A-E).

From the theory we have developed in the preceding sections we derive this theorem 1 0.I Set where {aj/ k }={a;h, ik } are the matrices .

of elasticity (see E.T.E., Sect. 1 2). Let V be the convex set formed by all the functwns of H1(A) such that v(x) v(x) �0 on 8AP Let R' = R n V and R* be the subset of R' formed by all the bilateral displacements. A necessary condition for the existence of a minimum of the functional Jf I f this condition is satisfied in the strong sense, i.e. if the sign= holds when and only when eER*, then ..Jf(v) has an absolute minimum in V. I f u is a minimizing function, u is a solution in A of the differential system (10. 2) If fEC00 (A), then uEC00 (A). If q' <q, xOEJ;.-81;. (k =q' + 1, ... ,q) and g[x" (x)]EC00 (T"-1 ). Then u EC00 (B), for any domain B such that HcA n (A u i), where I is a suitable neighborhood of xO, 18 and u satisfies in 8A n I the boundary condition (10.4)

(v) = 2-1 B(v, v) -F (v) in V is
The conditions {10.3) express the fact that at the point of 8A n i under con sideration the elastic body in its equilibrium configuration rests on E, and there fore, that the reaction of the constraints has a nonnegative component along the inward normal. Any tangential component of such a reaction is null since the surface E is supposed frictionless. On the other hand, if the conditions {10.4) are satisfied, this means that in coming to equilibrium the body has left the supporting surface, which therefore no longer reacts on the body.

Evidently it is not known a priori which of the two sets of conditions (10.3) and {10.4) is to be satisfied at a given point of E. Hence the use of the name proposed by Signorini of "ambiguous boundary conditions ".

All the facts considered in the statement of the theorem are evident con sequences of the theory developed in the preceding sections. For proving that the ambiguous conditions (10.3) (10.4) are satisfied in 8A ni (I being a suitable neighborhood of a regular point xO of E) , one only needs to repeat, with easy generalizations, the arguments used in the example I of Sect. 6. Thus one shows that, almost everywhere on 8A n i, the following conditions are satisfied : ( 10.5) Since the functions u; , ai k are defined almost everywhere, we may assume, by suitably defining these functions on sets of measure zero, 20 that (1 0. 5 ) hold at every point of 8A n I. Thus we deduce that in 8A n I the ambiguous conditions (10.3) (10.4) hold.

The following theorem gives information about the global nature of the reaction that the supporting surface E exerts on the elastic body. 18 Actually, in the case when g= o, this is consequence of Theorem 3.1II. For the general case we refer the reader to the paper [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] (see Bibliography of E.T.E.). [START_REF]On the theory of boundary value problems for inhomogeneous elastic bodies[END_REF] In the case r £ 3 this implies that u is continuous in Au I (see E.T.E., 2.VI). 20 Actually, in the case r £ 3. we have to take care only of the functions aik .

The singular set of the measure y is contained in q' U8 J;. k=l and the Lebesgue derivative of y is the function O"u , (u) v i v 11• 2 1 We denote by W the linear manifold that consists of the real valued functions w which are defined almost everywhere on E and are such that, for every w, and almost everywhere on E, we have w=v ,v, with vEH1(A) nCO(A uE) . We put tP (w) = B(u, v) -F(v).

(10.7}

The linear functional tP is defined without ambiguity by (10.7) for every wEW, because, if v E Ht (A) nC 0 (A uE) and w=v, v , a.e. onE, then, since vv is a bilateral displacement of V (i.e. both v-ii and v -v belong to V), we have

B(u, v) -F (v)=B(u, v)-F(v).
Let AA (O<A.�A.0) be the domain bounded by the range of x=�+A.,u(�) as � describes 8A . Let 1p(x) be a real valued function of coo which is null in A A , and is equal to 1 in the exterior of A.l.,/, . Set for x = � + A. ,u (�) , for x E AA , • �EoA, If A.o is sufficiently small the function v 0 ( x) is defined everywhere in A and belongs to H1 (A } nC 0 (A uE) . Moreover we have on 8A : v� v , �cos w0 > 0.

We can assume that every wE W coincides in I;. (k = 1 , . .. , q') with a continu ous function wk . Let us use the symbol max Jw,.J for the maximum of JwkJ in I;. and put .A'(w) =max (max Jw 1 J, ... , max Jw'l'j). Consider the Banach space W obtained by functional completion from W by means of the norm .A'(w). On every J;.(k=1 , ... , q') we have for any wEW -cos w0

Thus tP is a continuous functional in W. On the other hand, when w E W and w �0 on E, we have, because of (10.7) , tP(w) �0. From classical theorems of Functional Analysis we deduce the existence of the non-negative measure y such that (10.6) holds. either a finite or a countable collection of mutually disj oint sets of {B}x. A measure y* is said to be singular if, for any BE{B}x. y* (B) =y* (Bn N), where N is a set of zero Lebesgue measure on E. Hence y* (B) = 0 if BnN = 1/J. For every measure y(B) defined on {B}x there exist, and are uniquely determined, a singular measure y* (B) and a function q:> (x) E .P1 (E) such that the Lebesgue decomposition holds y(B) =y* (B) + f q:> (x) dG.

B

The above mentioned set N is called the singular set of the measure y and the function q:> (x)

is called the Lebesgue derivative of the measure y.

Let x'lEI;.-o.I;. and let I be a suitable small neighborhood of x 0 such that u belongs to H2 (A (]J) . Let v be a function belonging to H 1 (A) (] C (I) . For the w which corresponds to this particular v we have by

(10.2) c])(w) = B(u, v)-F(v) =-f (a11 k u111 vk) v da = f (v1v1) [ai11 (u) viv11] da . aA aA q'
That implies that the singular set of y must be contained in U 8I;. and that the Lebesgue derivative of y is ai11 (u) vi v11 • k=l

The mechanical meaning of the measure y is evident : y (B) represents the intensity of the global reaction exerted by the constraint of support on E over the whole set B. This reaction may have concentrated stresses only on point-sets formed by singular points of 1:; no concentration can occur in the neighborhood of any regular point of 1: . 22

We wish now to discuss another delicate question concerning the Signorini problem. We saw that the condition (10.1) is sufficient for the existence of the solution u of the Signorini problem provided it is satisfied in the strong sense, i.e. the sign = can occur in (10.1) when and only when eER*. We shall prove, con sidering a particular case of paramount mechanical interest, that the strong condition is necessary for the existence of the solution. That will lead us to a remarkable mechanical interpretation of this condition.

We take r = 3 and we suppose that the supporting surface E is planar and connected. We are permitted to suppose that 1: is a bounded closed region of the plane x3 = 0. Moreover we suppose that A -E is contained in the half-space x3 > 0. The linear space of the rigid displacements is formed by the vectors (! such that

� = �+� � -� �. � = �+� � -� �. � = �+� � -� �.
where �, a2, a3, b1 , b2, b3 are constants. The vector (! belongs to R' if and only if a3 +b1x2 -b 2 x1 �0 for (x1 , x2) EE. (10.8) We are permitted to suppose that the x3-axis intersects l:-81:. That implies a3 � 0. For any integrable real valued function w, set .F;, (w) = f f11wdx + f g11 w da (h =1, 2, 3 ).

A :!:* Condition ( 10.1) is equivalent to the following conditions

� (1)=�(1)=0, � (x1) -� (x2)=0, a3 Fa (1) -b2 [Fa (x1) -� (x3) ] + b1 [Fa (x 2 ) -� (x3)] � 0 .
(10.9)

The last inequality is to be taken for a3, b 2 and b1 satisfying (10.7) . It follows that F3 (1) � 0.

If the sign = held, then from (10.8) (10.9) we could deduce that Fa(x1) -�{x3)=0, Fa(x2) -�(x3) =0, i.e. the system of the applied forces would be equilibrated.

Then the problem has a solution, since it reduces to the classical one which con sists in assigning the body forces and the surface forces everywhere on 8A , on the assumption that the given surface forces vanish on E (see Theorems 1.VI and 7.II).

From now on we shall exclude equilibrated systems of applied forces.

Then we must have 1<;

(1) <O. From (10.9) we deduce the relation

1\ (1) [1<; (x2) -Fa (x a )J +Fa (1) [11;_ (x a )-Fa (x1)J +Fa (1) [Fa (x1) -� (x2)] =0.
Since the vector {� {1 ), Fa (1), 1<;(1)} does not vanish, we know from elementary mechanics 23 that the system of applied forces is equivalent to a single force ortho gonal to the plane x3 =0, directed downwards and applied in any point of the central axis of the system which is the straight line x1 =�. x 2 =x� with We shall call the set obtained as the intersection of all the closed half-planes which contain E, the convex hull of E and shall denote it by K(E). K(E) is ob viously a closed convex set. A half-plane having as its origin the straight line a3 + b1 x2 -b2 x1 = 0, with a3 > 0, contains E if and only if a3 , b1 , b2 satisfy con dition (10.8). Thus the last of (10.9) expresses the fact that K(E) contains (x�, x�). Vice-versa, if K(E) contains (x� . xg) and if the system of applied forces is equi valent to a single force, orthogonal to the plane x3 =0 and directed downwards, conditions (10.9) are satisfied and thus also {10.1).

We shall now prove that 1 0.III A necessary and sufficient condition in order that, given (1 0.1), it hold in the strong sense, is that the central axis of the system of applied forces meet K(E) at an internal point.

If (xt xg) is internal to K(E), it will be internal to every half-plane which contains E. This implies that the last of (10.9) is satisfied in the strong sense for a3 , b1 , b2 satisfying (10.8), and a3 >0. Thus {10.1) is satisfied in the strong sense. Vice-versa, if (10.1) is satisfied and if we had (xt xg) E oK(E) , we could consider a straight line a3 + b1 x2 -b2 x1 =0 (a a >O) passing through (xt xg) and such that one of the half-planes which admit this straight line origin (indeed the half-plane as + b l x2 -b2 x l � 0) contains K(E)J44The rigid displacement e l = b2 X a , e2 = -bl Xs , e3=a3+b1 x2 -b2 x1 belongs to R' and is unilateral. However, the sign = holds in (10.1) for this displacement.

From this lemma it follows that the case in which (10.1) is satisfied, but not in the strong sense, presents itself as a limiting case in which the central axis meets K(E) on the boundary. We shall prove that in this limiting case a solution of the Signorini problem does not exist. This proves the necessity of the strong condition for the existence of a solution of the Signorini problem.

23 See [25, pp. 36-3 7] . 24 If K is a planar convex set and x a point of 8K, there exists a straight line i. passing through x such that K lies in one of the two closed half-planes of origin i..

Let us exclude the trivial case K = { x}. Consider a system of polar coordinates with pole x. If there existed two numbers ex, fJ such that fJ-ex ;:;:-; :n; and such that for ex < 8 < {J, the half axis originating in x of argument 8 did not contain any point of K different from x, the assertion would be proved. Assume these numbers do not exist. Then there will be three values 8 1 , 8 2 , 8 3 for which 0<82 -8 1<:n;, 0<8 8-88<:n;, 0<8 1+2:n:-8 3 <:n; and such that the three half axes, determined by them, each contains a point of K different from x. Let xl, x 2 , x 3 be these three points. The triangle xl x2 x 3 is contained in K and thus x cannot be a point of 8K.
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L et e�=a�+bg Xa -ba x 2 , eg= ag + bg xl -b� Xa , e�=ag+b� x 2bg xl be a displacement of R' which is unilateral and such that J It e ? dx+ J g i e ? da=O .

A x•

Let A be the straight line of the plane Xa =O given by the equation e g=o. Then, recalling (10.9), (xt xg) EA.. Note that the intersection of A with K(E) is not empty.

Suppose there exists a solution u of the Signorini problem. Then also u 0 = u + rl will be a solution of the problem (see Theorem 7.1). Since e g>o in E-(A. n 8E) , we have ug > 0 a. e. in E-(.A n 8£). Let z be a point of E-(A. n 8E) and let Dd (z) be a 3 -dimensional ball of center z and radius o at positive distance from An 8E. L et wE C 1 [D 6 (z) ]. We can determine a positive number t(o, z) such that for ltl <t(o, z) the function u 0 + t w belongs to V. It follows that I(u 0 + tw) has a minimum for t=O. Then B(u, w) -F(w) =0. This implies that the measure y defined by Theorem 10.II is such that y(B) =0 for each Borel set B of E contained in Dd (z) . It follows that the measure y is singular and the singular set of y must be contained in An 8E.

Observe that y cannot be identically null, since, from ( 1 0.6), assuming v1 = 0, V 2 =0, v3 = 1 , we deduce y(A.n 8E) =-Fs(1) > O.

Thus : if there exists a solution of the Signorini problem, the reaction of the con straint is concentrated on the linear set An 8E.

For every vEH1 (A ) n C 0 (A u.E) we put J0 (v) = iB(v, v) -F(v) -J v3 dy .

Ar. ax

Since we have B(u, u) =F(u) and, because of (1 0.6),

J v3 dy= B(u, v) -F(v) ,
Ar.dr we get J'0 (v) -J(u) � B(u-v, u-v) � 0.

Let p be a positive constant greater than the diameter of A. We put For 0<<5<1 we have v"EC00 (A). On the other hand we have lim � [v6]=oo , �[ v"J �J'(u). 6 --+ 0

This proves that no function u such as to minimize J'(v) in V exists.

11. Historical and bibliographical remarks concerning Existence Theorems in Elasticity. Existence theorems are of prominent interest in problems of mechanics and physics, since they provide a rational tool for proving, independently of any physical plausibility and experimental evidence, the consistency of a theory which brings into a mathematical scheme facts and phenomena of the physical world. Unfortunately, they very often constitute the most difficult part of the theory.

Concerning the classical linear elasticity of homogeneous isotropic bodies, the first exist ence theorem was given for the 1st Boundary Value Problem by FREDHOLM [START_REF] Fichera | Sui problema elastostatico di Signorini con ambigue condizioni al con torno[END_REF]25 as an applica tion of the discovery of his fundamental theorems concerning integral equations. The same problem was also considered, always using the Fredholm integral equations, by LAURI CELLA (21), MARCOLONGO (24) and, later, by LICHTENSTEIN [START_REF] Lanchon | Solution du probleme de torsion elastoplastique d'une barre cylindrique de section quelconque[END_REF].

The use of integral equations in the 1st Boundary Value Problem (Dirichlet's Problem) is possible by considering the classical differential system of elasticity as homogeneous, with non-homogeneous the boundary values and by representing the solution as a "potential of a double layer " relative to the fundamental solution matrix, which was given for the differential system in question by Lord KELVIN [START_REF] Kelvin | Note on the integration of the equations of equilibrium of an elastic solid[END_REF] and by SOMIGLIANA [START_REF] Somigliana | Sopra l'equilibrio di un corpo elastico isotropo[END_REF] .

The approach exactly parallels the one which is used in potential theory for getting the existence theorem for the Dirichlet problem relative to harmonic functions [START_REF] Kellogg | Foundations of potential theory[END_REF] , [START_REF] Gunter | Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik[END_REF] . Real difficulties arise when one tries to use the same method for the 2nd Boundary Value Problem of classical elasticity. Following the analogy with harmonic functions one would represent the solution as a "potential of a simple layer ", just as is done in the 2nd Boundary Value Problem for harmonic functions (Neumann's Problem) [START_REF] Kellogg | Foundations of potential theory[END_REF] , [START_REF] Gunter | Die Potentialtheorie und ihre Anwendung auf Grundaufgaben der Mathematischen Physik[END_REF] .

Unfortunately the system of integral equations which one gets is not a Fredholm system. In fact the "kernels " of these integral equations are not absolutely integrable, and the corresponding integrals have a meaning only if they are interpreted as "Cauchy singular integrals ".

This has misled some authors, who have taken them to be Fredholm integral equations. Let us spend a few words on this phenomenon.

Let us consider the differential operator of classical elasticity in the case r = 3, which we write as follows (see E.T.E., Sect. 12) . L; u = u i/k k + a u k/k i where a is a constant >i. To this operator we associate the boundary operator tu which represents the forces on the boundary, corresponding to the displacement u:

t ;, u = ui/k '�� k + 0' 14k/k 'II ;, + ( u k/i '�� k-14Mk v, ) •
In the bounded regular domain A the Betti reciprocity theorem holds : f (u;, t; v -v; t;u) d a + f (u1 L1 v -v1L1u) dx =0,

8A A
which is analogous to the Green formula for the Laplace operator J (u ;; -v :;) da + J (uLI2 v-vLI 2 u) dx=O.

8A A (11.1) This has induced several researchers to believe that the operator tu plays in elasticity the same role as the operator 8 uf8 v plays in potential theory. But it must be remarked that if we consider instead of tu, the more general operator t (u ; A)

t; (u ; A) = ui/ k v,. + a u k/k v1 + A (u k/i v,. -u k/k v 1)
.

where A is an arbitrary constant, the reciprocity relation (1 1.1) still holds f [u; t;, (v ; A)v, t, (u ; A) ] da + f (u1 L1 v -v1L, u) dx =0. produces kernels k11 (x, y ) which have a Fredholm singularity, i.e. are such that k1 j (x, y) = I'J(j x -yjot- The real 2nd Boundary Value Problem of elasticity was studied by KoRN [START_REF]Boundary value problems of the theory of elasticity for piecewise-homogeneous elastic bodies[END_REF] in a very long paper by a very complicated method which uses integral equations and for the first time (see also [START_REF]On the theory of boundary value problems for inhomogeneous elastic bodies[END_REF]) introduces the inequalities, nowadays known as Korn's inequalities (see E.T.E., Sect. 12). FRIEDRICHS [START_REF] Giraud | Equations a integrales principales[END_REF], citing the work of KoRN writes : "The author of the pre sent paper has been unable to verify KoRN's proof for the second case ". BERNSTEIN and TouPIN in their paper on KoRN's inequalities, after quoting FRIEDRICHs' statement, write : "With him we confess unability to follow KoRN's original treatment ".

A few years later H. WEYL [START_REF] Nikolski | The Schwarz algorithm in the problem of tensions in the theory of elasticity[END_REF] tried to study the 2nd Boundary Value Problem of elasticity by using Fredholm integral equations obtained by means of the so-called antenna potential. However a certain hypothesis, which he assumes for carrying out his approach, has not been proved to hold in general.

It must be remarked that, in any case, H. WEYL's paper is of fundamental interest in elasticity for the analysis of the asymptotic distribution of eigenvalues in problems of elasticity.

For long time the theory of Boundary Value Problems in elasticity made no substantial progress in the case when r > 2. On the other hand, in the case when r = 2, many important achievements were obtained, mainly by MusKHELISHVILI, I. N. VEKUA and the Georgian school, using complex methods and the theory of singular integral equations on a curve (for extensive bibliography see [START_REF] Muskhelishvili | Singular integral equation[END_REF]). In 194 7 FRIEDRICHS published an important paper [10] on r-dimensional problems of elasticity. He gives the first acceptable proof of KoRN's second inequality (the proof of the first one is almost trivial) and new proofs of the existence theorems for the 1st and the 2nd Boundary Value Problems of classical elasticity and for the related eigenvalue problems. His method is founded on the variational approach (by the same method FRIEDRICHS had given in 1928 the existence theorem for a clamped plate [START_REF]Un teorema generale di semicontinuita per gli integrali multipli e sue applicazioni alia fisica-matematica[END_REF]) and he succeeds in proving, by employing his technique of "mollifiers ", the interior regularity of the solutions.

In 1950 appeared paper [START_REF]Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo del l' elasticita. Parte I and Parte II[END_REF] in which, by use of methods of functional analysis, new proofs of the existence theorems for the 1st and the 2nd Boundary Value Problems of elastic ity were given and, for the first time, the existence theorem for the 3rd B.V.P. (mixed B.V.P.) was obtained. It is worthwhile to recall here briefly the method used in [START_REF]Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo del l' elasticita. Parte I and Parte II[END_REF] for the proof of this theorem. We shall consider, for simplicity, the case of the Laplace operator. We shall also introduce some simplifications and shall use language more modern than that of [START_REF]Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo del l' elasticita. Parte I and Parte II[END_REF] . 

J Uti VIi dx = J u /i v i i dx = -J v t5 da. A A X,
If we take any cpE C00 (A ') and put v (x) = JG(x, y) cp(y) dy , A'

(1 1.2)

(1 1.J)

where G(x, y) is the Green function of the Dirichlet problem for Ll2, relative to A', we have . fviJda= .{ u1, v1, dx = -Ju �� da-Jurpdx. f (J (x) G(x, y) da" -J u (x) -/-G (x, y) da" This approach, since only with difficulty could it be extended to higher order elliptic systems with variable coefficients, was not followed in E.T.E. Nevertheless, over the approach used there the earlier one has the advantage of not requiring such severe restrictions upon oA .

One year after the publication of [3] a note of Emus [START_REF] Emus | On a mixed problem of elasticity theory[END_REF] appeared on the mixed problem of elasticity. It must be remarked that Soviet mathematicians have been very active in the field of the existence theory for classical elasticity. Besides the above cited contributions of the Georgian school, let us quote here the papers of S. L. SoBOLEV [START_REF] Sobolev | The Schwarz algorithm in elasticity theory[END_REF], MICHLIN [START_REF] Michlin | On the Schwarz algorithm[END_REF], S. Y. KoGAN [START_REF] Kogan | On the resolution of the threedimensional problem of elasticity by means of the Schwarz alternating method[END_REF], E. N. NIKOLSKY [START_REF] Nikolski | The Schwarz algorithm in the problem of tensions in the theory of elasticity[END_REF] on the extension to elasticity of the Schwarz alter nating method and, in particular, the work of MICHLIN and KuPRADZE. The former has considered elasticity problems from several points of view. In his monograph [START_REF]The problem of the minimum of a quadratic functional[END_REF] he considers, besides the above quoted alternating method, the variational approach and he reviews the results obtained in this field by Soviet mathematicians. However he does not seem to be aware of some of the work done in the western world. In the monograph [START_REF] Levi Civita | Compendia di Meccanica razionale[END_REF] MICHLIN applies his theory of multidimensional singular integral equations to problems of elasticity. This theory, initiated by TRICOMI [START_REF] Tricomi | Equazioni integrali contenenti il valor principale di un integrale doppio[END_REF] and GIRAUD [START_REF] Giraud | Equations a integrales principales[END_REF], has been concluded by MICHLIN and is the starting point of the modern theory of pseudo-differential operators. MICHLIN in [START_REF] Levi Civita | Compendia di Meccanica razionale[END_REF] is able to solve the system of singular integral equations, to which the 2nd B.V.P. of classical elasticity gives rise when the solution is represented by simple layer potentials. Similar results were obtained by KuPRADZE [START_REF]On boundary value problems of the theory of elasticity for piecewise-homogeneous bodies[END_REF] , almost at the same time. He also uses MICHLIN's theory to solve the same system of singular integral equations.

Let us mention here, besides other relevant contributions of KUPRADZE, his work on dynamic problems and on problems for heterogeneous media [START_REF]On boundary value problems of the theory of elasticity for piecewise-homogeneous bodies[END_REF] , [START_REF] Kogan | On the resolution of the threedimensional problem of elasticity by means of the Schwarz alternating method[END_REF][START_REF] Kupradze | Boundary value problems of the theory of forced elastic oscillations[END_REF][START_REF]Some new theorems on oscillation equations and their application to boundary value problems[END_REF][START_REF]Boundary value problems of the theory of elasticity for piecewise-homogeneous elastic bodies[END_REF][START_REF]On the theory of boundary value problems for inhomogeneous elastic bodies[END_REF][START_REF]On boundary value problems of the theory of elasticity for piecewise-homogeneous bodies[END_REF][START_REF]The boundary value problems of the oscillation theory and their integral equations[END_REF][START_REF]Dynamical problems in elasticity[END_REF] .

The equilibrium problem for a heterogeneous elastic medium (an elastic body composed by two homogeneous isotropic bodies with different Lame constants) was first posed by 26 Let us remark that the use of the domain A' and of the corresponding Green's function G(x, y), according to the procedure used in [START_REF]Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo del l' elasticita. Parte I and Parte II[END_REF] (which was followed by KuPRADZE [START_REF]On boundary value problems of the theory of elasticity for piecewise-homogeneous bodies[END_REF] for the analysis of mixed problems) can be avoided and a further simplification in the proof of the existence theorem introduced. To this end, instead of using v (x) as given by (1 1 .3), let us assume where v(x) ="P(x) fs(x, y) rp(y ) dy

A {(2n) -1 Jog l x -Yl s (x , y) = [(2 -r) w , J-1 1 X -yJ 2 -r for r = 2, for r > 2
(w, is the hypersurface measure of the unit sphere of X') , rp (x) E C00 and 1p (x) is a C00 function such that, given arbitrarily x0 disjoint from f 1 , 1p (x) ==1 for Jx-xDI �e, 1p (x) ""0 for lx-xOI �2e; e is a positive number such that the ball 1'2 ,: lx-x0J �2e is disjoint from 1;.

It is not difficult to see that for yEF, one gets the representation O(y)u(y) = I IJ (x ) s (x, y) d a " -f u (x) a� " s(x, y) dax+h(y) , :1:, n r. :1:, n r. (11.5) where h (y) is a harmonic function in r, . By using ( 11. 5) in place of ( 1 1 .4) one gets the same conclusions.

PICONE [START_REF] Stampacchia | Variational inequalities[END_REF], who proposed a method for numerical solution. Papers by LIONS [START_REF] Lions | Contribution a un probleme de M. Picone[END_REF] and by CAMPANATO [START_REF] Campana | Sul problema di M. Picone relative all'equilibrio di un corpo elastico incastrato[END_REF] are concerned with this problem. The case of anisotropic bodies, with general elasticities, is for the first time considered in E.T.E. In that article the modem approach to boundary value problems for strongly elliptic operators is followed, which has made it pos sible, for the first time, to treat with great generality dynamic problems as well as diffusion problems and integra-differential problems. There can be no doubt that the analytical in vestigations of problems of elasticity have greatly contributed to the modem development of the theory of partial differential equations. For instance researches concerning the Kom inequalities are among the first examples of investigations connected with the concept of "coerciveness " now very important. In this respect, besides the papers of FRIEDRICHS and of BERNSTEIN and TOUPIN, already cited, let US mention here the work of CAMPANATO [START_REF]Sui problemi al contorno per sistemi di equazioni differenziali lineari del tipo del l' elasticita. Parte I and Parte II[END_REF], [START_REF]Proprieta di taluni spazi di Banach connessi con la teoria dell'elasticita[END_REF], which is mainly interesting for the examples in which Kom's inequalities fail, and a remark able paper by PAYNE and WEINBERGER [START_REF]Quelques methodes de resolution des problemes aux limites non lineaires[END_REF], where the best estimate for the 2nd Korn in equality, in the case of a sphere, is obtained and a new proof of this inequality provided for a class of domains. Unfortunately the results of the paper do not have so large a range of validity as the authors claim. The paper [START_REF] Kellogg | Foundations of potential theory[END_REF] of GoBERT also concerns Korn's inequality.

The first author to consider a unilateral problem for elasticity was SIGNORINI [START_REF] Signorini | Sopra alcune questioni di elastostatica[END_REF] early in 1933. He presented again his theory, in more complete fashion, in 1959 [START_REF]Questioni di elasticita non linearizzata o semi-linearizzata[END_REF]. In this paper the problem nowadays known as the Signorini problem is proposed. This problem was in vestigated and solved in the paper [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF], which was submitted for publication in September, 1963, and which appeared in 1964. The results of paper [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] had been announced in [START_REF] Fichera | Sui problema elastostatico di Signorini con ambigue condizioni al con torno[END_REF] (February 1963), in [START_REF] Duvaut | Probleme de Signorini en viscoelasticite lineaire[END_REF] and in [START_REF]Un teorema generale di semicontinuita per gli integrali multipli e sue applicazioni alia fisica-matematica[END_REF]. The results of [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF], although relative to a specific problem of elasticity, are immediately extensible -as far as the abstract theory is concerned -to an abstract unilateral problem relative to a symmetric semi-coercive bilinear form considered in a cone.

The existence and uniqueness theorem given in [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] is the first example of an existence and uniqueness theorem for a unilateral problem connected with a differential operator.

More than one year later STAMPACCHIA [START_REF] Stampacchia | Formes bilineaires coercitives sur les ensembles con vexes[END_REF] considered unilateral problems relative to nonsymmetric coercive bilinear forms. The case considered by STAMPACCHIA because of the coerciveness hypothesis he assumes cannot cover that considered in [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF]. In fact -as has been shown in the present paper -it is just the absence of the coerciveness condition which makes the problem a complicated one, since, in this case, one has to face the delicate question of the compatibility conditions. When the bilinear form is coercive, the problem is almost trivial in the symmetric case. The non symmetric case is easily reduced to the symmetric one by a simple argument, shown in [START_REF] Stampacchia | Variational inequalities[END_REF], which makes use of a suitable contraction mapping. We have used this argument at the beginning of the proof of Theorem 2.I of the present paper. The authors of [START_REF] Stampacchia | Variational inequalities[END_REF] consider also the case of non-coercive non-symmetric bilinear forms. In the abstract scheme which they assume, they exactly reproduce the situation which arises in [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] in connection with elasticity and give a theorem which imitates the results of [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] , transferring them into their abstract setting. The proof of the boundedness of the sequence which furnishes the solution of their unilateral problem is strongly inspired by the proof of the boundedness of the analogous sequence, presented in [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF]. Unfortunately, imitation of the results of [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] (which relate to a particular convex set) in the case of the general convex set which they introduce, without considering the extremely more general geometric nature of an arbitrary convex set, lead them to state unacceptable results. As a matter of fact, if one uses results of [START_REF] Stampacchia | Variational inequalities[END_REF] for solving unilateral problems for non-coercive forms, one has to impose compatibility conditions on the data, even when that is not necessary.

Nowadays the literature on unilateral problems grows more and more. [START_REF] Stampacchia | On the regularity of the solution of a variational inequality[END_REF] The abstract point of view has especially considered extensions to non linear operators. These researches mainly interest pure mathematics. However, a number of concrete specific problems have also been investigated and the associated questions of regularization studied. While I believe that the abstract theory, developed in this paper, is able to cover with sufficient generality the unilateral problems connected with linear operators of applied mathematics, I realize that the regularization theory is still very far from the generality that it has in the case of bilateral problems. The regularization results stated in the present paper, as far as the relevant differential operator is concerned, are the most general known up to date for linear operators.

With specific reference to elasticity, let us mention that one of the first unilateral prob lems in elasticity after SIGNORINI's was formulated by PRAGER [START_REF] Prager | Unilateral constraints in mechanics of continua[END_REF]. It has been considered in Sect. 6 (example V) of the present paper. A unilateral problem for a membrane was in vestigated by H. LEWY [START_REF] Lewy | On a variational problem with inequalities on the boundary[END_REF] and later by LEWY and STAMPACCHIA [START_REF] Stampacchia | On the regularity of the solution of a variational inequality[END_REF]. Elastic plastic torsion problems have been studied by T. W. TING [START_REF] Ting | Elastic-plastic torsion problem[END_REF], DuvAuT and LANCHON [START_REF] Duvaut | Sur la solution du probleme de torsion elastoplastique d'une barre cylindrique de section quelconque[END_REF] and LANCHON [START_REF] Lanchon | Solution du probleme de torsion elastoplastique d'une barre cylindrique de section quelconque[END_REF]. The theory of elastic-plastic torsion problem is explained in detail in the 27 For a bibliography on this subject we refer to the book [START_REF]Quelques methodes de resolution des problemes aux limites non lineaires[END_REF] .

article by TING in volume VI a/3 of this Encyclopedia. DuvAuT has considered the Signorini problem in visco-elasticity [START_REF] Duvaut | Probleme de Signorini en viscoelasticite lineaire[END_REF] (i.e. hereditary elasticity) ; GRIOLI [START_REF] Grioli | Problemi d'integrazione e formulazione integrale del problema fondamentale dell'elastostatica. Simposio intern. sulle Applicazioni della Analisi alia Fisica Mate matica[END_REF] and DuvAUT [START_REF]Problemes unilateraux en mecanique des milieux continus[END_REF] elastic problems when the bounding surface has friction. The paper [START_REF] Moreau | La notion de sur-potential et les liasons unilaterales en elastostatique[END_REF] of MoREAU concerns unilateral problems of elastostatics ; he has considered also a number of abstract and con crete topics connected with unilateral problems.

So far we have considered problems connected with linear elasticity. Although the uni lateral problems do not belong to the domain of linear analysis and many questions are still not settled, it has been possible to put them in a general scheme. That is not possible for non linear elasticity. As far as existence theory is concerned, there are particular results, for special problems but nothing sufficient to give concrete foundations to a general theory. That probably will be one of the tasks of applied analysts in the next years.

Bibliography.

  Set xn = a;; 1 Z n . Then ca!II Pxnll2;;;; ; an(xn, T* v-T* u0)+ : n (xn,v-u0) + O'n (f-T u0, xn)-(f-T u0, v-u0) • Hence lim II P xn II = 0. n-+oo {2.6) We have P= P+Q0+Q1 and P , Q0 , Q1 are mutually orthogonal projectors. Hence liP xnll2 + IIQo xnll2 + IIQl xnll2= 1.

  n large enough, t X n E p [ v ( Uo) J' then t e EP [ v ( Uo) J. Let e' be a vector of V(u0) such that Pe'=e. We have e'=e+(e'-e). Since eEL1 EBK(T) and e'-eEL, we have e'EN(T+T* )nV(u0). If eo=O, then e'EN(T)nV(u0). Eq. (2.7) implies '21 =l= 0 and, in consequence, F(f! l ) =F(e1) + F(e'-e1) =F(e') < 0. Then (2.8) If f!o =l= 0, then Q0 (21 =j= 0 and, assuming V=V Q •, we have {f, e') + ( T * V Q •, (21) < 0. Hence (f, e)+(T* ve '• e)=(f, e)+(T* ve' • e)+ { I , e'-e) + ( v e' , T(e'-e)) = (f, e ') + (T* v Q. , e') <O, and (2.8) holds also in this case, provided we assume v=ve'• From (2.6), where v is any fixed vector of V if e0=0 and v=ve' if e o=l= 0 , we deduce that 1 CO'n liP xnll2;;;:; ( P Xn, T* v-T* Uo) + n (xn, v-u o )

1

 1 

  (I) Denote by P the projector of H onto the orthogonal complement of the kernel of B(v, v) (restricted to H). A positive constant c exists such that B(v, v) ;;;._ c II Pvll m• VvEH.

Then Theorem 3 .

 3 I [3.I II] still holds for such a solution if we substitute for Hypothesis (III) [I II'] the weaker one: the convex set V contains the closed ball JJwJJ�s (s>O) ofHm( A ) [�( A )].

6 .( 6 . 1 )

 661 Other examples of unilateral problems. (I) The Signorini problem fo r a scalar 2nd order elliptic operator. Let A be the domain considered in Sect. 10 of E. T.E. and let B(u, v) be the bilinear form defined in the example III of that section. Under the hypotheses there assumed we have -B(v, v) �c0 ll vll�• Let H=H1(A) and V the convex set defined by the condition v�O on oA . For any given fEH0(A) there exists one and only one solution of the unilateral problem f{ o(v -u) ou ou } IX ;i ----'-::-----'---(J;(v -u)--c (v-u) u dx ox; oxi ox; A � Jt(v-u) dx uEV, 'v'vEV. A In this case the convex set V satisfies the Hypothesis (III) of Sect. J. Then u E H2(B) for any domain B such that EcA and satisfies in A the differential equation +f3;� u +cu+f=O.

  A iJAThen By the arbitrariness of v we deduce that u satisfies almost everywhere on oA the conditions : ou UBT=O, which -provided they hold in the whole of oA -lead to the ambiguous boundary conditions l u>O either � _ oJc -O l U= O or �< o Io oJc = . (II) Membrane fixed along its boundary and stretched over an obstacle. Let A be a bounded domain of X'. Assume B (u, v)= f U;;V;;dx A (tt, v real valued functions) . (6.2)

  -u) ) J ayz dx dy � f(v-u) dx dy A A (I is a function of H0 (A) ).

  We shall define the closed convex set V as the set of all the functions of H1 (A ) such that (/Jh (x, v; v1v ... , v1,) � 0 Ph (x, r v) � 0 a.e. in Ah (h=1, . .. , l) , a. e. on I:h (h=1, ... , l') .

  u, v) be the bilinear form of elasticity already considered in Sect. 5.

8. 1

 1 The solution u of the unilateral problem {8.2) belongs to H 2 (1) for any I such that leE. Given x0EE, there exists a 15>0 such that �EE and where I; is the ball of center xOEE and radius e and where c0 is a positive constant depending only on the coefficients of the bilinear form (8.1) and on xO .Let us first remark that, because of the hypotheses we have assumed on V, we have B(u, u) =F(u), B(u, v) �F(v) ('v' vE V). If 1p is a scalar function of coo such that 0�1p�1, we have B ( u,'lflu)�F(1Jlu), B(u,(1-1Jl),!! )�F(u)-F(1Jlu).

1 1

 1 2U (x)-U(x-y)-U(x+y) I I s_c I I U(x+y)-U(x)

  Let us recall that, if the function of y I I U(x + y) -U(x)I I IYI 1,A is bounded by c3 , then II UII2, A is finite and II UII2,A � c4 c3 • We have for 0 � IYI � b/ 2 B [U(x+ y)-U(x), U(x+y) -U(x)] =2B [u(x), IP(x) U(x)] Set -2B [u(x), IP(x) U(x -y)] + f {txhk(x) [U1h(x+y)-U1�o(x)] [U1k(x+y) -U1k (x)J A -2othk (x) u1�o(x) [IP(x) U(x)]1k+2tx�o k (x) u1�o(x) [IP(x) U(x-y)] 1k +fJ�o (x) [U1" (x+ y)-U1" (x)] [U(x+ y)-U(x)] -2/J�o(x) u1�o(x) IP(x) U(x)+2fJ�o(x) u1h(x) IP(x) U(x-y) (8.3) +fJ� (x) [U(x+ y)-U(x)] [U1h (x+ y) U1h(x)] -2{J�(x) u(x) [IP(x) U(x)J1�o+2{J�(x) u(x) [lfJ(x) U(x-y)]1h +y (x) [U(x+ y)-U(x)] [U(x+ y)-U(x)] -2y (x) U(x) U(x)+2y(x) U (x) U(x-y)}dx . ,1 (y) =B [U(x+y)-U(x), U(x +y)-U(x)] .

  y) -{J � (x)J [U(x -y) -U(x)] [U(x -y)-U(x)b +[y(x -y)-y(x)] [U(x-y)-U(x)J [U(x-y) -U(x)J}dx .Hence ,1 (y) � 2-1 [p, (y) +p,(-y) +a(y)] . If we set W(x)=lfJ (x) f(x) , this last in equality, after simple transformations, givesB [U(x+ y)-U(x), U(x+ y)-U(x)] � (W(x), 2 U(x)-U(x-y) -U(x+ y))0 + f{[1J1Jh (x+ y) u (x+ y) -�P1n(x) u (x)] [iX�ok (x + y) U1k (x+ y) -iXhk (x) U1k (x)] A +IPJk(x) u1�o(x) [iX�o k(x-y) U(x-y)+<X�ok(x +y) U(x+y)-2Cihk(x) U(x)] -[othk (x-y)-txhk(x)] u1�o(x) ( [IP (x) U(x-y)]Jk-[lfJ (x) U(x)] Jk) -[ot�ok(x+y) -txhk (x)] u1�o (x) ( [�P(x) U(x+y)]1k -[lfJ (x) U(x)J1k) -[othk (x -y)+tx�ok(x+y)-21X�o k(x)] u1�o (x) [IP(x) U(x)]1k +2-1 [txhk(x -y)+txhk(x+y)-2txhk(x)] U;�o(x) U;k (x) +2-1/J�o(x) [U;�o(x+y)-U;�o(x)] [U(x+y)-U(x)] + 2-1/J�o(x) [U;�o(x -y) -U;�o(x)] [U(x-y) -U(x)] +fJ�o(x) IP(x) u1�o(x) [U(x-y)+ U(x+y)-2 U(x)] +z-1{J�(x) [U(x+y) -U(x)][U;�o(x+y) -U;11(x)] +z-1 {J�(x) [U(x -y) -U(x)] [U;�o (x -y)-U;�o(x)] -[{J� (x+ y) U(x+ y) -{J� (x) U(x)] [U;�o(x+ y)-U;h (x)] +{J� (x) IP!h (x) u (x) [U(x-y) + U(x+ y)-2 U(x)] + z-1y (x) [U(x+ y)-U(x)] [U(x+ y)-U(x)] +2-1y (x) [U(x-y)-U(x)] [U(x-y)-U(x) ] +y(x) U(x) [U(x -y) + U(x+y)-2 U(x)]}dx+2-1 a (y).

2 )

 2 We have cii v ii 2 � B(v, v) , "' vEH1(A), spt vE] ( c >O).

3 )

 3 Let x=x(�) == x(y, t) the C3-homeomorphism from I+ to ]. Let E be the image of the semiball .E+ : IYI2+t2 <1, t�O under this homeomorphism. Let vEV and spt vEE. Let y be such that spt v[x(�+y)](.E+. Then v[x(�+y) ]EV.

4 )

 4 The solution u of the unilateral problem (8. 2) satisfies in A n I the differ ential equation ( 9.1)If U is a subset of };+ we shall denote by x (U) its image under the homeo morphism x=x(�).

9 . 1

 91 There exists �>O such that Jd+ c .E+, uEH2 [x (Jd+)] a nd llu JJ� ,x (FJ) � Co(llf l l �. x ( rt. l + !lu l l �, x(rt.)) ; �+ is the semiball IYI 2 + t2 � !52, t > 0 and c 0 a positive constant only depending on the coefficients of the bilinear form (8.1) and on x!l.

F

  

  a;,.(u) v,.=g; [a ; h(u) = -a;h, ik ui/k] . If x 0 EJ;. -8I;. (k = 1 , .... , q') then u E H2 (A n i),19 where I is a suitable neigh borhood of xO, and u satisfies in 8A n I the "ambiguous boundary conditions " ( 1 o . 3) lu i v; >O or a;,.(u) v; v,.=O a;,. ( u) v; r,. = O where r is any vector tangent to E in the points of 8A n I.

  10.II A real-valued nonnegative measure y (B) is defined in the a-ring { B}x of the Borel sets B contained in E such that, if u minimizes Jf(v) in V, we have for every vEH1(A) n C0 (A u E) J V; v; dy= B(u, v) -F(v) . I (10.6)

L

  v\1 (x) v. (x) ;;:;; w (x) ::::; ; ..A'( w ) v9 ( x) v. ( x) cos w0 • ' -cos w0 ' ' J l']) (w) J ::::; ; -1-[B (u, v0) -F(v 0 )] .A(w) .

2 1 A

 1 G-ring of sets is a family of sets which is closed with respect to union and intersection either of a finite or of a countable collection of sets of the family. The G-ring {B}x is the inter section of all the G-rings formed by subsets of E. A measure defined on { B}x is any real valued function of B such that y (B) =� y (Bk) if B = B1u B 2 u • • •u B k ... and B1 , ••• , Bk , ... is "

  Then t(u; A) has the same right as tu to play in elasticity the role of the normal derivative in potential theory. With respect to the theory of Fredholm integral equations, the operator t (u ; A) which behaves like the normal derivative in potential theory, is one that, 8A being supposed a Liapounov boundary (i.e. with a HOlder continuous normal field), when it operates on the Somigliana fundamental matrix (i, i = 1, 2, 3) .

  Let A be a bounded domain of xa with a Liapounov boundary &A , which is decomposed into two open hypersurfaces E'1 and E'2 which have a common border &E'1 = &E'2 and no other point in common. We shall consider Ei (i =1, 2) as an open set respect to &A . Let us suppose that there exists a domain A' with a Liapounov boundary &A ' and such that A')A, &A 'n &A =E 1 • Let Hx, be the subspace of H1 (A ) obtained as closure of the linear manifold of all the real valued functions v such that vE C 1 (A) , spt vn E;. = ¢. Let t5 be a function Holder continuous on E2 • We wish to prove that there exists one and only one function u such that Let u be a function such that uE C 2 (A )rl C 1 (A), Ll2 u = 0 in A, u = t5 on E'2 • Such a function is easily obtained by suitably continuing t5 on &A and solving the corresponding Neumann problem in A. Let us introduce in H1 (A ) the new scalar product ((u, v)) = J u1i Vfi dx A and, identifying two functions of H 1 (A ) which differ by a constant, let us denote by Jft' the corresponding Hilbert space. Considering Hx1 as a subspace of Jft', let u be the orthogonal projection of u on Hx 1 • We have for any vEHx1

  By the arbitrariness of rp we easily deduce that O(y ) u (y )

6 f

 6 with O(y) = 1 if yEA, O(y) =0 if yEA'-A. From (1 1 .4) it is easy to deduce, using standard arguments of potential theory (jump relations) that u is a solution of the problem. If uo is another solution of the problem, since, for any vEHr 1 , we have from ( 11.2) we see that u0 ""' u . 2 u1i vii d x =f v (J da, A :I: ,

  any set of X', we shall denote by Vo (B) the class of func tions on B obtained by taking the restriction to B of every vEVo.

	Let us suppose
	that: (i) "Vo(A) is a closed linear subspace of Hm(A); (ii) 'Vo(Ani0))Hm(Ani0);

  Unfortunately the case concerning elasticity is A.= 1 . It follows that the Fredholm method can be applied to the 2nd Boundary Value Problem provided one considers as boundary operator t[u; a(2+a)-1] which has no physical meaning. Actually this was done by LAURI CELLA[START_REF]The boundary value problems of the oscillation theory and their integral equations[END_REF], who called t [u ; a(2 + a)-1 ] the pseudo-tensions operator.

2 ) o < oc. ;::; ; 1. It is not difficult to see that this happens if and only if A = a l2 + at1.

When we say that V is a convex set, we mean that v1E V, v2 E V imply t1 v1 + t2 v2 E V for any f1, t2 such that 0:::; ; f;:::; ; 1 (i = 1, 2), /1 + t2 = 1. By V (u 0 ) we denote the set of all v such that v+u0E V.

We use in this paper concepts and notations already introduced in E.T.E.

( •, •)0 denotes scalar product in H0(A) ==£'2(A).

For the definition of iJUH see E.T.E., Sect. 6 (definition of problem (P)).

It must be remarked that either (5. 1) or (5.2), which are stated here as uni lateral constraints, may turn out, in some particular case, to be bilateral, as we shall see by an interesting illustration.26*

This will turn out to be true from the analysis we shall develop in Sects. 8 and 9.

2 Of course we suppose, as usual, that each function of H

2(An i0) is continued in the whole space and coincides with 0 outside of An i0•[START_REF] Kellogg | Foundations of potential theory[END_REF] We shall develop that in more detail in the next section.

[START_REF]Proprieta di taluni spazi di Banach connessi con la teoria dell'elasticita[END_REF] Actually from the hypotheses assumed on A, it is possible to prove that A satisfies a restricted cone hypothesis.

Actually we shall see that the theorem, we are going to prove, still holds, with the same proof, under less restrictive assumptions on these matrices.

By writing {a}/ ,. } we mean the matrix a hk which has a}! ,. as entry in the i-th row and in the f-th column. Thus we assume a1� =a i "• ik"

Of course the inequality v (x) v (x) � 0 must be understood in the sense of the functions of H 1 (A ), i.e. almost everywhere.

This circum�tance was conjectured by the soviet mathematician G. I. BARENBLATT, during a seminar that the author held at Moscow University in 1969.

[START_REF] Duvaut | Probleme de Signorini en viscoelasticite lineaire[END_REF] Numbers in boldface square brackets refer to the Bibliography at the end of E.T.E. Numbers in lightface square brackets refer to the Bibliography at the end of the present paper.27*