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Abstract In this paper, we consider nonsmooth convex optimization problems
with additive structure featuring independent oracles (black-boxes) working in
parallel. Existing methods for solving these distributed problems in a general form
are synchronous, in the sense that they wait for the responses of all the oracles
before performing a new iteration. In this paper, we propose level bundle methods
handling asynchronous oracles. These methods require original upper-bounds (us-
ing upper-models or scarce coordinations) to deal with asynchronicity. We prove
their convergence using variational-analysis techniques and illustrate their practi-
cal performance on a Lagrangian decomposition problem.

Keywords Nonsmooth optimization · level bundle methods · distributed
computing · asynchronous algorithms

1 Introduction: context, related work and contributions

1.1 Nonsmooth convex optimization and bundle methods

We consider convex optimization problems of the form

f? := min
x∈X

f(x) with f(x) :=
m∑
i=1

f i(x) , (1)
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where the constraint set X is compact convex, and the functions f i : Rn → R (for
all i = 1, . . . ,m) are convex and possibly nonsmooth. Typically, nonsmoothness
comes from the fact that the f i are themselves the results of inner optimization
problems, as in Lagrangian relaxation (see e.g. [22]), in stochastic optimization (see
e.g. [32]), or in Benders decomposition (see e.g. [14]). In such cases, the functions
f i are known only implicitly through oracles providing values and subgradients
(or approximations of them) for a given point.

The so-called bundle methods are a family of nonsmooth optimization algo-
rithms adapted to solve such problems. Using oracle information, these methods
construct cutting-plane approximations of the objective function together with
quadratic stabilization techniques. Bundle methods can be traced back to [21]; we
refer to the textbook [16] and the recent surveys [12,31] for relevant references.
Real-life applications of such methods are numerous, ranging from combinatorial
problems [5] to energy optimization [30,6].

1.2 Centralized distributed setting

In this paper, we further consider the situation where (1) is scattered over sev-
eral machines: each function f i corresponds to one machine and associated local
data. This scattering is due to the privacy of the data, its prohibitive size, or
the prohibitive computing load required to treat it. These machines perform their
computations separately and communicate with a master machine which gathers
local results to globally productive updates. This distributed optimization set-up
covers a diversity of situations, including computer clusters or mobile agents; it is
also a framework attracting interest in machine learning (see e.g. [20,26]).

Distributed optimization has been studied for decades; see the early refer-
ences [35,4]. There is a rich recent literature on distributed optimization algorithms
(with no shared memory) for machine learning applications; we mention e.g. [40,
24,27,1]. In our context, the functions f i are nonsmooth and only known through
oracles; moreover, in many applications, some of the oracles require considerably
more computational effort than others. To efficiently exploit the fact that the or-
acles f i are independent and could be computed in parallel, we should turn our
attention to asynchronous nonsmooth optimization algorithms. An asynchronous
algorithm is able to carry on computation without waiting for slower machines:
machines perform computations based on outdated versions of the main variable,
and a master machine gathers the inputs into a productive update. In traditional
synchronous algorithms, latency, bandwidth limits, and unexpected drains on re-
sources that delay the update of machines would cause the entire system to wait.
By eliminating the idle times, asynchronous algorithms can be much faster than
traditional ones; see e.g. the recent reference [15].

1.3 Distributed bundle methods

Though asynchronism is extremely important for efficiency and resilience of dis-
tributed computing, no asynchronous algorithm exists for solving (1) in the above
general distributed setting. For example, big problems in stochastic optimization
(where uncertainty is due to intermittent renewable energy sources) are heav-
ily structured, often amenable to parallel computing by standard decomposition
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schemes (e.g. by scenarios [29,6], by production units [10], or even both [37]).
However, existing optimization algorithms exploiting this decomposability are all
synchronous, except for the recent [18] (see also references therein) dealing with a
specific polyedral problem.

Convincingly, bundle methods are particularly well-suited for asynchronous
generalizations: outdated information provided by late machines could indeed be
considered as inexact linearizations, and then could be treated as such by one of
the existing tools (see e.g. the recent [25], the review [9], and references therein).
However, to our knowledge, there is no asynchronous version of bundle methods
for the general distributed setting. Indeed, there does exist an asynchronous (prox-
imal) bundle method [11] but it is tailored for the case where m is large and each
component depends only on some of the variables. Moreover its implementation
and its analysis are intricate and do not follow the usual rationale of the liter-
ature. There is also an asynchronous bundle (trust-region) method [18] designed
for dual decomposition of two-stage stochastic mixed-integer problems. This algo-
rithm requires to eventually call all the oracles for all the iterates, which we want
avoid in our general situation. Another related work is the incremental (proximal)
bundle algorithm of [38], that could serve as a basis for an asynchronous general-
ization. However, this generalization is not provided or discussed in [38], neither
are numerical illustrations of the proposed algorithm with its new features.

In this paper, we propose, analyze, and illustrate the first asynchronous bundle
method adapted to the general centralized distributed setting, encompassing com-
puter clusters or mobile agents, described previously. We will not build on the two
aforementioned proximal bundle methods of [11,38], but rather investigate level

bundle methods [23,19]. In contrast with proximal methods where the iterates’
moves can be small even with reasonably rich cutting-planes, level bundle methods
fully benefit from collected asynchronous information: richer cutting-plane models
would tend to generate useful lower bounds, so that the level set would better
approximate the solution set, and the next iterate would better approximate an
optimal solution. Such behavior is discussed in the related context of uncontrolled
inexact linearizations; see the comparisons between proximal and level methods in
Section 4 of [25].

Though asynchronous linearizations of the functions and associated lower-
bounds can be well exploited in cutting-plane approximations, existing (level)
bundle methods cannot be readily extended in an asynchronous setting because
of the lack of upper-bounds: the values of the objective function are never avail-
able, since the oracles have no reason to be all called upon the same point. The
main algorithmic difficulty is thus to find and manage upper-bounds within asyn-
chronous bundle methods. This is quite specific to bundle methods which rely on
estimates of functions values or upper-bounds on the optimal values to compute
ad-hoc iterates. In contrast, existing asynchronous methods for other distributed
problems usually use predefined stepsize and have an analysis based on fixed-point
arguments; see e.g. [24,27,26].

1.4 Contributions, organization

In this work, we present the first asynchronous level bundle methods for efficiently
solving (1) in a general distributed master-slave framework where one master ma-
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chine centralizes the computations of m machines corresponding to the m oracles of
functions fi. To tackle the lack of function evaluation, we propose two options: (i)
to exploit Lispschitz properties of the functions to construct upper-bounds or (ii)
to coordinate the oracles when necessary for convergence, which has the interest
of requiring no extra knowledge on the functions.

The proposed algorithms are thus totally asynchronous in the terminology of
Bertsekas and Tsitsiklis (see Chapter 6 of the book [4]). This means that every ma-
chine updates infinitely many times and the relative delays between machines are
always finite (but the sequence of delays is possibly unbounded). We underline that
the algorithms does not rely on any assumption on the computing system, in con-
trast with almost all existing literature on asynchronous optimization algorithms;
notable exceptions include [34] for coordinate descent and [26] for proximal gra-
dient methods). In practice, the algorithm are not more difficult to program than
their synchronous counterparts, apart from the implementation of the exchanges
between the master and the machines.

We provide a convergence analysis of our algorithms under the assumption that
the convex constraint set X is compact. By using elegant tools from set-valued
analysis, we offer an original and more straightforward proof of convergence of
level bundle algorithms. To simplify the presentation, we first restrict to the case of
exact oracles (i.e. when the functions f i are known through subroutines providing
their values and subgradient for a given point), and then present the extension
to inexact oracles (i.e. when the subroutine provides noisy approximations of its
value and gradient). The numerical experiments on a Lagrangian decomposition
of a mixed-integer problem illustrate the features of the asynchronous algorithms
compared to the standard (synchronous) one.

This paper is organized as follows. Section 2 reviews the main ingredients of
level bundle methods, presents the standard level bundle method [19], and intro-
duces disaggregated models, on which asynchronous bundle methods are built.
Section 3 incorporates to this algorithm the asynchronous communications and
the upper-bound estimation to provide a first asynchronous bundle algorithm. Sec-
tion 4 presents and studies a second asynchronous bundle algorithm using scarce
coordination between machines, requiring no extra assumption on the functions.
In Section 5, we extend our previous results to the case of noisy inexact oracles.
Finally, Section 6 presents some preliminary numerical experiments, illustrating
and comparing the algorithms.

2 Level bundle methods: recalls and disaggregated version

This section reviews the main ideas about (synchronous) level bundle methods.
In particular, we recall in Section 2.1 the classical algorithm with the associated
notation. We also describe in Section 2.2 a disaggregated variant exploiting the
decomposability of the objective function of (1). The use of disaggregate models is
well-known for proximal bundle methods, but not fully investigated for level bundle
methods: we develop here the useful material for the asynchronous algorithms of
the next sections.
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2.1 Main ingredients of level bundle methods

We briefly present the classical scheme of level bundle methods, dating back to [23,
19], to minimize over X the function f only known through an exact oracle. While
presenting the algorithm and its main features, we introduce standard notation
and terminology of convex analysis and bundle methods; see e.g. the textbook [16].

Algorithm 1 essentially corresponds to the level bundle method of [19]; its main
features are the following ones. The generic bundle algorithm produces a sequence
of feasible points (xk) ⊂ X. For each iterate xk, the oracle information f(xk) and
gk ∈ ∂f(xk) is assumed to be available. With such information, the method creates
linearizations of the form f(xk) + 〈gk, · − xk〉 ≤ f(·). We denote 〈x, y〉 :=

∑
j xjyj

the usual inner product of two vectors x, y ∈ Rn, and ‖x‖ =
√
〈x, x〉 the associated

Euclidean norm. Such linearizations are used to create the cutting-plane model
for f at iteration k:

f̌k(x) := max
j∈Jk
{f(xj) + 〈gj , x− xj〉} ≤ f(x) (2)

where Jk ⊂ {1, 2, . . . , k} is a set of indices of points at which the oracle was
called. For any k, we introduce the level set Xk of f̌k associated to level parameter
f lev
k ∈ R

Xk := {x ∈ X : f̌k(x) ≤ f lev
k } ⊃ {x ∈ X : f(x) ≤ f lev

k }.

This level set defines a region of the feasible set in which the next iterate is chosen:
xk+1 ∈ Xk. It also provides a lower bound f low

k for f? whenever Xk = ∅. Indeed,
one can take f low

k+1 = f lev
k as, in this case, f? ≥ f lev

k .
A common rule to choose the next iterate is by projecting a certain stability

center x̂k ∈ (xk) onto Xk, that is

xk+1 := arg min
x∈Xk

1

2
‖x− x̂k‖2 . (3)

When X is a polyhedral set, computing the next iterate consists in solving a mere
convex quadratic optimization problem. This is also the case when X is a Euclidean
ball, as pointed out in [7]. Since the sequence (xk) is available, an upper bound
for the optimal value f? is just fup

k := minj∈{1...,k} f(xj). Thus, we have an upper
and a lower bound on the optimal value; we can then define the gap

∆k := fup
k − f

low
k ,

The gap gives a natural stopping test ∆k ≤ tol∆, for some stopping tolerance
tol∆ ≥ 0. Moreover, ∆k can also be used to update the level parameter as

f lev
k := αf low

k + (1− α)fup
k = fup

k − α∆k, with α ∈ (0, 1). (4)

Remark 1 (About convergence) The convergence of the standard level bundle method
presented in Algorithm 1 follows Theorem 3.5 in [19]. The proof uses that xk+1 ∈
Xk implies f(xk) + 〈gk, xk+1 − xk〉 ≤ f lev

k for k ∈ Jk, that in turn yields

‖xk+1 − xk‖ ≥
f(xk)− f lev

k

‖gk‖
≥ α∆k

Λ
, (5)



6 F. Iutzeler, J. Malick, and W. de Oliveira

where the bound ‖gk‖ ≤ Λ can be guaranteed by compactness and convexity of f .
Since this inequality requires the value of f(xk), it is not guaranteed anymore in
asynchronous setting. We will pay special attention to this technical point in the
algorithms of Section 4.

Algorithm 1 Standard level bundle method

1: Choose x1 ∈ X and set x̂1 = x1

2: Define fup
1 =∞, J0 = ∅ and ∆̂ =∞

3: Choose a stopping tolerance tol∆ ≥ 0, a parameter α ∈ (0, 1) and a finite f low
1 ≤ f?

4: Send x1 to the oracle
5: for k = 1, 2, . . . do

. Step 1: receive information from oracle
6: Receive (f(xk), gk) from the oracle
7: Set Jk = Jk−1 ∪ {k}
8: if f(xk) < fup

k then

9: Update fup
k = f(xk) and xbest = xk . update upper bound

10: end if
. Step 2: test optimality and sufficient decrease

11: Set ∆k = fup
k − f

low
k

12: if ∆k ≤ tol∆ then
13: Return xbest and fup

k
14: end if
15: if ∆k ≤ α∆̂ then
16: Set x̂k = xbest, set ∆̂ = ∆k, and possibly reduce Jk . critical iterate
17: end if

. Step 3: compute next iterate
18: Set f lev

k = fup
k − α∆k. Run a quadratic solver on problem (3).

19: if (3) is feasible then
20: Get the new iterate xk+1 ∈ Xk. Update f low

k+1 = f low
k and fup

k+1 = fup
k

21: else
22: Set f low

k = f lev
k and go to Step 2 . update lower bound

23: end if
. Step 4: send back information to the oracle

24: Send xk+1 to the oracle
25: Set x̂k+1 = x̂k
26: end for

2.2 Disaggregated level bundle iteration

We present here a level bundle algorithm which exploits the additive structure
of the objective function (1) and the presence of m oracles1 providing individual
information (f i(x), gi) ∈ R1+n with gi ∈ ∂f i(x), for every any point x ∈ X. We
define J ik ⊂ {1, . . . , k} as the index set of the points in the sequence (xk) where
the oracle i was called, i.e. such that (f i(xj), g

i
j)j is computed. The unique feature

of our situation and the main technical point is that the intersection of the index
sets may contain only few elements, or even be empty.

We can define individual cutting-plane models for each i and k

f̌ ik(x) := max
j∈Jik
{f i(xj) + 〈gij , x− xj〉} ≤ f i(x). (6)

1 To better underline our contributions on asynchronicity, we consider first only exact oracles
of the f i as above. Later in Section 5, we explain how our developments easily extend to the
case of inexact oracles providing noisy approximations of (f i(x), gi).
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Instead of approximating the objective function f by its aggregate cutting-plane
model f̌k (2), we approximate f by its disaggregated model

∑m
i=1 f̌

i
k. While the

idea is standard for proximal bundle methods (see e.g. [2] for an application in
electricity management and [13] for an application in network optimization), the
use of disaggregated models has not been fully investigated for level methods: we
are only aware of the level algorithm of [39] that employs a disaggregate model
indirectly just to request exact information from on-demand accuracy oracles.

If Jk ⊂ ∩mi=1J
i
k, then the disaggregated model provides a better approximation

for f than the aggregated model based on Jk

f̌k(x) ≤
m∑
i=1

f̌ ik(x) ≤ f(x) ∀ x ∈ Rn .

We can then replace in the level bundle algorithm the quadratic subproblem (3)
by the disagregated quadratic subproblem:{

minx 1
2‖x− x̂k‖

2

s.t. x ∈ Xd
k ,

with Xd
k :=

{
x ∈ X :

m∑
i=1

f̌ ik(x) ≤ f lev
k

}
, (7)

where x̂k is the stability center and f lev ∈ (f low
k , fup

k ) is the level parameter. As in

Section 2, if problem (7) is infeasible, then f lev
k is a lower bound for f?.

Aside from offering better accuracy, the disaggregate model has another advan-
tage in our context: it allows for partial update of the cutting-plane model using
individual oracle evaluations, without calling all m of the oracles at the same point.
This is an important feature that permits to handle oracles in an asynchronous
manner.

We formalize in the next lemma the easy result stating that (7) can be cast as
a standard quadratic problem.

Lemma 1 (Disaggregated master problem) Assume that the feasible set of (7)
is nonempty. Then the unique solution of (7) can be obtained by solving the following

quadratic optimization problem (in both variables x and r) and disregarding the r-

component of its the solution:

minx,r 1
2‖x− x̂k‖

2

s.t. x ∈ X, r ∈ Rm
f1(xj) + 〈g1

j , x− xj〉 ≤ r
1 ∀ j ∈ J1

k
...

...

fm(xj) + 〈gmj , x− xj〉 ≤ r
m ∀ j ∈ Jmk∑m

i=1 r
i ≤ f lev

k .

(8)

Proof Let x̄ be the (unique) solution to problem (7), and (xk+1, rk+1) be the
solution of (8). Then by defining r̄i = f̌ ik(x̄) we get that (x̄, r̄) is feasible for (8) and
therefore the optimal value of (8), 1

2‖xk+1−x̂k‖2 is less or equal than 1
2‖x̄−x̂k‖

2, the

optimal value of (7). Then
∑m
i=1 f̌

i
k(xk+1) ≤

∑m
i=1 r

i
k+1 ≤ f

lev
k , showing that xk+1

is feasible to problem (7). We therefore have shown that ‖x̄−x̂k‖2 ≤ ‖xk+1−x̂k‖2 ≤
‖x̄− x̂k‖2. Consequently, every x-component solution xk+1 of (8) is also a solution
to (7). As the latter problem has a unique solution, then xk+1 = x̄. ut
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time
Exchanging machine i

at time k
ka(i)

time
Other machine j

at time k
ka(j)

= exchange with the master.

Fig. 1: Notations for the delayed cuts added in our asynchronous bundle algo-
rithms.

3 Asynchronous level bundle method by upper-bound estimation

In this section, we present and analyze the first asynchronous level bundle method,
using the disagregated master subproblem (8) to incorporate asynchronous lin-
earizations from the oracles. We will index the time by k, the number of iterations
of the master. One iteration corresponding to the treatment of the information
sent by one oracle. At iteration k, the master receives the information from an
oracle, say i, updates the disagregated model, generates a new point, and sends
back a point to oracle i.

The asynchronicity in the algorithm makes that the oracles do not necessarily
provide information on the last iterate but on a previous one, so that asynchronous
bundle method has to deal with delayed linearizations. While we assume that all
machines are responsive in finite time (which is the standard setting of totally
asynchronous in the terminology of [4, Chap. 6]), we do not need upper bound on
their response times. In order to incorporate these delayed cuts, we denote by a(i)
the iteration index of the anterior information provided by oracle i : at iteration k,
the exchanging oracle i provides the linearization for f i at the point denoted xa(i)
(see lines 6 and 7 of the algorithm and Figure 1).

Apart from the above communication with oracles, the main algorithmic dif-
ference between the asynchronous level bundle method and the standard level
algorithm (Algorithm 1) is the management of upper-bounds fup

k . The strategy
presented here (and inspired by [38]) is to estimate upper bounds on f? without
evaluating all the component functions f i at the same point. To this end, we make
the assumption that we know an upper bound Λ̄i on the Lipschitz constant Λi of
f i for all i = 1, . . . ,m. In other words, we assume

|f i(x)− f i(y)| ≤ Λ̄i‖x− y‖ for all x, y ∈ X. (9)

The recent work [38] builds on the same assumption and proposes to bound f i(x)
at a given point by solving an extra quadratic problem of size |J ik| + 1 depend-
ing on Λ̄i. Using this technique, we would obtain an upper-bound of f(x) at the
extra cost of solving m − 1 quadratic problems at each iteration. We propose in
Algorithm 2 a simpler procedure to compute upper bounds fup

k without solving
quadratic problems or other extra cost.

Note that the upper bound is (possibly) improved only after all the oracles
have responded at least once. This means that the index a(j) (representing the
iteration index of the last iterated processed by oracle j) is well defined.
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Algorithm 2 Asynchronous level bundle method by upper-bounds estimation

1: Given Λ̄i satisfying (9), choose x1 ∈ X, and set x̄best = x̂1 = x1

2: Choose a tolerance tol∆ ≥ 0, a parameter α ∈ (0, 1), and fup
1 > f? + tol∆ and f low

1 ≤ f?
3: Set ∆̂ =∞ and Ji0 = ∅ for all i = 1, . . . ,m
4: Send x1 to the m oracles
5: for k = 1, 2, . . . do

. Step 1: receive information from an oracle

6: Receive from oracle i the oracle information on fi at a previous iterate xk
′

7: Set a(i) = k′, store (fi(xk′ ), g
i
k′ ), and set Jik = Jik−1 ∪ {k

′}
. Step 2: test optimality and sufficient decrease

8: Set ∆k = fup
k − f

low
k

9: if ∆k ≤ tol∆ then
10: Return x̄best and fup

k
11: end if
12: if ∆k ≤ α∆̂ then

13: Set x̂k = x̄best and ∆̂ = ∆k. Possibly reduce Jjk for all j = 1, . . . ,m.
14: end if

. Step 3: compute next iterate
15: Set f lev

k = fup
k − α∆k. Run a quadratic optimization software on problem (8)

16: if QP (8) is feasible then

17: Get new iterate xk+1 ∈ Xd
k. Update f low

k+1 = f low
k

18: else
19: Set f low

k = f lev
k and go to Step 2 . update lower bound

20: end if

21: if Jjk 6= ∅ for all j = 1, . . . ,m then

22: fup
k+1 = min

fup
k , f lev

k +
m∑
j=1

(
Λ̄
j‖xk+1 − xa(j)‖ − 〈g

j
a(j)

, xk+1 − xa(j)〉
)

23: if fup
k+1 < fup

k then

24: set x̄best = xk+1

25: end if
26: else
27: fup

k+1 = fup
k

28: end if

. Step 4: send back information to the oracle
29: Send xk+1 to machine i
30: Set x̂k+1 = x̂k
31: end for

3.1 Upper-bound estimation in asynchronous case

The strategy displayed on line 22 of Algorithm 2 to compute upper bounds is based
on the following lemma. This yields a handy rule for updating fup

k depending only

on the distance (weighted by Λ̄i) between the current solution of the master QP
(8), xk+1, and the last/anterior points upon which the oracles responded, xa(i) for
i = 1, ..,m.

Lemma 2 Suppose that (9) holds true for i = 1, . . . ,m. At iteration k, whenever the

master QP (8) is feasible, with (xk+1, rk+1) its solution, one has

f(xk+1) ≤ f lev
k +

m∑
j=1

(
Λ̄j‖xk+1 − xa(j)‖ − 〈g

j
a(j), xk+1 − xa(j)〉

)
. (10)

Furthermore,

α∆k ≤ f
up
k − f

up
k+1 + 2

m∑
j=1

Λ̄j‖xk+1 − xa(j)‖. (11)
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Proof Note first that

f(xk+1) =
m∑
j=1

fj(xk+1) =
m∑
j=1

fj(xa(j)) +
m∑
j=1

(
fj(xk+1)− fj(xa(j))

)
.

This yields

f(xk+1) ≤
m∑
j=1

(
rjk+1 − 〈g

j
a(j), xk+1 − xa(j)〉

)
+

m∑
j=1

(
fj(xk+1)− fj(xa(j))

)
≤ f lev

k +
m∑
j=1

(
Λ̄j‖xk+1 − xa(j)‖ − 〈g

j
a(j), xk+1 − xa(j)〉

)
,

where the first inequality comes from the fact that (xk+1, rk+1) is feasible point

for the master QP (8). The second inequality uses that
∑m
j=1 r

j
k+1 ≤ f lev

k as
(xk+1, rk+1) is a feasible point of (8) and the Lipschitz assumption (9) for the
functions.

To prove the second part of the result, we proceed as follows:

fup
k+1 ≤ f

lev
k +

m∑
j=1

(
Λ̄j‖xk+1 − xa(j)‖ − 〈g

j
a(j), xk+1 − xa(j)〉

)
≤ fup

k − α∆k + 2
m∑
j=1

Λ̄j‖xk+1 − xa(j)‖,

where the second inequality is due to the definition of f lev
k and due to the bound

on the scalar product provided by the Lipschitz assumption (9). This concludes
the proof. ut

At each iteration, the asynchronous level algorithm (Algorithm 2) computes
upper bounds of the functional values by using inequality (10). The rest of the
algorithm corresponds essentially2 to the standard level algorithm (Algorithm 1)
using the disaggregated model (8). In particular, since the values fup

k are provable

upper bounds, we still have f? ∈ [f low
k , fup

k ] for all k and the stopping test ∆k ≤
tol∆ is valid. The convergence analysis of the next section relies on proving that
the sequence of gaps (∆k) does tend to 0 when tol∆ = 0.

2 Note that Algorithm 2 still needs initial bounds fup
1 and f low

1 . These bounds can often
be easily estimated from the data of the problem. Otherwise, we can use the standard initial-
ization: call the m oracles at an initial point x1 and wait for their first responses from which
we can compute fup

1 = f(x1) =
∑
i f
i(x1) and f low

1 as the minimum of the linearization
f(x1)+ 〈g1, x− x1〉 over the compact set X. If we do not want to have this synchronous initial
step, we may alternatively estimate f lev and set fup

1 = +∞ and f low
1 = −∞. This would

require small changes in the algorithm (in line 15) and in its proof (in Lemma 3). For sake
of clarity we stick with the simplest version of the algorithm and the most frequent situation
where we can easily estimate fup

1 and f low
1 .
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timek(`+ 1)k(`+ 1)− 1k(`) k(`) + 1

critical iteration critical iteration

K`

Fig. 2: Illustration of the set K` used in convergence analysis

3.2 Convergence analysis

This section analyzes the convergence of the asynchronous level bundle algorithm
described in Algorithm 2, under the assumption (9). At several stages of the anal-
ysis, we use the fact that the sequences of the optimality gap ∆k and upper bound
fup
k are non-increasing by definition, and that the sequence of lower bound f low

k

is non-decreasing. More specifically, we update the lower bound only when the
master QP (8) is infeasible.

We count with ` the number of times the gap significantly decreases, meaning
that line 13 is accessed, and denote by k(`) the corresponding iteration. We have
by construction

∆k(`+1) ≤ α∆k(`) ≤ α
2∆k(`−1) ≤ · · · ≤ α

`∆1 ∀ ` = 1, 2, . . . (12)

We call k(`) a critical iteration, and xk(`) a critical iterate. We introduce the set
of iterates between two consecutive critical iterates as illustrated by Fig 2:

K` := {k(`) + 1, . . . , k(`+ 1)− 1}. (13)

The proof of convergence of Algorithm 2 consists in showing the algorithm
performs infinitely many critical iterations when tol∆ = 0. We start with basic
properties for iterations in K`, valid beyond Algorithm 2 for any level bundle
method under mild assumptions.

Lemma 3 (Between two consecutive critical iterates) Consider a level bundle

method (such as Algorithm 2) satisfying

– fup
k is a non-increasing sequence of upper-bounds on f?;

– f low
k is updated only when the master QP is empty, and f low

k is chosen as a lower

bound greater or equal to f lev
k ;

– f lev
k satisfies f lev

k = αf low
k + (1− α)fup

k ;

– all the linearizations are kept between two critical steps.

Fix an arbitrary ` and let K` be defined by (13). Then, (Xd
k) is a nested non-

increasing sequence of non-empty compact convex sets: Xd
k ⊂ Xd

k−1 for all k ∈ K`.

Furthermore, for all k ∈ K`,

(i) the master QP (8) is feasible;

(ii) the stability center and the lower bound are fixed: x̂k = x̂k(`) and f low
k =f low

k(`);

(iii) the level parameter and the gap can only decrease: f lev
k ≤ f lev

k(`) and ∆k ≤ ∆k(`).
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Proof We start with proving (i), (ii) and (iii). Each Xd
k is non-empty as otherwise

the master QP (8) would be infeasible. Indeed, if (8) was infeasible at time k, f low
k

receives f lev
k and therefore f low

k = fup
k −α∆k ≥ f

up
k −α∆k(`) so fup

k −f
low
k ≤ α∆k(`),

which contradicts the fact that k ∈ K` (i.e, is not a critical step). This proves (i).
For each k ∈ K`, the stability center is fixed by construction and the lower

bound is updated (increased) only when the master QP (8) is found infeasible
which is impossible for k ∈ K` (see above). This establishes (ii).

The inequality on the level parameter comes directly as follows: f lev
k = αf low

k +
(1− α)fup

k = αf low
k(`) + (1− α)fup

k ≤ αf low
k(`) + (1− α)fup

k(`) = f lev
k(`). Note finally that

fup
k is non-increasing and so is ∆k. We thus have also (iii).

Finally, each Xd
k is compact as X is compact, and it is also convex as X is

convex and the disaggregate cutting-plane model is convex. The fact that (Xd
k) is

a nested non-increasing sequence is thus direct from (iii) as the local cutting plane
models only get richer with k (as the model is only reduced in critical steps which
cannot happen in K`). ut

We now provide a proof of convergence featuring elegant results from varia-
tional analysis [28].

Theorem 1 (Convergence) Assume that X is a convex compact set and that (9)
holds. Let tol∆ = 0 in Algorithm 2, then the sequence of gaps vanishes, limk∆k = 0,

and the sequence of best iterates is a minimizing sequence for (1), limk f
up
k = f?. As a

consequence, for a strictly positive tolerance tol∆ > 0, the algorithm terminates after

finitely many steps with an approximate solution: f? ≤ f(x̄best) ≤ f? + tol∆.

Proof The convergence ∆k → 0 is given by (12) as soon as the counter of critical
steps ` increases indefinitely. Thus we just need to prove that, after finitely many
steps, the algorithm performs a new critical iteration. For the sake of contradiction,
suppose that only finitely many critical iterations are performed. Accordingly,
let ¯̀be the total number of critical iterations and k(¯̀) be the index of the last
critical iteration. Observe that x̂k = x̂ is fixed and ∆k ≥ ∆ > 0 for all k > k(¯̀). We
have from Lemma 3, that (Xd

k) is a nested non-increasing sequence of non-empty
compact convex sets for k > k(¯̀). Suppose that there is an infinite number of
asynchronous iterations after the last critical iteration k(`), then (Xd

k) converges
to Xd in the sense of the Painlevé-Kuratowski set convergence [28, Chap. 4.B]:

lim
k

Xd
k = Xd =

⋂
k

clXd
k .

Now, Šmulian’s theorem [33,3] guarantees that the intersection Xd = ∩kclXd
k is

nonempty. Moreover, Xd is by definition a convex compact set and, therefore, the
projection of x̂ onto Xd is well defined and unique:

PXd(x̂) = arg min
x∈Xd

1

2
‖x− x̂‖2.

Then [28, Prop. 4.9] implies that xk+1 = arg minx∈Xd
k

1
2‖x−x̂‖

2 = PXd
k
(x̂) converges

to PXd(x̂). Hence, (xk) is a Cauchy sequence

∀ε > 0 ∃ k̄ ∈ N such that ∀s, t ≥ k̄ =⇒ ‖xs − xt‖ ≤ ε .
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By taking ε = α
4mmaxi Λ̄i

∆ and3 k ≥ min
j=1,...,m

a(j) ≥ k̄, the inequality in (11) gives

α∆ ≤ α∆k ≤ f
up
k − f

up
k+1 + 2

m∑
j=1

Λ̄j‖xk+1 − xa(j)‖

≤ fup
k − f

up
k+1 + 2

m∑
j=1

Λ̄j
α

4mmaxi Λ̄i
∆ ≤ fup

k − f
up
k+1 +

α

2
∆,

showing that fup
k − fup

k+1 ≥
α
2∆ > 0 for all k ≥ min

j=1,...,m
a(j) ≥ k̄. This is in

contradiction with the fact that the sequence (fup
k ) is non-increasing and lower

bounded, thus convergent. Hence, the index set K` is finite and ` grows indefinitely
if tol∆ = 0. Finally, the proof that (fup

k ) converges to the optimal value follows
easily by noting that

f? ≤ fup
k = f low

k +∆k ≤ f? +∆k

from f low
k ≤ f? ≤ fup

k and ∆k = fup
k − f

low
k , which ends the proof. ut

4 Asynchronous level bundle method by coordination

The level bundle algorithm of the previous section is fully asynchronous for solving
problem (1). It relies however on having bounds on the Lipshitz constant of the
functions fi, which is a strong practical assumption. To compute upper-bounds
fup
k , we propose here an alternative strategy based on coordination of the machines

to evaluate f(xk) if necessary. We present this method in Section 4.1 (Algorithm 3)
and we analyze its convergence in Section 4.2.

4.1 Upper-bounds by coordination

In our asynchronous setting, the oracles have no reason to be called upon the
same point except if the master decides to coordinate them. We propose a test
that triggers coordination of the points sent to the machines, when the proof of
convergence is in jeopardy (namely, when (5) does not hold). Thus we introduce a
coordination step (see line 32 in Algorithm 3): if the test is valid, this step consists
in sending to all oracles the same iterate at the next iteration for which they are
involved. We note that some incremental algorithms (as [17]) also have such a
coordination step. In such algorithms though, there is usually a coordination step
after a fixed number of iterations. Here, in contrast, we require coordination only
when the difference between two iterates becomes too small. Our coordination
strategy does not generate idle time because the machines are not requested to
abort their current jobs.

The second asynchronous algorithm is given in Algorithm 3. Its steps corre-
spond to the ones of Algorithm 2, with more complex communications (Steps 1
and 4). Step 2 (optimality and sufficient decrease test) is unchanged. Finally, Step

3 As the oracles are assumed to respond in a finite time, the inequality minj=1,...,m a(j) ≥ k̄
is guaranteed to be satisfied for k is large enough.



14 F. Iutzeler, J. Malick, and W. de Oliveira

3 (next iterate computation) relies on the same master problem (8) in both algo-
rithm, but here the coordination-triggering test replaces by a upper-bound test.

The coordination iterates are denoted by x̄k in Algorithm 3. Assuming that all
oracles always eventually respond (after an unknown time), the coordination allows
to compute the full value f(x̄k) and a subgradient g ∈ ∂f(x̄k) at the coordination
iterate x̄k (see line 10, where rr (“remaining to respond”) counts the number of
oracles that have not responded yet). The functional value is used to update the
upper bound fup

k , as usual for level methods; the subgradient is used to update
the bound L approximating the Lipschitz constant of f .

In the algorithm, the coordination is implemented by two vectors of booleans
(to-coordinate and coordinating):

– The role to-coordinate[i] is to indicate to machine i that its next computation
has to be performed with the new coordination point x̄k+1; (at that moment,
to-coordinate[i] is set to False and coordinating[i] is set to True.)

– The role coordinating[i] is to indicate to the master that machine i is re-
sponding to a coordination step, which is used to update the upper bound
(Line 14).

Notice that the major difference between this algorithm with respect to Algo-
rithm 2 and the incremental (proximal) bundle algorithm [38], which both require
the knowledge of a bound on Lipschitz constants: here, we just use the estimation
of line 16 to guarantee that the bound L used in the test is always greater than
all the computed subgradients.

We note that, as usual for level bundle methods, the sequence of the optimality
gaps ∆k is non-increasing by definition. We will further count with ` the number
of times in which ∆k decreases sufficiently: more precisely, ` is increased whenever
line 24 is accessed, and k(`) denotes the corresponding iteration index. As in the
previous section, we call k(`) a critical iteration and we consider K` the set of
iterates between two consecutive critical iterates (recall (13) and Fig 2).

4.2 Convergence analysis

This section analyzes the convergence of the asynchronous level bundle algorithm
described in Algorithm 3. As previously, we have by definition of critical iterates
the chain of inequalities (12) and we rely on Lemma 3. The scheme of the conver-
gence proof consists in showing that there exist infinitely many critical iterations.
Note though that between two critical steps, we can have several coordination
steps: the next lemma shows that two coordination iterates cannot be arbitrary
close.

Lemma 4 (Between two coordination iterates) For a given ` and two coordinate

iterates x̄k1 and x̄k2 (with x̄k1 6= x̄k2) and k1 < k2 ∈ K`, there holds

‖x̄k1 − x̄k2‖ ≥ α
∆k2
L

. (14)

Proof At the second coordinate iterate x̄k2 ∈ Xd
k2−1, all the oracles have responded

at least one time and all of them have been evaluated at x̄k1 . Since the set of con-
straints of (8) keeps growing as k increase within K`, we have that x̄k2 satisfies the
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Algorithm 3 Asynchronous level bundle method by scarce coordination

1: Choose x1 ∈ X and set x̄1 = x̂1 = x1

2: Choose tol∆ ≥ 0, α ∈ (0, 1), bounds fup
1 > f?+ tol∆ and f low

1 ≤ f?, and a constant L > 0

3: Set ∆̂k =∞, rr = m, Ji0 = ∅ for all i = 1, ..,m, f̄ = 0 ∈ R,and ḡ = 0 ∈ Rn
4: Set to coordinate[i] = False and coordinating[i] = True for all i = 1, ..,m
5: Send x1 to the m oracles
6: for k = 1, 2, . . . do

. Step 1: receive information from an oracle

7: Receive from oracle i the oracle information on f i at a previous iterate xk
′

8: Store (f i(xk′ ), g
i
k′ ), and set Jik = Jik−1 ∪ {k

′}
9: if coordinating[i] = True then

10: rr← rr− 1 and coordinating[i] ← False
11: Update f̄ ← f̄ + f i(xk′ ) and ḡ ← ḡ + gi

k′
12: if rr = 0 then . Full information at point x̄k
13: if f̄ < fup

k then

14: Update fup
k = f̄ and x̄best = x̄k . update upper bound

15: end if
16: Update L← max{L, ‖ḡ‖}
17: end if
18: end if

. Step 2: test optimality and sufficient decrease
19: Set ∆k = fup

k − f
low
k

20: if ∆k ≤ tol∆ then
21: Return x̄best and fup

k
22: end if
23: if ∆k ≤ α∆̂ then . Critical Step

24: Set x̂k = x̄best and ∆̂ = ∆k. Possibly reduce index sets Jjk (j = 1, . . . ,m)
25: end if

. Step 3: compute next iterate
26: Set f lev

k = fup
k − α∆k. Run a quadratic solver on problem (8)

27: if (8) is feasible then
28: Get new iterate xk+1 ∈ Xd

k. Update f low
k+1 = f low

k , fup
k+1 = fup

k
29: else
30: Set f low

k = f lev
k and go to Step 2 . update lower bound

31: end if
32: if rr = 0 and ‖xk+1 − xk‖ < α∆k

L
then

33: Set x̄k+1 = xk+1 and to coordinate[j] = True (j = 1, ..,m) . Coordination Step
34: Reset rr = m, f̄ = 0, ḡ = 0
35: else
36: Set x̄k+1 = x̄k
37: end if

. Step 4: send back information to the oracle
38: if to coordinate[i] = True then
39: Send x̄k+1 to machine i.
40: Set to coordinate[i] = False and coordinating[i] = True
41: else
42: Send xk+1 to machine i
43: end if
44: Set x̂k+1 = x̂k
45: end for

m constraints generated by linearizations at x̄k1 . Summing these m linearizations
and using that x̄k2 ∈ Xd

k2−1 (see Eq. (7)) gives

f(x̄k1)+〈gk1 , x̄k2−x̄k1〉 =
m∑
i=1

(
f i(x̄k1) + 〈gik1 , x̄k2 − x̄k1〉

)
≤

m∑
i=1

f̌ ik2−1(x̄k2) ≤ f lev
k2−1
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timek(`+ 1)k(`)

critical step critical step

K`

coordination rr = 0 new coordination
test line 32 active

≤ T ≤ T ′

Fig. 3: Notations for the proof

This yields −‖gk1‖‖x̄k2 − x̄k1‖ ≤ f lev
k2−1 − f(x̄k1) so that ‖x̄k2 − x̄k1‖ ≥ (f(x̄k1) −

f lev
k2−1)/‖gk1‖.

The value f(x̄k1) was fully computed before the next coordinate iterate, so
before k2. It is then used to update the upper bound, we have f(x̄k1) ≥ fup

k2
. This

gives f(x̄k1) − f lev
k2−1 ≥ fup

k2
− (fup

k2−1 − α∆k2−1) ≥ α∆k2−1 ≥ α∆k2 where we used
that (∆k) is non-increasing by construction. Finally, using the bound ‖gk1‖ ≤ L

as provided by the algorithm at line 16 completes the proof. ut

Theorem 2 (Convergence) Assume that X is a convex compact set and that (9)
holds. Let tol∆ = 0 in Algorithm 3, then the sequence of gaps vanishes, limk∆k = 0,

and the sequence of coordination iterates is a minimizing sequence for (1), limk f(x̄k) =
f?. For a strictly positive tolerance tol∆ > 0, the algorithm terminates after finitely

many steps with an approximate solution.

Proof The convergence ∆k → 0 is given by (12), as soon as the counter ` increases
indefinitely. Thus, we need to prove that there are infinitely many critical iter-
ations. We obtain this by showing that, for any `, the set K` is finite; for this,
suppose that ∆k > ∆ > 0 for all k ∈ K`. We proceed in two steps, showing that
(i) the number of coordination steps in K` is finite; and (ii) the number of asyn-
chronous iterations between two consecutive coordination steps is finite as well.
Part (i). Define (x̄s) the sequence of coordination steps in K`. By Lemma 4, we
obtain that for any s < s′

‖x̄s − x̄s′‖ ≥ α
∆s′

Λ
≥ ∆

Λ
.

If there was an infinite number of coordination steps inside K`, the compactness of
X would allow us to extract a converging subsequence, and this would contradict
the above inequality. The number of coordination steps inside K` is thus finite.
Part (ii). We turn to the number of asynchronous iterations between two consec-
utive coordination iterations, that is the number of iterations before the test of
line 32 is active. This part is illustrated by the green arrows in Fig. 3.

Since all the oracles are responsive, there is a finite number of iterations be-
tween two updates of any oracle: as a consequence, at a given iteration k, there
exists a T (the dependence on k is dropped for simplicity) such that all oracles
will exchange at least twice in [k, k + T ]; in other words, the first part of the test
rr = 0 will be verified within a finite number T of iterations.

Now, let us show by contradiction that the second part of the test, ‖xk+1−xk‖ <
α∆k/L, will be verified after a finite number of iterations. As in the proof of
Theorem 1, we have from Lemma 3 that (Xd

k) is a nested non-increasing sequence
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of non-empty compact convex sets for k ∈ K`. If there was an infinite number of
asynchronous iterations before the test is verified, the sequence Xd

k would converge
to an non-empty Xd in the sense of the Painlevé-Kuratowski (see [28, Chapter 4,
Sec B] and [33,3]). As a consequence,

xk+1 = arg min
x∈Xd

k

1

2
‖x− x̂‖2 −→ PXd(x̂) = arg min

x∈Xd

1

2
‖x− x̂‖2.

As (xk) converges, for any ε > 0, there exists T ′ such that for any k ≥ T ′, ‖xk+1−
xk‖ ≤ ε. Taking ε = α∆/(2L) with ∆k > ∆ > 0, the second part of the test is
verified after T ′ iterations which contradicts the infinite number of asynchronous
iterations before the test is verified. Thus, there are at most T + T ′ iterations
between two coordination steps.

Combining (i) and (ii), we can then conclude that the algorithm performs only
finitely many iterations between two consecutive critical iterations. This in turn
shows that there are infinitely many critical iterations, and thus we get convergence
using (12). Similarly, for a strictly positive tolerance, there are a finite number of
critical steps, and thus a finite number of iterations. The result on the convergence
of (fup

k ) follows from exactly the same arguments as in the end of the proof of
Theorem 1. ut

5 Inexact oracles within asynchronous methods

Many applications of optimization to real-life problems lead to objective functions
that are assessed through “noisy” oracles, where only some approximations to the
function and/or subgradient values are available; see e.g. the recent review [9].
This is the typical case in Lagrangian relaxation of (possibly mixed-integer) opti-
mization problems, in stochastic/robust programming, where the oracles perform
some numerical procedure to evaluate functions and subgradients, such as solving
optimization subproblems, multidimensional integrations, or simulations.

Level bundle methods are well-known to be sturdy to deal with such inexact
oracles; see [9,8,36]. In particular, when the feasible set X is compact no special
treatment is necessary to handle inexactness in standard level methods [9, Sec. 3].
As we show below, this is also the case for our asynchronous level bundle variants,
more precisely: (i) the asynchronous algorithms converge to inexact solutions when
used with oracles with bounded error (Section 5.1), and (ii) with a slight modifi-
cation of the upper bounds, they can converge to exact solutions when used with
lower oracles with vanishing error (Section 5.2).

5.1 Inexact oracles with error bounds

We assume to have an approximate oracle for f i delivering, for each given x ∈ X,
an inexact linearization on f , namely (f ix, g

i
x) ∈ R×Rn such that

f ix = f i(x)− ηv,ix
gix ∈ Rn such that f i(·) ≥ f ix + 〈gix, · − x〉 − ηs,ix

with ηv,ix ≤ ηv

m and ηs,ix ≤ ηs

m for all x ∈ Rn.

(15)
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The subscripts v and s on the oracle errors make the distinction between function
value and subgradient errors. Note that oracles can overestimate function values,
as ηv,ix can be negative. In fact, both the errors ηv,ix and ηs,ix can be negative but
not simultaneously because they satisfy4 ηv,ix + ηv,ix ≥ 0. Bounds ηv, ηs ≥ 0 on
the errors should exist but are possibly unknown. When ηs = 0, we have the so-
called lower oracles returning lower linearizations: f i(x) − ηv,ix = f ix 6 f i(x) and
f i(·) > f ix + 〈gix, · − x〉. The exact oracle corresponds to taking ηs = ηv = 0.

Our asynchronous algorithms do not need to be changed to handle inexactness:
the information provided by these inexact oracles is used in the same way as
done previously where the oracles were exact. Indeed, we can define the inexact
disaggregated cutting-plane model as

f̌ ik(x) := max
j∈Jik
{f ixj + 〈gixj , x− xj〉}

and the inexact level set Xd
k as in (7) (but with the inexact model). We then have

the easy following result showing that f low
k is still relevant.

Lemma 5 (Inexact lower bound) The update of f low
k in Algorithms 2 and 3 guar-

antees that it is an inexact lower bound, in the sense that

f low
k ≤ f? + ηs for all k . (16)

In particular, if the oracle is a lower oracle (ηs = 0) then the algorithms ensure that

f low
k is a valid lower bound in every iteration k.

Proof By summing the m inequalities f ixj + 〈gixj , x − xj〉 ≤ f i(x) + ηs,ix , we have
that the inexact cutting-plane model satisfies

m∑
i=1

f̌ ik(x) ≤ f(x) + ηs ∀ x ∈ X .

We deduce that

Xd
k =

{
x ∈ X :

m∑
i=1

f̌k(x) ≤ f lev
k

}
⊃

{
x ∈ X : f(x) ≤ f lev

k − ηs
}
.

Therefore, if Xd
k = ∅ then the right-hand set is empty as well, which means f lev

k ≤
f? + ηs. Thus the definition of f low

k in Algorithms 3 and 2 give indeed an inexact
lower bound. ut

Similarly, the next lemma shows that fup
k is relevant, up the oracle error.

Lemma 6 (Inexact upper bound) The definitions of fup
k in Algorithms 2 and 3

guarantee that it is an inexact upper bound; more precisely, at iteration k

fup
k ≥ f(x̄best)− ηv ≥ f? − ηv. (17)

4 By substituting f ix = f i(x) − ηv,ix in the inequality f i(·) ≥ f ix + 〈gix, · − x〉 − η
s,i
x and

evaluating at x, we get that f(x) ≥ f(x)− ηv,ix − ηs,ix . This shows that ηv,ix + ηs,ix ≥ 0 and in
fact gix ∈ ∂(η

v,i
x +η

v,i
x )

f i(x).
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Proof We first consider Algorithm 2. As (xk+1, rk+1) solves the inexact version
of (8) (where the exact linearizations are replaced by the inexact ones), we get5

f ixa(i) + 〈gia(i), xk+1 − xa(i)〉+ Λ̄i‖xk+1 − xa(i)‖ ≤ r
i + Λ̄i‖xk+1 − xa(i)‖.

The oracle’s assumptions give f ixa(i) ≥ f
i(xa(i))− ηv

m . Consequently,

f i(xa(i)) + Λ̄i‖xk+1 − xa(i)‖ ≤ r
i + Λ̄i‖xk+1 − xa(i)‖ − 〈g

i
a(i), xk+1 − xa(i)〉+

ηv

m
.

Assumption (9) yields f i(xa(i))+ Λ̄i‖xk+1−xa(i)‖ ≥ f i(xk+1). By combining these
last two inequalities and summing up over i = 1, . . . ,m we obtain

f(xk+1) ≤ f lev
k +

m∑
i=1

[Λ̄i‖xk+1 − xa(i)‖ − 〈g
i
a(i), xk+1 − xa(i)〉] + ηv. (18)

Therefore, the rule on line 22 of Algorithm 2 yields (17) by taking x̄best = xk+1.
The case of Algorithm 3 is straightforward as

fup
k = min

j=1,...,k
fxj ≥ min

j=1,...,k
f(xj)− ηv

which also gives (17) by definition of x̄best at iteration k. ut

The previous two lemmas thus show that the inexact upper and lower bounds
appearing in the asynchronous algorithms with inexact oracles satisfy

f low
k − ηs ≤ f? ≤ fup

k + ηv for all k.

We now formalize a theorem to conclude that, as in the standard case, inexactness
can be readily handled by our asynchronous level methods.

Theorem 3 The convergence results for Algorithms 2 and 3, namely Theorems 1 and

2 still hold, up to the oracle error, when inexact oracles (15) are used. More precisely,

we obtain tol∆ +ηv + ηs-solution of (1):

– when tol∆ = 0, we have limk f
up
k ≤ f? + ηv + ηs

– when tol∆ > 0, we have f? ≤ f(x̄best) ≤ f? + tol∆ +ηv + ηs

Proof The proofs are valid verbatim until the end about the convergence of (fup
k ).

In the inexact case, we combine (17) and (16) to write

f? − ηv ≤ f(x̄best)− ηv ≤ fup
k = f low

k +∆k ≤ f? + ηs +∆k.

Passing to the limit, this ends the proof. ut

As previously mentioned, no special treatment is necessary to handle inexact-
ness in the proposed asynchronous level methods. The obtained solution is optimal
within the precision tol∆ +ηv+ηs, the given tolerance plus the (possibly unknown)
oracle error bounds. If we target obtaining tol∆-solutions, more assumptions on
the inexact oracles need to come into play, and minor changes in the algorithms
must be made, as explained in the next section.

5 As in Section 3, a(i) is the iteration index of the anterior information provided by oracle
i; see Algorithm 2.
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5.2 Lower oracles with vanishing error bound

We consider further the case of (15) with ηs = 0 and controllable ηv, for which
the asynchronous algorithms converge to an optimal solution if we slightly change
the upper bound.

We assume here that the error bound ηv is known and controllable in the sense
that the algorithm can decrease or increase ηv along the iterative process. Thus
we consider the following special case of (15): given a trial point x and an error
bound ηv as inputs, the oracle provides

f ix = f i(x)− ηv,ix
gix ∈ Rn such that f i(·) ≥ f ix + 〈gix, · − x〉

with ηv,ix ≤ ηv

m for all x ∈ Rn.

(19)

The fact that we control ηv allows us to incorporate the oracle error in the algo-
rithm, which eventually will yield convergence to optimality. The fact that ηs = 0
gives that f low

k is always a lower bound (recall Lemma 5).
At iteration k we index the error bound with k and we drive ηvk below a fraction

of the gap at the preceeding decrease. More precisely, we consider the following
control: there exists κ ∈ (0, 1) such that the m oracles satisfy (19) with

0 ≤ ηvk ≤ κ∆k(`), for all k∈ K` (20)

where k(`) corresponds to the last critical iteration (the iteration yielding enough
decrease on line 12 of Algorithm 2 or on line 24 of Algorithm 3). This control on
ηvk is standard in methods with on-demand accuracy [8].

Theorem 4 Consider Algorithm 2 with inexact oracles (19). If the oracles error can

be controlled by (20) with κ ∈ (0, α2/2), and if the update of fup
k+1 in line 22 is replaced

with

min

fup
k ,

f lev
k +

m∑
j=1

(
Λ̄j‖xk+1 − xa(j)‖ − 〈g

j
a(j), xk+1 − xa(j)〉

+ ηvk

) ,

then the convergence result of Theorem 1 still holds.

Proof First note that the update rule of fup
k+1 provides valid upper bounds: just

take Eq. (18) from the proof of Lemma 6 with error bound ηv therein replaced
with the new (and known) bound ηvk . The definitions of f lev

k , fup
k , and assumptions

(9) give

fup
k+1 ≤ f

lev
k +

m∑
j=1

Λ̄j‖xk+1 − xa(j)‖ − 〈g
j
a(j), xk+1 − xa(j)〉+ ηvk

≤ fup
k − α∆k + 2

m∑
j=1

Λ̄j‖xk+1 − xa(j)‖+ ηvk ,

showing that α∆k ≤ f
up
k − f

up
k+1 + 2

∑m
j=1 Λ̄

j‖xk+1−xa(j)‖+ ηvk . As in the proof of
Theorem 1, one can show by contradiction that there are infinitely many critical
steps and thus convergence of ∆k to 0. Indeed, suppose that there are a finite
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number of critical steps so that ∆k ≥ ∆ > 0 and x̂k is fixed after some k, then the
nested non-increasing character of sequence (Xd

k) implies that (xk) converges. In
our totally asynchronous set-up (all oracles respond in a finite time horizon), we
have, for all j, that a(j) diverges with k. As (xk) converges, it is a Cauchy sequence
which implies that xk+1 − xa(j) vanishes for all j. Therefore

‖xk+1 − xa(j)‖ ≤ ε =
κ

2mmaxi Λ̄i
∆k(`) for k large.

Since ∆k > α∆k(`) for all k ∈ K`, this yields

α2∆k(`) < α∆k ≤ f
up
k − f

up
k+1 + 2

m∑
j=1

Λ̄j‖xk+1 − xa(j)‖+ ηvk

≤ fup
k − f

up
k+1 + 2

m∑
j=1

Λ̄j
κ

2mmaxi Λ̄i
∆k(`) + ηvk ≤ f

up
k − f

up
k+1 + 2κ∆k(`),

showing that fup
k − fup

k+1 >
(
α2 − 2κ

)
∆k(`) ≥

(
α2 − 2κ

)
∆ > 0 for all k large

enough. This contradicts the fact that the bounded and non-increasing sequence
(fup
k ) is convergent. Finally, as ∆k → 0 and we have upper and lower bounds, the

convergence holds as stated in Theorem 1. ut

Theorem 5 Consider Algorithm 3 with inexact oracles (19). If the oracles error are

controlled by (20) with κ ∈ (0, α2), then the convergence result of Theorem 2 still holds

when the update of the upper bound of line 11 is replaced with

f̄ ← f̄ + f ixk′ +
ηvk′

m
. (21)

Proof Since the oracle noise is added in (21), fup
k is a valid upper bound. Hence

by construction, (fup
k ) and ∆k are non-increasing and we have

f low
k ≤ f? ≤ f(x̄best) ≤ fup

k for all k = 1, 2 . . .

Hence, in order to conclude the proof we only need to show that limk∆k = 0. The
proof of Theorem 2 still holds but with a slightly modified version of Lemma 4
that we show below.

Let x̄k1 and x̄k2 (with k1 < k2 and k1, k2 ∈ K`) be two consecutive coordinate
iterates. Since x̄k2 satisfies the m constraints of linearizations at x̄k1 , we obtain

fx̄k1 + 〈gk1 , x̄k2 − x̄k1〉 =
m∑
i=1

(
f ix̄k1 + 〈gik1 , x̄k2 − x̄k1〉

)
≤ f lev

k2−1 ≤ f
lev
k1 ,

which implies, by Cauchy-Schwarz and boundedness of subgradients,

L‖x̄k2 − x̄k1‖ ≥ ‖gk1‖‖x̄k2 − x̄k1‖ ≥ fx̄k1 − f
lev
k1 ≥ f

up
k1
− ηvk1 − f

lev
k1 = α∆k1 − η

v
k1 .

The last inequality above is due to the new rule (21) to update the upper bound.
Noticing that ∆k1 > α∆k(`) and ηvk1 ≤ κ∆k(`) by rule (20), we get

‖x̄k2 − x̄k1‖ ≥
(α2 − κ)∆k(`)

L
> 0
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by the choice of κ. As k1 and k2 are arbitrary indexes in K` and X is a compact
set, the above inequality can hold only for finitely many steps. This shows that
each index set K` is finite and, therefore, that the number of critical iterations `
grows indefinitely if tol∆ = 0. Hence, (12) gives limk∆k = 0. ut

Thus we show that the two asynchronous algorithms also share the well-known
robustness of synchronous level bundle methods for dealing with inexact oracles
with on-demand accuracy [8,36].

6 Numerical illustrations

We have run preliminary numerical experiments and comparisons between the level
algorithms discussed in the paper. These experiments are limited and just illustrate
the effectiveness and the potential interest of asynchronicity in bundle methods.
A thorough numerical assessing of the interests and limits of the algorithms would
deserve a whole study of itself to take into account the various biases from the
inputs and the computed system (in particular, the variance of the solution times
of the numerical subroutines and the communications between machines). Here
we consider a basic implementation of the (distributed) algorithms, a trivial set-
up and computing system, and a simple randomly-generated problem. Extensive
numerical experiments are beyond the scope of this paper.

6.1 Experimental set-up

Problem We consider the instance of problem (1) where each function f i is the
optimal value of the following mixed-integer linear program (MILP): for x ∈ Rn,

f i(x) =


max πi

(
〈ci, p〉 − 〈x,Aip〉

)
s.t. ‖p‖∞ ≤ B, Gip ≤ hi

p ∈ Nm1 ×Rm2

(22)

where ci, Ai, Gi, hi are random vectors/matrices with suitable sizes (we denote by
nc the number of affine constraints of the problem i.e. the number of lines of
Gi, kept constant among oracles). Such oracles appear when solving Lagrangian
relaxations of difficult mixed-integer optimization problems. The oracle i solves,
for given a point x, the above MILP to get an optimal point p?, which gives

f i(x) = πi(〈ci, p?〉 − 〈x,Aip?〉) and gi = −πiAip? ∈ ∂f i(x).

Note that we have a bound on the Lipschitz constant for f i by

‖πiAip‖22 ≤ π2
i (

m∑
j=1

‖Aij‖
2
1)‖p‖2∞ ≤ π2

i (
m∑
j=1

‖Aij‖
2
1)B2 =: Λ̄i. (23)
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Tested algorithms We compare the four following algorithms: the first is the existing
one; the three others are introduced in this paper.

– S Synchronous level bundle algorithm (Algorithm 1)
– SD Synchronous Disaggregated algorithm (Algorithm 1 using (8))
– AU Asynchronous algorithm by Upper-bounds (Algorithm 2)
– AC Asynchronous algorithm by Coordination (Algorithm 3)

The four algorithms use the same initialization and global parameters. The only
exception is the level parameter α: we use the simple value α = 0.5 except for AU,
where we use α = 0.9. This higher value allows us to compensate the rough upper-
bounding (23) to get better levels f lev

k .

Computing setup All the code is written in Python 2.7.6 and run on a laptop
with an Intel Core i7-5600U and 8GB of RAM. Each machine is assigned to a
thread. MPI is used as a communication framework (more precisely the mpi4py

implementation of OpenMPI 1.6.5). The MILPs (22) of the oracles and the quadratic
problems at the master are computed using Gurobi 8.0.0.

Notice that for the standard algorithm S, the quadratic problem (3) uses the
total function oracle while the disaggregated quadratic problem (8) uses all the
oracles separately. In terms of distributed programming, the first one can be per-
formed by map-reduce (with a sum operation in the reduce) while the second needs
a separate gathering of the oracle results.

Instance generation We consider m=8 machines/oracles on a problem size n=20.
We generate moderately imbalanced oracles: six comparable oracles (m1 = 20,
m2 = 40, B= 5, nc = 100, and πi = 1) and two slightly bigger (m1 = 50, m2 = 100,
B=10, nc=100, and π1 =π2 =0.1). The matrices Ai, Gi are drawn independently
with coefficients taken from the uniform distribution in (−1, 1), ci is taken from
the normal distribution with variance 100. Moreover hi is taken from the uniform
distribution in [0.1, 1.1), so that p=0 is feasible for all problems (22) and f low

0 =0
is a valid lower-bound on f?.

Experiments With the above set-up, we run preliminary experiments. We observe
a high variance of the solution times of Gurobi and the communication between
machines: this strongly impacts the time for an oracle to respond, the order of
oracles responses for asynchronous algorithms, and therefore the behaviour of the
algorithms. Note also that while the asynchronous methods have the same param-
eters as the standard level bundle methods, the behavior of the algorithm (e.g. the
coordination frequency) highly depends on the problem and computing system. A
complete computational study is out of the scope of this paper; we focus here only
on showing that using asynchronous methods can save time.

Thus, we generate, as described above, one problem instance for which the two
bigger oracles (oracles 1 and 2) are computationally more expensive in practice.
We consider five runs of the algorithms: the figures reported in next tables are
the average (and the standard deviation) of the obtained results. We compare
the algorithms, first for a coarse precision target (in Section 6.2), then for a finer
precision (in Section 6.3). Finally, we investigate the case of inexact oracles (in
Section 6.4).
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6.2 Experiments for coarse precision

In this part, we stop the algorithms as soon as ∆k/f? < 10% and we display in
Table 1 the number of iterations, the total CPU time, and number of oracle calls
to reach this criterion. These figures illustrates the interest of disaggregation and
asynchronicity. Indeed, we first see that there is a real difference in computing time
between the the usual level algorithm and the disagreggated ones proposed in this
paper: 249s for the standard level bundle S vs 122s for its disaggregated counter-
part SD, and as low as 53s for the best asynchronous method. We also see that
the two asynchronous algorithms converge quickly compared to the synchronous
ones: for example, S converges in 10 (synchronous) iterations which corresponds
to 80 oracle calls whereas AC needs 192 oracle calls but its computing time is 5
times lower. We thus observe that synchronous methods are more reliable (less
variance) and asynchronous ones may be faster (as they have a better use of wall
clock time) even though they may compute more (they make more oracles calls).

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time
S 10 10 10 10 10 10 10 10 10 249s

(Alg. 1) = 80 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 4s
SD 8 8 8 8 8 8 8 8 8 122s

= 64 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 6s
AU 232 14 18 31 33 33 32 31 32 78s

(Alg. 2) ±60 ±6 ±9 ±8 ±9 ±9 ±9 ±9 ±9 ± 39s
AC 192 4 19 28 27 29 28 28 29 53s

(Alg. 3) ±50 ±0 ±7 ±8 ±6 ±6 ±7 ±7 ±7 ± 29s

Table 1: Comparison of the four algorithms (in terms of number of iterations,
number of oracles calls, and total computing time) in the case of low precision.
We report the average and the standard deviation of the five results.

The two asynchronous algorithms reach the precision more quickly thanks
to the asynchronous bundle information used to improve their lower-bounds, as
showed in Figure 4. In this figure, we see that synchronicity provides tight upper
bounds to S and SD but they need more time to get good lower bounds. The
greater variety of cuts added to the disaggregated master QP (8) by asynchronous
methods enable them to enjoy better lower bounds than their synchronous coun-
terparts. To close the gap, the asynchrounous methods show different behaviors
on upper-bounds. Indeed, we notice that the upper-bounds (23) used by AU are
weak with respect to the empirical estimation of the associated Lipschitz con-
stants observed from norms of computed subgradients in AC; see Figure 5. Thus,
the two asynchronous algorithms AU and AC reach the prescribed coarse preci-
sion faster than the synchronous ones, with roughly the same time. However, the
loose upper-bounds in AU make it less competitive as the precision becomes finer.

6.3 Experiments with finer precision

For our second experiments, we stop the algorithms whenever ∆k/f? < 1%. In or-
der to precise the reach of our methods, we focus here on our flagship asynchronous
algorithm with coordination AC and compare with the synchronous baseline S. We
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Fig. 5: Estimation of the Lipschitz constants for the oracles: apriori upper bounds
by (23), vs. observed lower bounds by norms of computed subgradient.

notably illustrate the impact of the proposed coordination strategy by investigat-
ing two variants of AC: when the test of line 32 is ‘on’ or ‘off’, ‘off’: corresponding
to the case where a coordination is triggered as soon as the previous one has been
completed. In the following table, we again display the average on 5 runs as well
as the standard deviation.

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time
S 20 20 20 20 20 20 20 20 20 390s

(Alg. 1) = 160 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ±0 ± 7s
AC 285 6 32 41 40 42 41 41 42 116s

(Alg. 3) ±57 ±1 ±10 ±9 ±7 ±7 ±8 ±8 ±8 ± 37s
AC 294 5 32 42 42 45 41 43 44 128s

test off ±91 ±1 ±14 ±12 ±13 ±13 ±13 ±13 ±13 ± 63s

Table 2: Comparison of the asynchronous algorithm AC with the baseline S (in
terms of number of iterations, number of oracles calls, and total computing time)
in the case of high precision. We illustrate the impact of the coordination step of
line 32 by looking at AC when the test is turned ‘off’. We report the average and
standard deviation on 5 runs.
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We notice that the asynchronous algorithms achieve a clear speedup compared
to the synchronous bundle. This can be explained intuitively by the fact that the
first two oracles are more time consuming than the other (as their associated sub-
problem is harder to solve) while they do not contribute proportionally more in the
global model. The asynchronous algorithms thus achieve the sought precision after
only 5 or 6 calls from oracle 1 and around 40 for the others while the synchronous
one has to get 20 global calls.

In Fig. 6, we plot the values of f low
k and fup

k computed along the methods
versus the number of oracle calls. We notice that while the synchronous method
improves iteration by iteration (there are 8 calls per iteration), the asynchronous
algorithm improves more scarcely but with more significant decreases. Due to the
difference in terms of computational cost between the workers, one has to keep in
mind that the wallclock time cost of a certain number of oracle calls is smaller in
the asynchronous setup, which allows for faster convergence.

6.4 Experiments with inexact oracles

In this section, we compare our asynchronous algorithms AU and AC with their
on-demand accuracy counterparts from Section 5, named AU/on-demand and
AC/on-demand.

We control the accuracy of the oracles by sending to the workers a target pre-
cision along with the trial point. More precisely, at iteration k, we send κ∆k/f lev

k

as a target (relative) precision, used by the worker as the precision-control param-
eter MIPGap of Gurobi. The parameter κ was chosen equal to 0.001 which, given
the functional values, corresponds to a relative precision lowering from 10 in the
first iterations to 10−3 in the final steps; compared to a fixed precision of 10−9
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for AU and AC. We stop the algorithms whenever ∆k/f? < 3%, corresponding to
the intermediate precision compared to the two previous sections. The rest of the
setup is exactly the same as in the previous section.

In Table 3, we display the average on 5 runs as well as the standard deviation.
The use of inexact oracles seems to speed-up the convergence of AU and AC both
in terms of wall-clock time and number of oracle calls (with a more even number
of calls across the oracles); this could be due to the fact that larger gaps in the
first iterations would make an exact oracle too expensive for the potential gain in
the master bundle.

Algo # iters f1 f2 f3 f4 f5 f6 f7 f8 time
AU 308 14 24 32 40 51 47 49 50 132s

(Alg. 2) ±104 ±6 ±11 ±15 ±14 ±15 ±15 ±15 ±15 ± 76s
AU 320 40 40 38 40 41 40 41 41 129s

on-demand ±73 ±10 ±9 ±7 ±9 ±9 ±9 ±10 ±9 ±56s
AC 219 4 18 25 30 36 35 35 37 67s

(Alg. 3) ±46 ±1 ±6 ±8 ±6 ±7 ±7 ±7 ±8 ± 26s
AC 97 12 12 11 12 13 12 12 13 14s

on-demand ±9 ±1 ±1 ±2 ±1 ±1 ±1 ±1 ±1 ± 2s

Table 3: Comparison of the two asynchronous algorithms and their counterparts
with on-demand accuracy (in terms of number of iterations, number of oracles calls,
and total computing time). We report the average and the standard deviation on
5 runs.
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23. Claude Lemaréchal, Arkadi Nemirovskii, and Yurii Nesterov, New variants of bun-
dle methods, Math. Program., 69 (1995), pp. 111–147.

24. Chenxin Ma, Virginia Smith, Martin Jaggi, Michael Jordan, Peter Richtarik,
and Martin Takac, Adding vs. averaging in distributed primal-dual optimization, in
International Conference on Machine Learning, 2015, pp. 1973–1982.
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