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Opinion

Objective performance metrics [1-12] form an essential part 
of surgical simulator systems for optimal independent training. 
Putting such metrics to the test on users with different levels of 
expertise appears mandatory for perfecting existing systems. The 
exploitation of individual performance metrics to establish learning 
curves that a user can see and understand and that will help him/
her elaborate task strategies for measurable skill improvement is 
the most important aspect of an effective training system [6-12]. 
Metric-based skill assessment ensures that training sessions are 
more than simulated clinical procedures, and that trainees are 
provided with insight about how they are doing in a task, and how 
they could improve their current scores. Not all simulator tasks are 
based on surgically realistic physical task models, but at the earliest 
stages of training surgical task realism is probably not what matters 
most [13-20]. Whatever the degree of realism of the simulator task, 
metric based skill assessment gets rid of subjectivity in evaluating 
skill evolution, and there is no ambiguity about the progress of 
training. 

Moreover, some work has shown that benchmarking individual 
levels of proficiency against the performance levels of experts on 
a validated, metric-based simulation system has well-established 
intrinsic face validity [1,2,10]. It therefore appears the better  

 
approach compared with benchmarking on abstract performance 
concepts or on the basis of expert consensus. Building expert 
performance in terms of benchmark metrics into simulator training 
programs would provide an almost ideal basis for automatic skill 
assessment and ensure that desired levels of skill are defined on 
the grounds of realistic criteria. Such are, in principle, available in 
the proficiency levels of individuals who are highly experienced at 
performing clinical procedures with the highest level of precision 
[1,11], which is probably the strongest argument for building expert 
performance data into any simulator system for a direct comparison 
with novice data at any moment of the training procedure.

Recently, early simulator training models for assessing skill 
evolution on the basis of individual speed-precision trade-offs, 
recorded and directly exploited in the light of the benchmark 
statistics of an expert surgeon in the context of an experimental 
simulator environment, have been proposed [1,5]. The approach is 
based on a simple and universal psychophysical human performance 
model of individual strategies during motor learning [9,21-32]. 
They focus on individual speed-precision trade-off functions during 
training at early stages and are based on objective criteria for task 
precision and task time at any moment in the evolution of individual 
performance. The individual speed-precision trade-off functions of 
complete novices having trained for a large number of simulator 
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Simulator training for image-guided surgical interventions allows tracking task performance in terms of speed and precision of task execution. 
Simulator tasks are more or less realistic with respect to real surgical tasks, and the lack of clear criteria for learning curves and individual skill 
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sessions reveal, indeed, completely different speed-precision 
strategies. precision focused strategy most closely matches the 
benchmark statistics (mean and standard deviations for time and 
precision, of an expert surgeon, as shown previously [1]. 

This is illustrated here in Figure 1 by two learning curves of 
two novice trainees from some of these studies [5], validated 
further in the light of an expert’s benchmark performance 
statistics. The strategy differences highlighted here in Figure 1 
occur spontaneously in novices during early training and are most 
frequently completely non-conscious. In other words, trainees at 

these early stages of simulator training do not really know what 
they are doing, or what to do to improve their skills effectively. 
Therefore, it is in the very early stages of simulator training 
where the most effective guidance is required to bring out the full 
potential in trainees. How individual strategies should be detected, 
and if necessary, controlled for and modified as early as possible 
in simulator training, has been discussed on the principle of semi-
automatic control procedures in the light of expert benchmark data 
[1,5]. A training system should be able to know the expert surgeon’s 
statistics relative to task precision and task time, not only time 
[20,21], and these data should be in-built to the system. 

Figure 1: Two different learning curves expressed in terms of the individual speed-precision trade-off functions of two novices 
having trained in a large number of sessions.

On this basis, it will be possible to detect and if necessary, 
controls for individual speed-precision strategies by comparing 
a trainee’s performance statistics to the expert’s benchmarks. 
The means and standard deviations from the precision focused 
strategy closely match the performance benchmark statistics of 
an expert surgeon highly skilled in clinical precision interventions 
and performing in the simulator task with no prior training in that 
specific task, as shown by Batmaz, Dresp-Langley, de Mathelin, and 
other colleagues in some of their recent work [5-9].

Building reliable precision scores into learning curve 
approaches in surgical simulator training will ultimately enable 
the human expert tutors in charge of training programs to provide 
appropriate user feed-back to the novice when necessary and as 
early as possible in the program. The goal of early simulator clearly 
should be to empower, to bring out the full extent of individual 
potential and give any trainee, without the direct intervention of 
human tutors who even when they are experts may be biased, the 
possibility to attain the highest level of skill he/she is capable of on 
the simulator. This will ultimately result in fostering, and ultimately 
selecting for, strategy-aware soon-to-be surgeons with optimal 
precision skills.

How increasingly objective skill assessment will help improve 
surgical simulator training is still by and large an open question. 

Although artificial intelligence provides well-suited concepts for 
knowledge implementation, automatic feed-back procedures 
and the exploitation of prior (learnt) benchmark knowledge, 
building such procedures into simulator training is anything but 
straightforward. Early-stage “dry-lab” training programs are offered 
to large numbers of individuals, often on experimentally developed 
simulators, and supervision of the training programs by one or 
two experts is mandatory. Automatic control procedures [13] that 
exploit metric-based benchmark criteria and perform statistically 
driven performance comparisons, with trial-by-trial feed-back at 
any given moment in time, may prove helpful if they are exploited 
effectively. The goal of early simulator training should be to help 
the largest possible number of registered individuals reach their 
optimal performance levels as swiftly as possible [15,23]. Skill 
assessment in terms of an end-of-session performance status that 
highlights differences between trainees is not enough, especially 
when there is no way of knowing what these differences actually 
mean, i.e. what they tell us about true surgical talent.

Faced with the problem of defining reliable performance 
standards, it is important that simulator systems and the metrics 
they exploit to control performance evolution, including automatic 
or AI assisted procedures with feedback [22], have been validated by 
the performance parameters of an expert. This will ensure that the 
training criteria are likely to match those required for performing 
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real surgical tasks, and that the learning task measures some 
of the most relevant characteristics of surgical skill. Since many 
different physical task models exist, surgical simulator training is 
permanently confronted with the problem of generalization of the 
learning curves and, ultimately, uncertainty about skill transfer to 
real-world surgical interventions.

The task models and control principles reviewed here and 
more extensively explained and conceptualized in previous work 
referred to herein should ideally be implemented at the earliest 
stages of “dry lab” simulator training. Some of them could be 
adapted to a variety of eye-hand-tool coordination tasks that allow 
for computer controlled criteria relative to task precision p at any 
critical task moment in time t. Early simulator training tasks should 
successfully tell apart the performance levels of a large number of 
novices from those of a surgical expert, not necessarily trained on 
the simulator but exhibiting a stable near-optimal performance 
with respect to task precision. Clearly, if an early training system 
satisfies this criterion, then it is indeed likely to measure critical 
aspects of surgical skill that should transfer to real surgical tasks 
[14-23]. Building precision scores into the learning curves early, 
should help produce a selection of trainees that will perform 
better later-on, in more specific tasks on physical models, and in 
the clinical context. Then, direct supervision by experts will allow 
taking individual skills to the next level.

Whatever the simulator system and task, be it surgically 
realistic or less, a single performance metric will inevitably give 
an incomplete assessment of user performance [1,11,20]. Task 
completion time in the absence of other, more telling criteria, is a 
poor and largely misleading measure of surgical skill evolution [19-
21]. Some metrics imply that there would be some global optimum 
performance value, such as a minimal tool path length, a minimal 
completion time, or other minimal quantities such as forces [7,22] 
or velocities [24,33-36] reflecting optimal performance. These 
supposedly optimal values, however, may vary in relation to changes 
in conditions, which need to be considered. The assumed optimum 
per se can, in reality, on be known through analysis of expert 
performance in the same task and on the specific simulator. Such 
analysis only will give insight into the nature of user-task-condition 
dependencies and, ultimately, help develop better simulators. 
Also, some important elements of surgical proficiency have not yet 
been explored to become part of largely unsupervised simulator 
training programs and the field is still in need of a large amount of 
experimental and conceptual work leading in that direction. 

Metric-based criteria for task precision in limited task time are 
sometimes difficult to define. How, for example, does one measure 
the precision with which a surgical knot [15] is tied in a given time t? 
In procedures where the camera moves along with the tool [7,10-16], 
as is the case with most robot-assisted procedures, the frequency 
and duration of camera movements or camera movement intervals 
may be highly important indicators of technical skill. The ease with 
which the trainee controls the tool may be a direct correlate of the 
precision of tool-target alignment, for example. In combination 
with other performance metrics such as task completion time, 

economy of tool motion, or master workspace range used, a variety 
of precision measures may be exploitable, but have not yet been 
fully explored or validated. Training control procedures based on 
device-specific expert performance benchmarks and clear precision 
metrics will, sooner or later, provide new solutions to the old and 
still unresolved problem of heuristic validity of learning curves in 
surgical simulator training.

References
1.	 Dresp-Langley B (2018) Towards expert-based speed-precision control 

in early simulator training for novice surgeons. Information 9: 316.

2.	 Stunt J, Wulms P, Kerkhoffs G, Dankelman J, van Dijk C, et al. (2014) How 
valid are commercially available medical simulators? Adv Med Educ 
Pract 5: 385-395.

3.	 Marcano, L, Komulainen T, Haugen, FA (2017) Implementation of 
performance indicators for automatic assessment. Computer Aided 
Chemical Engineering 40: 2971-2976.

4.	 Marcano L, Yazidi A, Ferati M, Komulainen T (2017) Towards effective 
automatic feedback for simulator training.

5.	 Batmaz AU, de Mathelin M, Dresp-Langley B (2016a) Getting nowhere 
fast: Trade-off between speed and precision in training to execute 
image-guided hand-tool movements. BMC Psychology 4: 55.

6.	 Batmaz AU, de Mathelin M, Dresp-Langley B (2016b) Effects of indirect 
screen vision and tool-use on the time and precision of object positioning 
on real-world targets. Perception 45: S286.

7.	 Batmaz AU, Falek M, Nageotte F, Zanne P, Zorn L, et al. (2017) Novice and 
expert haptic behaviours while using a robot controlled surgery system. 
13th IASTED International Conference on Biomedical Engineering 
(BioMed).

8.	 Batmaz AU, de Mathelin M, Dresp-Langley B (2017) Seeing virtual while 
acting real: Visual display and strategy effects on the time and precision 
of eye-hand coordination. PLoS One 12(8): e0183789.

9.	 Batmaz AU, de Mathelin M, Dresp-Langley B (2018) Effects of 2D and 
3D image views on hand movement trajectories in the surgeon’s peri-
personal space in a computer controlled simulator environment. Cogent 
Medecine p. 5.

10.	Gallagher AG, O’Sullivan C (2011) Fundamentals in surgical simulation: 
Principles and practice. Improving Medical Outcome - Zero Tolerance 
Series, Springer Science & Business Media pp. 374.

11.	Gallagher AG (2012) Metric-based simulation training to proficiency in 
medical education: What it is and how to do it. Ulster Med J 81(3): 107-
113.

12.	Gallagher AG, Ritter EM, Champion H, Higgins G, Fried MP, et al. (2005) 
Virtual reality simulation for the operating room: Proficiency-based 
training as a paradigm shift in surgical skills training. Ann Surg 241(2): 
364-372.

13.	Dreyfus HL, Dreyfus SE, Athanasiou T (1986) Mind over machine: The 
power of human intuition and expertise in the era of the computer. 
Artificial Intelligence 33(1): 135-140.

14.	Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Andersen DK, et 
al. (2004) Analysis of errors in laparoscopic surgical procedures. Surg 
Endosc 18(4): 592-595.

15.	Van Sickle K, Smith B, McClusky DA, Baghai M, Smith CD, et al. (2005) 
Evaluation of a tensiometer to provide objective feedback in knot-tying 
performance. Am Surg 71(12): 1018-1023.

16.	Van Sickle KR, Gallagher AG, Smith CD (2007) The effect of escalating 
feedback on the acquisition of psychomotor skills for laparoscopy. Surg 
Endosc 21(2): 220-224.

http://dx.doi.org/10.26717/BJSTR.2019.13.002429
https://www.mdpi.com/2078-2489/9/12/316
https://www.mdpi.com/2078-2489/9/12/316
https://www.ncbi.nlm.nih.gov/pubmed/25342926
https://www.ncbi.nlm.nih.gov/pubmed/25342926
https://www.ncbi.nlm.nih.gov/pubmed/25342926
https://www.sciencedirect.com/science/article/pii/B9780444639653504979
https://www.sciencedirect.com/science/article/pii/B9780444639653504979
https://www.sciencedirect.com/science/article/pii/B9780444639653504979
https://oda.hioa.no/en/item/asset/dspace:20513/Marcano_Yazidi_Ferati_Komulainen_Paper_69.pdf
https://oda.hioa.no/en/item/asset/dspace:20513/Marcano_Yazidi_Ferati_Komulainen_Paper_69.pdf
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-016-0161-0
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-016-0161-0
https://bmcpsychology.biomedcentral.com/articles/10.1186/s40359-016-0161-0
https://www.researchgate.net/publication/305725457_Effects_of_Indirect_Screen_Vision_and_Tool-Use_on_the_Time_and_Precision_of_Object_Positioning_on_Real-World_Targets
https://www.researchgate.net/publication/305725457_Effects_of_Indirect_Screen_Vision_and_Tool-Use_on_the_Time_and_Precision_of_Object_Positioning_on_Real-World_Targets
https://www.researchgate.net/publication/305725457_Effects_of_Indirect_Screen_Vision_and_Tool-Use_on_the_Time_and_Precision_of_Object_Positioning_on_Real-World_Targets
https://ieeexplore.ieee.org/document/7893274
https://ieeexplore.ieee.org/document/7893274
https://ieeexplore.ieee.org/document/7893274
https://ieeexplore.ieee.org/document/7893274
https://www.ncbi.nlm.nih.gov/pubmed/28859092
https://www.ncbi.nlm.nih.gov/pubmed/28859092
https://www.ncbi.nlm.nih.gov/pubmed/28859092
https://arxiv.org/abs/1803.11283
https://arxiv.org/abs/1803.11283
https://arxiv.org/abs/1803.11283
https://arxiv.org/abs/1803.11283
https://www.ncbi.nlm.nih.gov/pubmed/23620606
https://www.ncbi.nlm.nih.gov/pubmed/23620606
https://www.ncbi.nlm.nih.gov/pubmed/23620606
https://www.ncbi.nlm.nih.gov/pubmed/15650649
https://www.ncbi.nlm.nih.gov/pubmed/15650649
https://www.ncbi.nlm.nih.gov/pubmed/15650649
https://www.ncbi.nlm.nih.gov/pubmed/15650649
https://www.sciencedirect.com/science/article/abs/pii/0004370287900567
https://www.sciencedirect.com/science/article/abs/pii/0004370287900567
https://www.sciencedirect.com/science/article/abs/pii/0004370287900567
https://www.ncbi.nlm.nih.gov/pubmed/15026914
https://www.ncbi.nlm.nih.gov/pubmed/15026914
https://www.ncbi.nlm.nih.gov/pubmed/15026914
https://www.ncbi.nlm.nih.gov/pubmed/16447471
https://www.ncbi.nlm.nih.gov/pubmed/16447471
https://www.ncbi.nlm.nih.gov/pubmed/16447471
https://www.ncbi.nlm.nih.gov/pubmed/17200909
https://www.ncbi.nlm.nih.gov/pubmed/17200909
https://www.ncbi.nlm.nih.gov/pubmed/17200909


Biomedical Journal of Scientific & Technical Research 

Cite this article: Birgitta Dresp-Langley. Who Beats the Expert? Building Precision into Simulators for Surgical Skill Assessment. Biomed J Sci 
& Tech Res 13(4)-2019. BJSTR. MS.ID.002429. DOI: 10.26717/ BJSTR.2019.13.002429.

Volume 13- Issue 4: 2019

10105

17.	A Reznick RK (1993) Teaching and testing technical skills. Am J Surg 
165(3): 358-361.

18.	Chen C, White L, Kowalewski T, Aggarwal R, Lintott C, et al. (2014) 
Crowd-sourced assessment of technical skills: A novel method to 
evaluate surgical performance. J Surg Res 187(1): 65-71.

19.	Moorthy K, Munz Y, Sarker SK, Darzi A (2003) Objective assessment of 
technical skills in surgery. BMJ 327(7422): 1032-1037.

20.	Sewell C, Morris D, Blevins NH, Dutta S, Agrawal S, et al. (2008) Providing 
metrics and performance feedback in a surgical simulator. Comput 
Aided Surg 13(2): 63-81.

21.	Ritter EM, McClusky DA, Gallagher AG, Smith CK (2005) Real-time 
objective assessment of knot quality with a portable tensiometer is 
superior to execution time for assessment of laparoscopic knot-tying 
performance. Surgical Innovation 12(3): 233-237.

22.	Rosen J, Hannaford B, Richards CG, Sinanan MN (2001) Markov 
modeling of minimally invasive surgery based on tool/tissue interaction 
and force/torque signatures for evaluating surgical skills. IEEE Trans 
Biomed Eng 48(5): 579-591.

23.	Jarc AM, Curet MJ (2017) Viewpoint matters: Objective performance 
metrics for surgeon endoscope control during robot-assisted surgery. 
Surg Endosc 31: 1192-1202.

24.	Dresp-Langley B (2015) Principles of perceptual grouping: Implications 
for image-guided surgery. Front Psychol 6: 1565.

25.	Fogassi L, Gallese V (2004) Action as a binding key to multisensory 
integration. In: Calvert G, Spence C, Stein BE (Eds.), Handbook of 
multisensory processes. MIT Press, Cambridge, pp. 915.

26.	Bonnet C, Dresp B (1993) A fast procedure for studying conditional 
accuracy functions. Behavior Research, Instruments & Computers 25: 
2-8.

27.	Fitts PM (1954) The information capacity of the human motor system in 
controlling the amplitude of movement. J Exp Psychol 47(6): 381-391.

28.	Meyer DE, Irwin A, Osman, AM, Kounios J (1988) The dynamics of 
cognition and action: Mental processes inferred from speed-accuracy 
decomposition. Psychol Rev 95: 183-237.

29.	Luce RD (1986) Response times: Their role in inferring elementary 
mental organization. Oxford University Press, New York, pp. 562.

30.	Held R (2009) Visual-haptic mapping and the origin of cross modal 
identity. Optom Vis Sci 86(6): 595-598.

31.	Henriques DY, Cressman EK (2012) Visuo-motor adaptation and 
proprioceptive recalibration. J Mot Behav 44(6): 435-444.

32.	Krakauer JW, Mazzoni P (2011) Human sensorimotor learning: 
adaptation, skill and beyond. Curr Opin Neurobiol 21(4): 636-644.

33.	Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ (2012) Global 
evaluative assessment of robotic skills: validation of a clinical assessment 
tool to measure robotic surgical skills. J Urol 187(1): 247-252.

34.	Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: A 
course of basic robotic surgery skills based upon a society consensus 
template of outcomes measures and curriculum development. Int J Med 
Robot Comput Assist Surg 10(3): 379-384.

35.	Aiono S, Gilbert JM, Soin B, Finlay PA, Gordan A (2002) Controlled trial 
of the introduction of a robotic camera assistant (Endo Assist) for 
laparoscopic cholecystectomy. Surg Endosc Other Interv Tech 16(9): 
1267-1270.

36.	King BW, Reisner LA, Pandya AK, Composto AM, Ellis RD, et al. (2013) 
Towards an autonomous robot for camera control during laparoscopic 
surgery. J Laparoendosc Adv Surg Tech 23(12): 1027-1030.

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

•	 Global archiving of articles

•	 Immediate, unrestricted online access

•	 Rigorous Peer Review Process

•	 Authors Retain Copyrights

•	 Unique DOI for all articles

https://biomedres.us/

This work is licensed under Creative
Commons Attribution 4.0 License

ISSN: 2574-1241
DOI: 10.26717/BJSTR.2019.13.002429

Birgitta Dresp-Langley. Biomed J Sci & Tech Res

http://dx.doi.org/10.26717/BJSTR.2019.13.002429
https://www.ncbi.nlm.nih.gov/pubmed/8447543
https://www.ncbi.nlm.nih.gov/pubmed/8447543
https://www.ncbi.nlm.nih.gov/pubmed/24555877
https://www.ncbi.nlm.nih.gov/pubmed/24555877
https://www.ncbi.nlm.nih.gov/pubmed/24555877
https://www.ncbi.nlm.nih.gov/pubmed/14593041
https://www.ncbi.nlm.nih.gov/pubmed/14593041
https://www.ncbi.nlm.nih.gov/pubmed/18317956
https://www.ncbi.nlm.nih.gov/pubmed/18317956
https://www.ncbi.nlm.nih.gov/pubmed/18317956
https://www.ncbi.nlm.nih.gov/pubmed/16224644
https://www.ncbi.nlm.nih.gov/pubmed/16224644
https://www.ncbi.nlm.nih.gov/pubmed/16224644
https://www.ncbi.nlm.nih.gov/pubmed/16224644
https://www.ncbi.nlm.nih.gov/pubmed/11341532
https://www.ncbi.nlm.nih.gov/pubmed/11341532
https://www.ncbi.nlm.nih.gov/pubmed/11341532
https://www.ncbi.nlm.nih.gov/pubmed/11341532
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315708/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315708/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315708/
https://www.ncbi.nlm.nih.gov/pubmed/26539134
https://www.ncbi.nlm.nih.gov/pubmed/26539134
https://www.ncbi.nlm.nih.gov/pubmed/13174710
https://www.ncbi.nlm.nih.gov/pubmed/13174710
https://www.ncbi.nlm.nih.gov/pubmed/3375399
https://www.ncbi.nlm.nih.gov/pubmed/3375399
https://www.ncbi.nlm.nih.gov/pubmed/3375399
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749576/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749576/
https://www.ncbi.nlm.nih.gov/pubmed/23237466
https://www.ncbi.nlm.nih.gov/pubmed/23237466
https://www.ncbi.nlm.nih.gov/pubmed/21764294
https://www.ncbi.nlm.nih.gov/pubmed/21764294
https://www.ncbi.nlm.nih.gov/pubmed/22099993
https://www.ncbi.nlm.nih.gov/pubmed/22099993
https://www.ncbi.nlm.nih.gov/pubmed/22099993
https://www.ncbi.nlm.nih.gov/pubmed/24277315
https://www.ncbi.nlm.nih.gov/pubmed/24277315
https://www.ncbi.nlm.nih.gov/pubmed/24277315
https://www.ncbi.nlm.nih.gov/pubmed/24277315
https://www.ncbi.nlm.nih.gov/pubmed/12235507
https://www.ncbi.nlm.nih.gov/pubmed/12235507
https://www.ncbi.nlm.nih.gov/pubmed/12235507
https://www.ncbi.nlm.nih.gov/pubmed/12235507
https://www.ncbi.nlm.nih.gov/pubmed/24195784
https://www.ncbi.nlm.nih.gov/pubmed/24195784
https://www.ncbi.nlm.nih.gov/pubmed/24195784
https://biomedres.us/submit-manuscript.php
https://biomedres.us/
http://dx.doi.org/10.26717/BJSTR.2019.13.002429

	Who Beats the Expert? Building Precision into  Simulators for Surgical Skill Assessment
	Abstract
	Keywords
	Opinion
	References
	Figure 1

