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1 Introduction

To minimize a structured convex function F = f + g with f a smooth function whose
gradient is L−Lipschitz and g a simple function whose proximal operator can be
computed, a classical algorithm is the Forward-Backward (FB) algorithm also called
Proximal-Gradient algorithm. The FB algorithm alternates an explicit gradient step
on f and a proximal descent on g. The sequence {θn, n ∈ N} built by the FB
algorithm converges to a minimizer θ? of F and it satisfies F (θn)−minF = O(n−1).
Based on the ideas of Nesterov, FISTA proposed by Beck and Teboulle (2009) is
an acceleration of FB using an extrapolation step. With this extrapolation scheme,
the sequence {θn, n ∈ N} satisfies F (θn) − minF = O(n−2). In many numerical
experiments FISTA ensures a better decay of the value of the functional F than
FB. Nevertheless, FISTA seems to be less robust to perturbations. If the gradient
of f used at each step of FB is inexact, the sequence {θn, n ∈ N} converges under
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conditions on the perturbations, and the decay of F (θn) −minF may be optimal if
the error ϑn on the gradient and the stepsize sequence {γn, n ∈ N} satisfy conditions
essentially of the form

∑
n γnηn < +∞ (with probability one in the case of random

perturbations). In Atchade et al. (2014); Aujol and Dossal (2015); Schmidt et al.
(2011); Fort et al. (2018b), the authors proved that under more restrictive assumptions
on the perturbations of the gradient, the decay of F (θn)−minF remains optimal and
the sequence {θn, n ∈ N} converges.

In this paper, the convergence of a class of inertial Forward-Backward is studied
when the perturbations are both deterministic and non deterministic. Bounds on the
mean and on the variance of error on the gradient are given ensuring the optimal
decay of {F (θn), n ∈ N} and the convergence of the sequence {θn, n ∈ N}. The
stochastic perturbations setting corresponds to the case ∇f is an expectation and is
estimated by Monte Carlo sampling at each step; the role of the variance of these
Monte Carlo approximations on the convergence rate is also discussed in this paper.

The main contribution of this paper is to combine the stability results of Aujol and
Dossal (2015) to the perturbed analysis provided in Atchade et al. (2017) (see also
Atchade et al. (2014)) with an emphasis on the stochastically perturbed algorithms.
The paper also weakens the conditions in Aujol and Dossal (2015) on the perturbations
of the gradient, an improvement which is especially crucial in the case of random
perturbations.

The paper is organized as follows. In Section 2, we define the approximate inertial
Forward-Backward algorithm, FB and FISTA being two special cases. In Section 3, we
recall the known results on these algorithms when the perturbations are deterministic.
In Section 4, we state extensions of (Atchade et al., 2014, section 5) (see also Fort
et al. (2018b)) to more general relaxations and state new results when perturbations
are random. Section 5 discusses the rate of convergence for different Monte Carlo
strategies. Appendix A part is dedicated to technical proofs.

2 Assumptions and Algorithm

In this section, we introduce the optimisation problem studied in this work, as well
as the assumptions that we use to establish convergence results.

This paper deals with first-order methods for solving the problems:

(P)Argminθ∈Rp F (θ) or min
θ∈Rp

F (θ) with F = f + g ,

when the functions f, g satisfy

H1. The function g : Rp → [0,+∞] is convex, not identically +∞, and lower semi-
continuous. The function f : Rp → R is convex, continuously differentiable on Rp
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and there exists a finite non-negative constant L such that, for all θ, θ′ ∈ Rp,

‖∇f(θ)−∇f(θ′)‖ ≤ L‖θ − θ′‖ ,

where ∇f denotes the gradient of f .

We denote by Θ the domain of g: Θ
def
= {θ ∈ Rp : g(θ) <∞}.

H2. The set L def
= argminθ∈ΘF (θ) is a non empty subset of Θ.

Define for any γ > 0, the proximal operator: for any θ ∈ Rp,

Proxγ,g(θ)
def
= Argminτ∈Θ g(τ) +

1

2γ
‖τ − θ‖2, (1)

and set for θ ∈ Rp,
Tγ,g(θ)

def
= Proxγ,g (θ − γ∇f(θ)) . (2)

Then, the FISTA-based algorithm is given by

Input: An initial value θ0 ∈ Θ, and two positive sequences {γn, n ∈ N} and
{tn, n ∈ N} satisfying

γn ∈ (0, 1/L] , t0 = 1, tn ≥ 1, γn+1tn(tn − 1) ≤ γnt2n−1. (3)

Initialisation Set ϑ0 = θ0

For n = 0, · · · , construct an approximation Gn+1 of ∇f(ϑn) set

θn+1 = Proxγn+1,g (ϑn − γn+1Gn+1) , (4)

αn+1 =
tn − 1

tn+1
, (5)

ϑn+1 = θn+1 + αn+1 (θn+1 − θn) . (6)

Return the path {θn, n ≥ 0}

Some of the results below will be obtained under the following restrictive assump-
tions:

H3. Θ is bounded.
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H4. For any n ≥ 1,
γn = γ, tn = (n+ a− 1)d/ad,

where γ ∈ (0, 1/L], d ∈ (0, 1] and{
a > 1 if d ∈ (0, 1/2) ,

a > (2d)1/d otherwise

It is proved in Lemma 18 that the sequences {γn, n ∈ N} and {tn, n ∈ N} given
by H4 satisfy the condition (3).

3 Perturbed FISTA-based algorithms: rates of conver-
gence

In this section, we improve on the known results about FISTA in the deterministic
case: the results presented here adapted from Aujol and Dossal (2015) and weaken
the assumptions on the perturbations. When applied to stochastic perturbations (see
Section 4), this improvement is fundamental.

Define the perturbation of update scheme at each iteration, of the FISTA-based
algorithm

ηn+1
def
= Gn+1 −∇f(ϑn). (7)

The following theorem is proved in Section A.2.

Theorem 1. Assume H1 and H2. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4)
and (6), applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3).

Set ∆n
def
= tn

(
Tγn+1,g(ϑn)− θn

)
+ θn.

(i) If there exists θ? ∈ L such that∑
n

γ2
n+1t

2
n‖ηn+1‖2 <∞,

∑
n

γn+1tn
〈
∆n − θ?, ηn+1

〉
<∞, (8)

then, ∑
n

(
γnt

2
n−1 − γn+1tn(tn − 1)

) (
F (θn)−min

Θ
F

)
<∞, (9)

sup
n
γn+1t

2
n

(
F (θn+1)−min

Θ
F

)
<∞, (10)

sup
n
‖∆n‖ <∞. (11)
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(ii) For any θ? ∈ L,

F (θn+1)−min
Θ
F ≤ C1 + C2,n + C3,n

γn+1t2n

where C1
def
= γ1 (F (θ1)−minΘ F ) + 1

2‖θ1 − θ?‖2 and

C2,n
def
=
∑n

k=1 γ
2
k+1t

2
k‖ηk+1‖2, C3,n

def
= −

n∑
k=1

γk+1tk
〈
∆k − θ?, ηk+1

〉
.

The second condition in (8) can be difficult to check in practice since it may be
non trivial to control the sequence {∆n, n ∈ N}. It is proved in Lemma 9 that
if
∑

n γn+1tn‖ηn+1‖ < ∞, then both conditions in (8) are satisfied. The property∑
n γn+1tn‖ηn+1‖ < ∞ also implies that C1 + supnC2,n + supn |C3,n| < ∞, so that

F (θn)−minΘ F = O(1/(γn+1t
2
n)).

To optimize the decay of F (θn)−minΘ F Nesterov proposed to choose a parameter
sequence achieving the equality in (3), which corresponds for a constant step γn = γ to

tn+1 =
1+
√

1+4t2n
2 and which leads to F (θn)−minΘ F = O( 1

n2 ) when the perturbations
vanish. We can observe that the same decay can be achieved with tn = n+1−a

a with a >
2. It turns out that this choice may not be optimal when the serie

∑
n γ

2
n+1n

2‖ηn+1‖2
diverges. In this case it may be better to slow down the acceleration choosing a
sequence {tn, n ∈ N} given by H4 with d < 1 and to average the sequence of
parameters.

More precisely we have the following Corollary (see also Aujol and Dossal (2015)):

Corollary 2 (of Theorem 1). (i) If limn γn+1t
2
n = +∞, then the cluster points of

the sequence {θn, n ∈ N} are in L.

(ii) If the sequences {tn, n ∈ N} and {γn, n ∈ N} are given by H4, then∑
n

nd
(
F (θn)−min

Θ
F

)
<∞, sup

n
n2d

(
F (θn)−min

Θ
F

)
<∞.

(iii) Let {sn, n ∈ N} and {zn, n ∈ N} be defined by sn
def
=
∑n

k=n
2
tk and zn

def
=

s−1
n

∑n
k=n

2
tkθk. Then,

F (zk)−min
Θ
F = o

(
n−(d+1)

)
.

Proof. The proof of the first two points follows from (9), (10) and Lemma 18. From
the second item of the corollary, for any ε > 0, there exists n0 such that for any
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n > n0,
n∑

k=bn
2
c

tk

(
F (θk)−min

Θ
F

)
6 ε.

Since F is convex by H1, it follows that sn(F (zn) −minF ) 6 ε. Then we conclude
by observing that sn ∼ C n1+d for some C > 0.

It turns out that such bounds can not be reached with Theroem 1 using FISTA
or classical FB.

We now discuss the convergence of the iterates. The proof of the weak convergence
of iterates is classical for the (exact) FB algorithm and relies on fixed point theorems;
it turns out that the convergence of the sequence {θn, n ∈ N} for FISTA and more
generally for Nesterov acceleration scheme has been proved years after, in Chambolle
and Dossal (2014) without any perturbations and in Aujol and Dossal (2015) if one
considers perturbations both on the gradient and on the proximal step.

In the case the proximal operator can be computed exactly but the gradient is
approximated, the following result improves on Aujol and Dossal (2015); an improve-
ment which is especially relevant for stochastic perturbations; the proof is in Sec-
tion A.3.

Theorem 3. Assume H1 and H2. Let {θn, n ∈ N} be given by (4) applied with
positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3). Assume in addition
that

lim
n

n∑
m=1

m+1∑
k=2

γk

(
m∏
i=k

αi

)
〈ηk, θk − θ?〉 exists, (12)

∑
k≥1

∑
n≥k

n∏
i=k

αi

 αk + 1

2
‖θk − θk−1‖2 <∞ . (13)

Then, for any θ? ∈ L, limn ‖θn − θ?‖ exists.

This theorem yields the following corollary. This result relies on the Opial Lemma
and a complete proof can be found in (Aujol and Dossal, 2015, Theorem 4.1).

Corollary 4. If the sequences {tn, n ∈ N} and {γn, n ∈ N} are given by H4 and if∑
n

nd ‖ηn‖2 < +∞

then the sequence {θn, n ∈ N} converges to a minimizer of F .
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4 Case of stochastic perturbations

This section applies the previous results to the case the perturbation is stochastic. It
extends earlier works (see e.g. Atchade et al. (2014); Fort et al. (2018b)) to the case
d ∈ (0, 1) in H4. It is shown that d in H4 can be chosen as the decaying rate of the
bias and the variance of the stochastic approximation Gn. Define the filtration

Fn
def
= σ (θ0, G1, · · · , Gn) .

H5. The error is of the form

ηn+1 = εn+1 + ξn+1

where {εn, n ∈ N} is a martingale-increment sequence with respect to the filtration
{Fn, n ∈ N}, the random sequence {ξn, n ∈ N} is Fn-adapted and there exist con-
stants a ∈ [0,+∞), b ∈ [0,+∞) and Cε, Cξ ≥ 0 such that

∀n ≥ 1, E
[
|εn+1|2|Fn

]
≤ Cε
n2a

a.s. E
[
|ξn|2

]
≤

Cξ
n2b

.

Theorem 5. Assume H1, H2 and H5. Let {θn, n ∈ N} be given by (4) applied with
the sequences {tn, n ∈ N} and {γn, n ∈ N} given by H4. Assume in addition that

Cε
∑
n

n2(d−a) + Cξ
∑
n

nd−b <∞,

then a.s.∑
n

nd
(
F (θn)−min

Θ
F

)
<∞, sup

n
n2d

(
F (θn)−min

Θ
F

)
<∞, sup

n
‖∆n‖ <∞.

Moreover, define {sn, n ∈ N} and {zn, n ∈ N} by sn
def
=
∑n

k=bn
2
c k

d and zn
def
=

s−1
n

∑n
k=bn

2
c k

dθk; then,

F (zk)−min
Θ
F = o

(
n−(d+1)

)
.

If in addition H3 holds, then

(i) supn n
d‖θn+1 − θn‖ <∞ a.s. and

∑
n n

d‖θn − θn−1‖2 <∞ a.s.

(ii) there exists a L-valued random variable θ? such that limn θn = θ? a.s.
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5 Application to Monte Carlo approximations

In this section, we apply the results of the previous section to analyze the specific
case when ∇f(θ) is an untractable expectation w.r.t. a distribution dπθ:

∇f(θ) =

∫
H(θ, x) dπθ(x).

This situation occurs especially when ∇f can be written as an expectation with
respect to some target distribution: an expectation in high dimension or a distribution
which is known up to a normalizing constant for example (see e.g.(Atchade et al., 2017,
Sections 4 and 5) and Fort et al. (2018a)). The bounds derived in Theorem 5 can be
used to control the error of the algorithm when at each step, the approximation Gn+1

is built using Monte Carlo samples {Xn+1,j , j ≥ 0},

Gn+1 =
1

mn+1

mn+1∑
j=1

H(ϑn, Xn+1,j)

either exactly sampled from πϑn or approximating πϑn . In this setting the law of the
random variable ηn depends on the way the Monte Carlo points are sampled, and the
bias and variance of the error depend on the number of Monte Carlo points at the
step n. Hence we can deduce from Theorem 5 a sampling strategy ensuring the best
decay of F (θn)−minθ F .

Case of independent and identically distributed (i.i.d.) samples. The situ-
ation where Gn+1 is computed by a usual MonteCarlo sampling using mn ∼ nc(lnn)c̄

i.i.d. points from dπϑn corresponds to ξn = 0 (so Cξ = 0) in Theorem 5 and a = c/2;
here c̄ is assumed large enough for the convergence of series to hold and its value is
not detailed in the discussions below.

To apply Theorem 5, we must choose c s.t. c ≥ 2d+ 1 (up to a logarithmic term
in the definition of mn). Hence taking at the step n of the algorithm n2d+1 samples
to build Gn+1 one can ensure that F (zn) −minθ F = o(n−(1+d)). The maximal rate
of convergence is thus reached with d = 1, for the averaging sequence {zn, n ∈ N}
when the weights are tn = O(nd). In Atchade et al. (2017), it is proved that the rate
of convergence after n iterations of the stochastic FB algorithm (which corresponds
to d = 0) is O(1/n) for the same averaging sequence (note that in FB, tn = 1) and a
Monte Carlo batch size increasing as mn = O(n); our results in this paper are thus
homogeneous with the case d = 0 adressed in Atchade et al. (2017). It was also proved
in Atchade et al. (2014) that for the stochastic FISTA (which corresponds to d = 1),
F (θn) −minΘ F is O(1/n2) after n iterations, by choosing mn = O(n3); our results
in this paper establish a better result by showing that it is o(1/n2).
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Nevertheless, for any d ∈ (0, 1], the Monte Carlo cost of this strategy is N =
O(n2d+2) samples after n iterations of the algorithm. It follows that for a Monte
Carlo budget N , only nN = O(N1/(2d+2)) iterations can be performed and F (znN )−

minθ F = o

(
N
−(1+d)
2d+2

)
= o(N−1/2). Similar conclusions (with o replaced by O) were

reached in Atchade et al. (2017) and Atchade et al. (2014) respectively for d = 0 and
d = 1. Note that when the computational complexity is considered, the choice of
d ∈ [0, 1] is not relevant for the rate of convergence.

Case of Markov chain Monte Carlo samples. IfGn+1 is computed via a Markov
chain Monte Carlo sampler, with nc samples at iteration n, then the approximation
Gn+1 is a biased approximation of ∇f(ϑn) so that we have Cξ 6= 0. Under ergodicity
conditions on the sampler (see e.g. (Atchade et al., 2017, Proposition 5)), the value
of a in Theorem 5 can be set to a = c/2 as previously and the value of b can be set
to b = c. Hence, Theorem 5 applies with c = 2d + 1 (here again, up to logarithmic
terms we do not discuss). The conclusion is thus the same as in the i.i.d. case above.

Case of variance reduction for Monte Carlo samplings. If i.i.d. samples
from πθ are available for any θ, then the control functional-based method proposed
by Oates et al. (2017) applies. In that case, Cξ = 0 since E [ηn+1|Fn] = 0 so that we
have ηn+1 = εn+1; and it is proved that if Gn+1 is computed from nc(lnn)c̄ samples,
then 2a = 7c/6. Therefore, the conditions in Theorem 5 imply that 2d + 1 = 7c/6 -
here again up to logarithmic terms - so that c = (12d + 6)/7. Hence taking at the
step n of the algorithm n(12d+6)/7(lnn)c̄ samples to build Gn+1 (for some c̄ correctly
chosen), we have F (zn) −minθ F = o(n−(1+d)). The same discussion as in the i.i.d.
case holds.

After n iterations of the algorithm, the Monte Carlo cost is N = O(n(12d+6)/7+1).
It follows that given a Monte Carlo budget N , the number of iterations nN depends

on N in such a way that we have F (znN )−minθ F = o(N
− 7(1+d)

(12d+13) ). Roughly speaking,
since ε is arbitrarily close to zero, the rate is of order o(N−(7/12)(1−1/(12d+13))). Since
d ∈ (0, 1], it is maximal with d = 1, reaching the value o(N−14/25) which means a
rate larger than O(N−1/2).

On one hand, it is an excellent result: to our best knowledge, given a total amount
N of Monte Carlo samples, the best known rate of convergence for Stochastic FISTA
and for Stochastic FB-based methods (possibly combined with averaging strategies),
was O(N−1/2) (see Atchade et al. (2014, 2017)); it was achieved by using Monte Carlo
procedures with standard variance i.e. 2a = c in H5 when ηn+1 is computed with nc

Monte Carlo draws.
On the other hand, the above discussion does not take into account the compu-
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tational cost of this Monte Carlo methods i.e. the computational cost of the control-
functional based approximation Gn+1 given mn ∼ nc(lnn)c̄ Monte Carlo draws; this
technique requires matrix inversion of size equivalent to mn×mn for the computation
of Gn+1 (see Oates et al. (2017)).

A Detailed proofs

In this appendix, we state various results that are needed to prove the theorems stated
in Section 3 and Section 4. Set

F (θ)
def
= F (θ)−min

Θ
F, (14)

∆n+1
def
= tn(θn+1 − θn) + θn, (15)

∆n
def
= tn

(
Tγn+1,g(ϑn)− θn

)
+ θn. (16)

Note that ∆n+1 ∈ Fn+1 and ∆n ∈ Fn.

A.1 Intermediate results

Lemma 6 shows that, in the stochastic case, the iterated θn and ϑn are bounded with
probability one under the assumptions H3 and H4.

Lemma 6. Assume H3 and H4. Then there exists a constant C such that

P(sup
n
|θn| ≤ C) = 1, P(sup

n
|ϑn| ≤ C) = 1.

Proof. By definition of the prox-operator and by H3, θn ∈ Θ and this set is bounded.
Furthermore, by H4, the sequence {tn, n ∈ N} is increasing, so that 0 ≤ tn−1−1 ≤ tn.
This implies that |ϑn| ≤ |θn|+ |θn− θn−1|, and the proof is concluded using again H3
and θj ∈ Θ.

Lemma controls the difference between ∆n and ∆n (see resp. (15) and (16)) as a
function of the perturbation ηn+1 and of the design parameters tn, γn.

Lemma 7. Assume H1. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4) and (6),
applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3). Then

‖∆n+1 −∆n‖ ≤ tnγn+1‖ηn+1‖.

Proof. We have ∆n+1 −∆n = tn
(
θn+1 − Tγn+1,g(ϑn)

)
. Furthermore by definition of

θn+1 and Tγ,g(θ), we have

θn+1 − Tγn+1,g(ϑn) = Proxγn+1,g (ϑn − γn+1Gn+1)− Proxγn+1,g (ϑn − γn+1∇f(ϑn)) .
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The proof is concluded upon noting that under H1, θ 7→ Proxγ,g(θ) is 1-Lipschitz (see
e.g. (Bauschke and Combettes, 2011, Proposition 12.26)).

The following lemma is a key building block of the studies since it establishes a
Lyapunov-type inequality. Note that in the case ηn = 0 (no perturbations), there is
a strict decay of the sequence of Lyapunov functions.

Lemma 8. Assume H1 and H2. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4)
and (6), applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3).
For any minimizer θ? ∈ L, any j ≥ 1,(

γjt
2
j−1 − γj+1tj(tj − 1)

)
F (θj) + γj+1t

2
jF (θj+1) +

1

2
‖∆j+1 − θ?‖2

≤ γjt2j−1F (θj) +
1

2
‖∆j − θ?‖2 − γj+1tj 〈∆j+1 − θ?, ηj+1〉 (17)

≤ γjt2j−1F (θj) +
1

2
‖∆j − θ?‖2 + γ2

j+1t
2
j‖ηj+1‖2 − γj+1tj

〈
∆̄j − θ?, ηj+1

〉
. (18)

where {ηn, n ∈ N}, {∆n, n ∈ N} and {∆n, n ∈ N} are given by (7), (15) and (16).

Proof. Let j ≥ 1. We first apply Lemma 16 with ϑ← θj , ξ ← ϑj , θ ← ϑj − γj+1Gj+1

and γ ← γj+1 to get

2γj+1F (θj+1) ≤ 2γj+1F (θj) + ‖θj − ϑj‖2 − ‖θj+1 − θj‖2 − 2γj+1 〈θj+1 − θj , ηj+1〉 .

We apply again Lemma 16 with ϑ← θ? to get

2γj+1F (θj+1) ≤ ‖θ? − ϑj‖2 − ‖θj+1 − θ?‖2 − 2γj+1 〈θj+1 − θ?, ηj+1〉 .

We now compute a combination of these two inequalities with coefficients tj(tj − 1)
and tj . This yields

2γj+1t
2
jF (θj+1) + tj(tj − 1)‖θj+1 − θj‖2 + tj‖θj+1 − θ?‖2

≤ 2tj(tj − 1)γj+1F (θj) + tj(tj − 1)‖θj − ϑj‖2 + tj‖ϑj − θ?‖2

− 2γj+1tj 〈∆j+1 − θ?, ηj+1〉 .

Then, by using the definition of ϑj and ∆j+1, we have

tj(tj − 1)‖θj+1 − θj‖2 + tj‖θj+1 − θ?‖2 = ‖∆j+1 − θ?‖2 + (tj − 1)‖θj − θ?‖2,
tj(tj − 1)‖θj − ϑj‖2 + tj‖ϑj − θ?‖2 = ‖∆j − θ?‖2 + (tj − 1)‖θj − θ?‖2.

This yields

2γj+1t
2
jF (θj+1) + ‖∆j+1 − θ?‖2 ≤ 2γjt

2
j−1F (θj) + ‖∆j − θ?‖2 − 2γj+1tj 〈∆j+1 − θ?, ηj+1〉

− 2
(
γjt

2
j−1 − γj+1tj(tj − 1)

)
F (θj) .

This concludes the proof.
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By using the Lyapunov-type inequalities, we are able to show that the quantities
∆n and ∆n are uniformly bounded in n, under conditions on the cumulated errors.

Lemma 9. Assume H1 and H2. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4)
and (6), applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3).
If
∑

n γn+1tn‖ηn+1‖ <∞, then

sup
n
‖∆n‖+ sup

n
‖∆n‖ <∞.

Proof. By iterating (17) and since F ≥ 0, we have for any θ? ∈ L,

1

2
‖∆j+1 − θ?‖2 ≤

1

2
‖∆1 − θ?‖2 + γ1t

2
0F (θ1)−

j∑
k=1

γk+1tk 〈∆k+1 − θ?, ηk+1〉 .

We then conclude by Lemma 19 and Lemma 7.

Lemma 10. Assume H1 and H2. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4)
and (6), applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3).
Then for any n ≥ 2,

2γn+1tn(tn − 1)F (θn+1) + tn(tn − 1)‖θn+1 − θn‖2

+
n∑
k=1

tk−1 − 1

tk
(tk + tk−1 − 1) ‖θk − θk−1‖2 ≤ 2

n∑
k=1

γktk−1F (θk) +
n∑
k=1

tk(tk − 1)Ξk+1

where
Ξk+1

def
= 2γ2

k+1‖ηk+1‖2 − 2t−1
k γk+1

〈
∆k − θk, ηk+1

〉
. (19)

Proof. Set Ξ̃n+1
def
= −2γn+1 〈θn+1 − θn, ηn+1〉. We apply Lemma 16 with θ ← ϑn −

γn+1Gn+1, ϑ← θn, ξ ← ϑn and γ ← γn+1. This yields for any n ≥ 1,

2γn+1F (θn+1) + ‖θn+1 − θn‖2 ≤ 2γn+1F (θn) + ‖θn − ϑn‖2 + Ξ̃n+1 .

By definition of ϑn, we have ‖ϑn − θn‖2 = α2
n‖θn − θn−1‖2. Hence,

2γn+1F (θn+1) + ‖θn+1 − θn‖2 ≤ 2γn+1F (θn) + α2
n‖θn − θn−1‖2 + Ξ̃n+1 ,

or equivalently,

‖θn+1 − θn‖2 − α2
n‖θn − θn−1‖2 ≤ 2γn+1

(
F (θn)− F (θn+1)

)
+ Ξ̃n+1 .

12



We multiply both sides by tn(tn− 1) and sum from k = 1 to k = n; we obtain on the
LHS by using tkαk = tk−1 − 1 and α1 = 0,

n∑
k=1

tk(tk − 1)
(
‖θk+1 − θk‖2 − α2

k‖θk − θk−1‖2
)

= tn(tn − 1)‖θn+1 − θn‖2 +

n∑
k=1

tk−1 − 1

tk
(tk + tk−1 − 1) ‖θk − θk−1‖2 .

On the RHS, we have

2
n∑
k=1

γk+1tk(tk − 1){F (θk)− F (θk+1)}+
n∑
k=1

tk(tk − 1)Ξ̃k+1

≤ 2
n∑
k=1

{γk+1tk(tk − 1)− γktk−1(tk−1 − 1)}F (θk)

− 2γn+1tn(tn − 1)F (θn+1) +
n∑
k=2

tk(tk − 1)Ξ̃k+1

≤ 2

n∑
k=1

γktk−1F (θk) +

n∑
k=2

tk(tk − 1)Ξ̃k+1 − 2γn+1tn(tn − 1)F (θn+1)

where in the last inequality, we used (3). We now compute an upper bound of Ξ̃n+1.
We have

θn+1 − θn = θn+1 − Tγn+1,g(ϑn) + Tγn+1,g(ϑn)− θn .

Since Proxγ,g is 1-Lipschitz, ‖θn+1− Tγn+1,g(ϑn)‖ ≤ γn+1‖ηn+1‖; note also that ∆n−
θn = tn

(
Tγn+1,g(ϑn)− θn

)
. This yields Ξ̃n+1 ≤ Ξn+1 and concludes the proof.

Lemma 11. Assume H1 and H2. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given by (4)
and (6), applied with positive sequences {tn, n ∈ N} and {γn, n ∈ N} satisfying (3).
Then for any n ≥ 1 and any θ? ∈ L,

‖θn+1 − θ?‖2 ≤ ‖θn − θ?‖2 −
n+1∑
k=2

 n∏
j=k

αj

 γk

(
F (θk)−min

Θ
F

)
+
n+1∑
k=2

 n∏
j=k

αj

Bk ,

where

Bk
def
= αk−1

αk−1 + 1

2
‖θk−1 − θk−2‖2 − γk 〈ηk, θk − θ?〉 .

By convention,
∏n
k=n+1 αk = 1.

13



Proof. Let θ? ∈ L. Apply Lemma 16 with ξ ← ϑn, θ ← ϑn − γn+1Gn+1, ϑ← θ? and
γ ← γn+1. This yields

‖θn+1 − θ?‖2 ≤ ‖ϑn − θ?‖2 − 2γn+1F (θn+1) + 2γn+1 〈θn+1 − θ?, ηn+1〉 .

By definition of ϑn and by using 2 〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2, we have

‖ϑn − θ?‖2 = ‖θn − θ?‖2 + α2
n‖θn − θn−1‖2 + 2αn 〈θn − θ?, θn − θn−1〉

= ‖θn − θ?‖2 + αn(1 + αn)‖θn − θn−1‖2 + αn
(
‖θn − θ?‖2 − ‖θn−1 − θ?‖2

)
.

This yields

Φn+1 − Φn ≤ αn (Φn − Φn−1) +
(
Bn+1 − γn+1F (θn+1)

)
,

where Φn
def
= ‖θn − θ?‖2/2. By iterating (upon noting that αn ≥ 0), we obtain

Φn+1 − Φn ≤

 n∏
j=1

αj

 (Φ1 − Φ0) +

n+1∑
k=2

 n∏
j=k

αj

 (
Bk − γkF (θk)

)

≤
n+1∑
k=2

 n∏
j=k

αj

 (
Bk − γkF (θk)

)
,

since α1 = 0. This concludes the proof.

Proposition 12. Assume H1, H2 and H5. Let {θn, n ∈ N} and {ϑn, n ∈ N} be
given by (4) and (6) applied with the positive sequences {tn, n ∈ N} and {γn, n ∈ N}
given by H4. Assume also that

Cε
∑
n

n2(d−a) + Cξ
∑
n

nd−b <∞.

Then
sup
n

E
[
‖∆n‖2

]
<∞, (20)

Proof. Let θ? ∈ L. Iterating (18) yields for any n ≥ 1,

1

2
‖∆n+1−θ?‖2 ≤ γ1F (θ1)+

1

2
‖∆1−θ?‖2+

n∑
j=1

γ2
j+1t

2
j‖ηj+1‖2−

n∑
j=1

γj+1tj
〈
∆j − θ?, ηj+1

〉
.
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By Lemma 7, (18) and the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

1

4
‖∆n − θ?‖2 ≤ γ1F (θ1) +

1

2
‖∆1 − θ?‖2 +

n∑
j=1

γ2
j+1t

2
j‖ηj+1‖2

+
1

2
γ2
n+1t

2
n‖ηn+1‖2 −

n∑
j=1

γj+1tj
〈
∆j − θ?, ηj+1

〉
.

Computing the expectation and applying the Cauchy-Schwarz inequality yield

1

4
‖∆n − θ?‖22 ≤ γ1E

[
F (θ1)

]
+

1

2
E
[
‖∆1 − θ?‖2

]
+

n∑
j=1

γ2
j+1t

2
jE
[
‖ηj+1‖2

]
+

1

2
γ2
n+1t

2
nE
[
‖ηn+1‖2

]
+

n∑
j=1

γj+1tj‖∆j − θ?‖2 ‖E [ξj+1|Fj ] ‖2 . (21)

where for a vector-valued r.v. U , ‖U‖2
def
=
√
E [‖U‖2]. We then conclude by Lemma 19,

applied with u2
n ← ‖∆n − θ?‖22, and ek ← 4γk+1tk ‖E [ξk+1|Fk] ‖2.

Lemma 13. Assume H1, H2, H3 and H5. Let {θn, n ∈ N} and {ϑn, n ∈ N} be given
by (4) and (6), applied with the positive sequences {tn, n ∈ N} and {γn, n ∈ N} given
by H4. Assume in addition that

Cε
∑
n

n2(d−a) + Cξ
∑
n

nd−b <∞. (22)

Let {τn, n ∈ N} be a Rp-valued random sequence which is Fn-adapted and such that
supn ‖τn‖ <∞. Then a.s.

∑
k

γ2
k+1t

2
k‖ηk+1‖2 <∞, lim sup

n

∣∣∣∣∣
n∑
k=1

γk+1tk 〈τk, ηk+1〉

∣∣∣∣∣ <∞ .

Proof. By the conditional Borel-Cantelli lemma (see e.g. (Chen, 1978, Theorem 1)),∑
k≥1

γ2
k+1t

2
kE
[
‖ηk+1‖2|Fk

]
<∞ a.s. =⇒

∑
k≥1

γ2
k+1t

2
k‖ηk+1‖2 <∞ a.s.

The sufficient condition holds true by H4, H5 and (22). We write 〈τk, ηk+1〉 =
〈τk, ξk+1〉+ 〈τk, εk+1〉. By H5 and (22)∑

k

γk+1tk‖ξk‖ <∞ a.s. ;
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hence, the sum
∑

k γk+1tk 〈τk, ξk〉 exists a.s. Since τk ∈ Fk, the term 〈τk, εk+1〉 is a
martingale increment. Since(

sup
n
‖τn‖

)2∑
k

γ2
k+1t

2
kE
[
‖εk+1‖2|Fk

]
<∞ a.s.

by H5 and (22), then (Hall and Heyde, 1980, Theorem 17) implies that the sum∑
k γk+1tk 〈τk, εk+1〉 exists a.s. This concludes the proof.

Proposition 14. Assume H1, H2, H3 and H5. Let {θn, n ∈ N} and {ϑn, n ∈ N} be
given by (4) and (6), applied with the positive sequences {tn, n ∈ N} and {γn, n ∈ N}
given by H4. Assume in addition that

Cε
∑
n

n2(d−a) + Cξ
∑
n

nd−b <∞.

Then a.s.

sup
n
n2dF (θn) <∞,

∑
n

ndF (θn) <∞, (23)∑
n≥1

nd‖θn − θn−1‖2 <∞ and sup
n
nd‖θn+1 − θn‖ <∞ . (24)

Furthermore, the condition (13) holds a.s.

Proof. We apply Lemma 13 with τk ← ∆k − θ?. Note that by Theorem 5, we have
supn ‖∆n‖ <∞ a.s. which implies, by H3, supn ‖∆̄n− θn‖ <∞ a.s. Lemma 13 yields
a.s. ∑

k

γ2
k+1t

2
k‖ηk+1‖2 <∞, lim sup

n

∣∣∣∣∣
n∑
k=1

γk+1tk
〈
∆k − θ?, ηk+1

〉∣∣∣∣∣ <∞.
This result, combined with Lemma 8 and Lemma 17 applied with

vj+1 ← γj+1t
2
jF (θj+1) +

1

2
‖∆j+1 − θ?‖2,

χj ←
(
γjt

2
j−1 − γj+1tj(tj − 1)

)
F (θj),

imply that
∑

k χk exists a.s. and limn vn exists. This yields, by using Lemma 18,∑
k γktk−1F (θk) <∞ a.s. and supn γn+1t

2
nF (θn) <∞. We obtain (23) by Lemma 18.

We apply again Lemma 13 with τk ← ∆k−θk. Lemma 13 implies that supn |
∑n

k=2 tk(tk − 1)Ξk+1|
exists a.s. where {Ξn, n ∈ N} is given by Lemma 10. The proof of (23) is concluded
by Lemma 10 and Lemma 18.

The last claim now follows from Lemma 18 and the bound (αn + 1)/2 ≤ 1.
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Proposition 15. Assume H1, H2, H3, H4 and H5. Assume in addition that

Cε
∑
n

n2(d−a) + Cξ
∑
n

nd−b <∞. (25)

Then the condition (12) holds a.s.

Proof. Throughout the proof, set

βk,m
def
=

m∏
i=k

αi , Bk,n
def
=

n∑
m=k

βk,m Bk,∞
def
=
∑
m≥k

βk,m .

By Lemma 18, we have
sup
k
t−1
k Bk,∞ <∞ . (26)

We write for any k ≥ 2,

〈ηk, θk − θ?〉 = 〈ηk, θk − Tγk,g(ϑk−1)〉+ 〈ηk, Tγk,g(ϑk−1)− θ?〉
= 〈ηk, θk − Tγk,g(ϑk−1)〉+ 〈ξk, Tγk,g(ϑk−1)− θ?〉

+ 〈εk, Tγk,g(ϑk−1)− θ?〉 .

Since Proxγ,g is 1-Lipschitz, we have ‖θk − Tγk,g(ϑk−1)‖ ≤ γk‖ηk‖ so that it holds

∑
m≥2

m∑
k=2

γk |〈ηk, θk − Tγk,g(ϑk−1)〉|βk,m ≤
∑
k≥2

γ2
k‖ηk‖2Bk,∞ .

By (26), H5, the assumption (25) and the conditional Borel-Cantelli lemma (see e.g.
(Chen, 1978, Theorem 1)), the RHS is finite a.s.

By Fubini again, the equality Tγ,g(θ?) = θ? and the 1-Lipschitz property of Tγ,g
(see e.g. (Atchade et al., 2017, Lemma 9)), it holds

∑
m≥2

m∑
k=2

γk |〈ξk, Tγk,g(ϑk−1)− θ?〉|βk,m ≤
∑
k≥2

γk‖ξk‖‖ϑk−1 − θ?‖Bk,∞ ,

and the RHS is finite a.s. by (26), (25) and Lemma 6. We now consider the last term;
set

Ψk
def
= 〈εk, Tγk,g(θk)− θ?〉 .

We have
n∑

m=2

m∑
k=2

γkΨkβk,m =

n∑
k=2

γkΨkBk,n =

n∑
k=2

γkΨkBk,∞
Bk,n
Bk,∞

. (27)
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Upon noting that E [Ψk|Fk−1] = 0, {γkBk,∞Ψk, k ≥ 0} is a martingale-increment
sequence. We have∑

k

γ2
kB

2
k,∞ E

[
‖Ψk‖2|Fk−1

]
≤
(

sup
n
‖θn − θ?‖2

) ∑
k

γ2
kB

2
k,∞ E

[
‖εk‖2|Fk−1

]
,

and the RHS is finite a.s. under (26), H3, H5, and (25). Therefore, limn Sn exists a.s.

where Sn
def
=
∑n

k=2 γkBk,∞Ψk; by convention, S1 = 0. By the Abel’s transform and
(27), it holds

n∑
m=2

m∑
k=2

γkΨkβk,m =

n∑
k=2

(Sk − Sk−1)
Bk,n
Bk,∞

=
n−1∑
k=2

(
Bk,n
Bk,∞

−
Bk+1,n

Bk+1,∞

)
Sk + Sn

Bn,n
Bn,∞

.

Since supn |Sn| < ∞ a.s. and supn,`Bn,`/Bn,∞ ≤ 1, it is sufficient to prove that

limn
∑n−1

k=2

∣∣∣ Bk,n

Bk,∞
− Bk+1,n

Bk+1,∞

∣∣∣ <∞. Since βk,m = αkβk+1,m, we have

Bk,n = αk + αkBk+1,n Bk,∞ = αk + αkBk+1,∞ .

This yields, using Bk+1,∞ −Bk+1,n = αk+1 · · ·αnBn+1,∞

Bk,n
Bk,∞

−
Bk+1,n

Bk+1,∞
= αkαk+1 · · ·αn

Bn+1,∞
Bk,∞Bk+1,∞

≥ 0 .

Hence,

n−1∑
k=2

∣∣∣∣ Bk,nBk,∞
−
Bk+1,n

Bk+1,∞

∣∣∣∣ =
n−1∑
k=2

(
Bk,n
Bk,∞

−
Bk+1,n

Bk+1,∞

)
≤ B2,n

B2,∞
.

The RHS is upper bounded by 1. This concludes the proof.

A.2 Proof of Theorem 1

(i) Set

vn ← γnt
2
n−1F (θn) +

1

2
‖∆n − θ?‖2,

χn ←
(
γnt

2
n−1 − γn+1tn(tn − 1)

)
F (θn),

bn ← γ2
n+1t

2
n‖ηn+1‖2 − γn+1tn

〈
∆n − θ?, ηn+1

〉
;
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so that by Lemma 8, vn+1 ≤ vn − χn + bn. We apply Lemma 17 since
∑

n bn exists
under (8). This yields (9) and

lim
n

(
γn+1t

2
nF (θn) + ‖∆n − θ?‖

)
exists,

from which we deduce (10).
The property supn ‖∆n − θ?‖ <∞ yields supn ‖∆n‖ <∞. By Lemma 7 and the

assumption (8), we also have supn ‖∆n‖ <∞.
(ii) The proof follows from the convexity of F and the iteration of (18).

A.3 Proof of Theorem 3

LetBk be given by Lemma 11. The stated assumptions imply that
∑

n

∑n+1
k=2

(∏n
j=k αj

)
Bk

is finite. The result follows from Lemma 11 and Lemma 17 applied with vn ←
‖θn − θ?‖2 and bn ←

∑n+1
k=2

(∏n
j=k αj

)
Bk.

A.4 Proof of Theorem 5

Proof of the first claim We show that the assumptions of Theorem 1 hold almost-
surely, which will imply that its conclusion holds almost-surely; by Lemma 18i, t2n−1−
tn(tn − 1) ≥ O(nd), which yields the result.

Let us prove that the assumptions hold almost-surely. By H4, there exists a
constant C such that t2n ≤ Cn2d. Combined with H5, this yields

E

[∑
n

t2n‖ηn+1‖2
]
≤ 2

∑
n

t2nE
[
‖εn+1‖2 + ‖ξn+1‖2

]
≤ C

∑
n

n2d

(
Cε
n2a

+
Cξ
n2b

)
.

We write
∑n

k=0 tk
〈
∆k − θ?, ηk+1

〉
= T1,n + T2,n with T1,n

def
=
∑n

k=0 tk
〈
∆k − θ?, εk+1

〉
.

Under H5, {T1,n, n ≥ 0} is a Fn-adapted martingale. It converges almost surely
as soon as

∑
n t

2
nE
[
‖∆n − θ?‖2‖εn+1‖2

]
< ∞ (see (Hall and Heyde, 1980, Theorem

2.18)): we have by H5

E
[
‖∆n − θ?‖2‖εn+1‖2

]
= E

[
‖∆n − θ?‖2E

[
‖εn+1‖2|Fn

]]
≤ Cε
n2a

sup
n

E
[
‖∆n − θ?‖2

]
.

Therefore, by using Proposition 12, the martingale converges almost-surely as soon
as Cε

∑
n n

2(d−a) <∞. The random variable limn T2,n exists a.s. if∑
n

tnE
[
‖∆n − θ?‖ ‖ξn+1‖

]
<∞;
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by applying the Cauchy-Schwarz inequality, Proposition 12 and H5, it holds true if
Cξ
∑

n n
d−b <∞.

Proof of the second claim It follows from Proposition 14.
Proof of the third claim By H3, there exists a converging subsequence {θφn , n ∈

N}. The limiting value of this subsequence is in θ? ∈ L by Corollary 2i. Hence,
limn ‖θφn − θ?‖ = 0.

On the other hand, by Lemma 18, Proposition 14 and Proposition 15, the as-
sumptions of Theorem 3 hold. Hence limn ‖θn − θ‖ exists for any θ ∈ L.

Combining these results yield the claim since limn ‖θn − θ?‖ = limn ‖θφn − θ?‖.

A.5 Technical lemmas

Lemma 16. Assume H1. For all θ, ϑ, ξ ∈ Θ and γ ∈ (0, 1/L],

−2γ (F (Proxγ,g(θ))− F (ϑ)) ≥ ‖Proxγ,g(θ)−ϑ‖2+2 〈Proxγ,g(θ)− ϑ, ξ − γ∇f(ξ)− θ〉
− ‖ϑ− ξ‖2 .

Proof. See (Atchade et al., 2017, Lemma 8).

Lemma 17. Let {vn, n ∈ N} and {χn, n ∈ N} be non-negative sequences and
{bn, n ∈ N} be such that

∑
n bn exists. If for any n ≥ 0, vn+1 ≤ vn − χn + bn then∑

n χn <∞ and limn vn exists.

Proof. See (Atchade et al., 2017, Lemma 1).

Lemma 18. Assume H4. Then

(i) t2n−1 − tn(tn − 1) ≥ tn(1− (2d)/ad) and the condition (3) is satisfied.

(ii) for any n ≥ 2,

tn − 1

tn
≥ 1−

(
a

1 + a

)d
, and t2n − (tn−1 − 1)2 ≥ tn

(iii) for any n ≥ 2,

sup
k≥2

1

tk

∑
m≥k

m∏
n=k

tn − 1

tn+1
<∞ .

Proof. Proof of (i) See (Aujol and Dossal, 2015, Lemma 2). Proof of (ii) The LHS
follows from

t−1
n =

(
a

n+ a− 1

)d
≤
(

a

1 + a

)d
for any n ≥ 2 . (28)
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For the RHS, we write t2n−(tn−1−1)2 = (tn−tn−1 +1)(tn+tn−1−1). Since tn ≥ tn−1,
the first term is lower bounded by 1. By (28), the second term is lower bounded by

tn

(
1− 1

tn
+

(
n+ a− 2

n+ a− 1

)d)
≥ tn

(
1−

(
a

1 + a

)d
+

(
1− 1

n+ a− 1

)d)

≥ tn

(
1−

(
a

1 + a

)d
+

(
1− 1

1 + a

)d)
= tn .

Proof of (iii) See (Aujol and Dossal, 2015, Lemma 7).

Lemma 19. Let {un, n ∈ N}, {vn, n ∈ N} and {en, n ∈ N} be sequences satisfying

u2
n ≤ vn +

∑n
k=0 ukek and 2vn +

∑n
k=0 e

2
k ≥ 0. Set U(a, b)

def
= b +

√
a+ b2. Then for

any n ≥ 0,

sup
0≤k≤n

∣∣∣uk − ek
2

∣∣∣ ≤ U (vn +
1

2

n∑
k=0

e2
k,

1

2

n−1∑
k=0

|ek|

)
with the convention that

∑−1
k=0 = 0.

Proof. The proof is adapted from (Schmidt et al., 2011, Lemma 1). For any n ≥ 1,

(
un −

en
2

)2
≤ vn +

1

4
e2
n +

n−1∑
k=0

ukek ≤ vn +
1

2

n∑
k=0

e2
k +

n−1∑
k=0

(
uk −

ek
2

)
ek .

Set

An
def
= vn +

1

2

n∑
k=0

e2
k Bn

def
=

1

2

n∑
k=0

|ek| sn
def
= sup

0≤k≤n

∣∣∣uk − ek
2

∣∣∣ .
Then s2

n ≤ s2
n−1 ∨ {An + sn−1 2Bn−1}. By induction (note that s0 ≤

√
A0 and

B−1 = 0), this yields for any n ≥ 0,

0 ≤ sn ≤ Bn−1 +
(
B2
n−1 +An

)1/2
.
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