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Abstract. This paper studies the complexity of the stochastic gradient
algorithm for PCA when the data are observed in a streaming setting.
We also propose an online approach for selecting the learning rate. Simu-
lation experiments confirm the practical relevance of the plain stochastic
gradient approach and that drastic improvements can be achieved by
learning the learning rate.
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1 Introduction

1.1 Background

Principal Component Analysis (PCA) is a paramount tool in an amazingly wide
scope of applications. PCA belongs to the small list of algorithms which are ex-
tensively used in data science, medicine, finance, machine learning, etc. and the
list is almost infinite. PCA is one of the basic blocks in Data Analytics. Comput-
ing singular/eigenvectors also appears key to discovering nonlinear embeddings
of the data such as Laplacian eigenmaps [2].

In the era of Big Data, computing a set of singular vectors might turn to
be a computationally difficult task to achieve. In practice the data matrix itself
cannot be imported into the RAM and the data can only be accessed in small
samples. In face of such hard memory management problems, Online Convex
Optimisation often provides efficient alternatives to standard computations in
machine learning [6,13,10]. On the other hand, computing eigen/singular vectors
is not a convex optimisation problem. Instead, PCA can be seen as an optimisa-
tion problem over the sphere and as such, requires a different type of analysis.
Online or stochastic versions of PCA have been extensively studied lately; see
in particular the review [3]. On the theoretical side, [11] proposed a very clear
analysis of the stochastic gradient algorithm for PCA which does not require
information about the gap between successive eigenvalues. Better convergence
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rates were subsequently obtained in [12], [7], [1] using more advanced algorithms.
All these previous works rely on the assumption that the data arrive sequentially
and are i.i.d., and their objective is to compute their common covariance matrix.

Our contribution explores a different set up. In the present work, we assume
that the entrees of the covariance matrix are revealed one at a time in a sequential
fashion. In such a set up, only some correlations between certain components of
the data vectors, supposed to be chosen uniformly at random, are assumed to
be available at each round, and not the data themselves. Therefore, our set up
pertains to the activity around the important problem of Positive Semi-Definite
matrix completion [5], [8], [9].

Our first main contribution is a mathematical proof that the method of [11]
extends to the online matrix completion problem. Our theoretical findings also
include a formula for the learning rate which can be optimised depending on
the problem at hand. Practical optimisation of the learning rate is our second
contribution. Our tuning algorithm is an adaptation of Freund and Shapire’s
online Hedge algorithm and is shown to provide substantial improvement of the
practical convergence speed of the online gradient scheme for PCA.

1.2 Organisation of the paper

Our main results are presented in Section 2 where the algorithm is described
and our main theorem is given. The proof of our main theorem is exposed in
Section 3. Implementation and numerical experiments are given in Section 4. In
particular, a simple method for choosing the learning rate is described in Section
4.1. The technical lemmæ which are used in the proof of Section 3 are gathered
in Section A at the end of the paper.

2 Main results

2.1 Presentation of the problem and prior result

We use bold-faced letters to denote vectors, and capital letters to denote matrices
unless specified otherwise. Given a matrix A, we denote by A> its transpose
matrix, ‖A‖ its spectral norm and ‖A‖1→2 = max ‖Aj‖2 the maximum `2 norm
of its column. For a vector v, we denote by v> its transpose. Moreover (ei)i
denote the canonical basis of Rd. The optimisation problem can be written

min
w:‖w‖=1

−w>Aw, (1)

where d > 1 and A is a symmetric positive semi-definite matrix supposed un-
known. We suppose that we have access to a stream of i.i.d. matrices At defined
as

At = d2 Ait,jt eite
>
jt (2)

and (it, jt) is drawn uniformly at random from {1, . . . , n}2. It is easily seen that
E[At] = A, therefore each matrix At can be seen as a properly rescaled noiseless
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random component of A. It can be readily seen that any leading eigenvector of
A is a solution of the optimisation problem.

2.2 The stochastic projected gradient algorithm

Given a symmetric matrix A ∈ Rd×d, the projected gradient algorithm writes

wt+1 = (I + ηA)wt/‖(I + ηA)wt‖2 (3)

where η is a step-size parameter and w0 is the initial estimate for a leading
eigenvector of A. This algorithm correspond to initialising at w0 then make a
gradient step at each iteration followed by a projection into the unit sphere.
However, since A is unknown, the stochastic gradient we will study in this paper
is simply defined as

wt+1 = (I + ηAt)wt/‖(I + ηAt)wt‖2 (4)

obtained by replacing A with the random matrix At. Since the projection on
the unit sphere is a rescaling operation which is commutative with respect to
the matrix product, we can leave the projection operation to the end. That is,
for our analysis, it is enough to consider the equivalent algorithm which only
performs projection at the end:

– Initialise w0 on a unit sphere,
– Perform T > 0 stochastic gradient step : wt+1 = (I + ηAt)wt

– Return wT /‖wT ‖2.

In [12], the stream of i.i.d. matrices At are also assumed positive semidefinite.
The main result in [12] is the following theorem.

Theorem 1. Suppose that the matrices (At)t∈N are positive semi-definite, real
i.i.d for some leading eigenvector v of A, 1p < 〈w0,v〉2 for some p > 0 and that
for some b ≥ 1, both ‖At‖/‖A‖ and ‖At−A‖/‖A‖ are at most b with probability
1. Then, after T iterations of (4) with η = 1

b
√
pT

, then with probability at least
1
cp , the return wT satisfies

1− w>TAwT

‖A‖
≤ c′

log(T )b
√
p

√
T

, (5)

where c and c′ are positive constants.

Note that our online positive semidefinite matrix completion framework is not
compatible with the assumptions required for Theorem 2.2 to apply. In our
problem, the matrices At are not themself positive semidefinite.
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2.3 Main theorem

Without loss of generality, we will throughout assume that ‖A‖ = 1. Our goal
is to show that, for ε > 0, the vector wT obtained after T iterations of the
stochastic gradient method, satisfies

1−wTAwT ≤ ε (6)

in expectation for T a sufficiently large integer and η tuned accordingly. Since
‖wT ‖2 = 1, this is equivalent to showing that

w>T ((1− ε)I −A)wT ≤ 0. (7)

The next theorem summarizes our main findings.

Theorem 2. Let ε > 0 and assume that 0 < 1
p < 〈w0,v〉2 for a leading eigen-

vector v of A. Define

VT = w>0

1∏
i=T

(I + ηAi)
>((1− ε)I −A)

T∏
i=1

(I + ηAi)w0. (8)

Then for T satisfying

T > max

4p2d2

ε
,

log 4pε−1

log
(
1 + ε

pd2

)
 , (9)

and η = ε
4pd2 , it holds that

E[VT ] ≤ −
ε

4p
(1 + 2η)T . (10)

Since VT = ‖wT ‖22w>T ((1− ε)I −A)wT , the theorem implies the desired result.

3 Proof of the Theorem 2

In this section, we prove our main result, namely Theorem 2. Define

BT =

1∏
i=T

(I + ηAi)
>((1− ε)I −A)

T∏
i=1

(I + ηAi) (11)

so that VT = w>0 BTw0.

Lemma 1. We have that

E[BT ] = E[BT−1] + η
(
A>E[BT−1] + E[BT−1]A

)
(12)

+ η2d2diag
(
A>diag(E[BT−1])A

)
.
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Proof. Expand the recurrence relationship and take the expectation. Finally use
Lemma 2 to obtain the last term of the inequality.

Expanding the recurrence in Lemma 1, we have

E[VT ] ≤ w>0 (I + 2ηA)>((1− ε)I −A)w0

+ η2d2
T∑
i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖‖w0‖22. (13)

where the last term was obtained by using inequality (28) and ‖A‖1→2 ≤ 1.
Using an eigendecomposition of A and ‖w0‖22 = 1 gives

E[VT ] ≤
d∑
j=1

(1 + 2ηsj)
T (1− ε− sj)w2

0,j + η2d2
T∑
i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖.

(14)

where s1 > · · · > sd denote the eigenvalues of A and w0,j = 〈w0,vj〉 denotes
the j − th component of w0 in the basis of the eigenvectors of A. Since s1 = 1,
this inequality rewrites

E[VT ] ≤ −ε(1 + 2η)Tw2
0,1 +

d∑
j=2

(1 + 2ηsj)
T (1− ε− sj)w2

0,j

+ η2d2
T∑
i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖. (15)

In the remainder of the proof, we prove that the negative term −ε(1+ 2η)Tw2
0,1

dominates the positive terms. The terms w2
0,j sum to 1−w2

0,1. Therefore the sum∑d
j=2(1+2ηsj)

T (1−ε−sj)w2
0,j is less than maxs∈[0,1](1+2ηs)T (1−ε−s), which

can be bounded from above using Lemma 7. Therefore, we get the following
inequality

E[VT ] ≤ −ε(1 + 2η)Tw2
0,1 + (1 +

(1 + 2η(1− ε))T

η(T + 1)
)

+ η2d2
T∑
i=1

(1 + 2η)T−i‖diag(E[Bi−1])‖. (16)

Factoring out (1 + 2η)T , the inequality now writes

E[VT ] ≤ (1 + 2η)T
(
− εw2

0,1 +
1

(1 + 2η)T
+

(1 + 2η(1− ε))T

(1 + 2η)T η(T + 1)

+ η2d2
T∑
i=1

(1 + 2η)−i‖diag(E[Bi−1])‖
)

(17)
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For the sake of simplifying the analysis, we will use a uniform bound on the
spectral norm of diag(E[Bk]). More precisely, Lemma 6 implies that

‖diag(E[Bk])‖ ≤ 2
η

ηd2 + 1

(
1

1− η(ηd2 + 2)
− 1

1− η

)
(1− ε)

+ 2
η

ηd2 + 1

(
ηd2

1

1− η(ηd2 + 2)
(18)

+
1

1− η

)
(2− ε) +

(
1 +

η2d2

1− η(ηd2 + 2)

)
(1− ε)

≤ 2
η

ηd2 + 1

(
1− ε+ (2− ε)ηd2

1− η(ηd2 + 2)
+

1

1− η

)
+

(
1 +

η2d2

1− η(ηd2 + 2)

)
(1− ε)

≤ 2
η

ηd2 + 1

2− ε+ (2− ε)ηd2

1− η(ηd2 + 2)
+ 1 +

η2d2

1− η(ηd2 + 2)
(19)

for all k. This simplifies into

‖diag(E[Bk])‖ ≤ 1 +
η2d2 + 4η

1− η(ηd2 + 2)
. (20)

Thus we obtain

E[VT ] ≤ (1 + 2η)T
(
− εw2

0,1 +
1

(1 + 2η)T
+

(1 + 2η(1− ε))T

(1 + 2η)T η(T + 1)

+ η2d2
(
1 +

η2d2 + 4η

1− η(ηd2 + 2)

) T∑
i=1

(1 + 2η)−i
)

(21)

Bounding
∑T
i=1(1 + 2η)−i by its infinite series

∑∞
i=1(1 + 2η)−i = (2η)−1 yields

E[VT ] ≤ (1 + 2η)T

(
− εw2

0,1 +
1

(1 + 2η)T
+

(1 + 2η(1− ε))T

(1 + 2η)T η(T + 1)
(22)

+ η/2d2
(
1 +

η2d2 + 4η

1− η(ηd2 + 2)

))
. (23)

We can show that, for well chosen values of η and T , the term between parenthesis
can be made to be less that −ε/4p. Taking for example η = ε

4Cpd2 for some con-

stant C such that
(
1 + η2d2+4η

1−η(ηd2+2)

)
≤ 2 and T > max(4p2d2C/ε, log(4pε−1)/ log(1+

ε/(Cpd2))) is consistent with the constraints. Notice further that for ε sufficiently
small, this can be simplified further by taking C = 1. One of the benefits of using
this approach over standard methods from the literature, is that it is all at the
same time elementary, intuitive and it can easily be checked to enjoy the same
theoretical guarantees as the original method devised in [4]. Full details will be
provided in a longer version of the paper.
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4 Implementation

4.1 Choosing the learning rate

In this section, we address the question of choosing the learning rate, i.e. the
step-size η in iterations (4). Tuning the learning rate is essential in practice as
it is well known to have a huge impact on the convergence speed of the method.
Our idea to tune the learning rate is as follows:

– Choose the tolerance ε ∈ (0, 1), and the algorithm’s parameters R, K ∈ N∗,
ρ ∈ (0, 1) and β > 0.

– Burn-in period:

- For η ∈ {ρk}k=1:K , run R gradient iterations in parallel whose iterates
are denoted by w

(k,r)
t , t = 1, . . . , B.

- Define π(k)
0 = 1/K, k = 1, . . . ,K. For t = 1, . . . , B, let

L
(k)
t =

2

R(R− 2)

∑
r<r′=2,...,R

〈w(k,r)
t ,w

(k,r′)
t 〉, (24)

and for k = 1, . . . ,K, define π(k)
t+1 = π

(k)
t exp

(
β L

(k)
t

)
.

- Stop when maxk=1,...,K L
(k)
t ≥ 1− 10 ε.

– After burn-in:

- Reset R to 1 and K to 1.

• Normalise π.

- At each step t = B + 1, . . ., choose the stepsize with probability πB .

- Stop when L(1)
t ≥ 1− ε.

Choosing the parameter β is more robust than choosing the learning rate.
Moreover, a reasonably effective value for β is given by (see [4]):

β =

√
log(K)

B
. (25)
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4.2 Numerical experiment

In this section, we present a simple numerical experiment which shows that

– The stochastic gradient method actually works in practice
– The adaptive selection of the learning rate/step-size described in the previous

subsection actually accelerates the method’s convergence drastically.

We run a simple experiment on a random i.i.d. Gaussian matrix of size 10000×
10000. The convergence of (L(1)

t )t∈N to 1 of the plain stochastic gradient method
is shown in Figure 1a below. The accelerated version’s convergence for the same
experiment is shown in Figure 1b below. These results show that the method of
the previous Section actually provides a substantial acceleration. We carefully
checked that the selected learning rate is not equal to the smallest nor the largest
value on the proposed grid of values between 2−3, 2−2, . . . 217. The observed gain
in convergence speed was by a factor of 8.75. Extensive numerical experiment
demonstrating this behaviour at larger scales will be included in an expanded
version of this work.

(a) K = 1 (b) K = 20

Fig. 1: Convergence of (L(1)
t )t∈N as a function of the iteration index: (a) is for

the case of the arbitrary choice of learning rate equal to 2−4 and (b) shows the
behaviour of the method using the learning procedure of Section 4.1 for values
of the learning rate equal to 2−3, 2−2, 2−1, 1, 2, . . . , 217.

5 Conclusion

In the present paper, we have studied the average behaviour of the stochastic gra-
dient for the computation of the principal eigen-vector of positive semi-definite
matrices, in the setting where the entrees are revealed one at a time. The anal-
ysis provides the first complexity analysis in this online setting. A preliminary
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computer experiment integrating a novel learning rate optimisation procedure is
included.

A Technical lemmæ

Recall that

BT =

1∏
t=T

(I + ηAt)
>((1− ε)I −A)

>∏
t=1

(I + ηAt). (26)

Lemma 2. In the case of matrix completion, given a matrix X, we have

E[A>t XAt] = d2 diag(A diag(X)A).

Proof. The resulting matrix writes

A>t XAt = d4AijAjiejte
>
itXeite

>
jt

= d4AijAjiXiiejte
>
jt .

Therefore the expected matrix writes

E[A>t XAt] = d2
d∑
i,j

AijAjiXiieje
>
j

Using the symmetry of A gives the result.

Now our next goal is to see how diag
(
A>diag(E[BT−1])A

)
evolves with the

iterations. For this purpose, take the diagonal of (12), multiply from the left by
A> and from the right by A and take the diagonal of the resulting expression.

Lemma 3. We have that

‖diag (E[BT ]) ‖ ≤ 2η ‖E[BT−1]‖1→2 + (1 + η2d2) ‖diag(E[BT−1])‖ (27)

Proof. Expanding the recurrence relationship (12) gives

diag(E[BT ]) = diag(E[BT−1]) + η
(
diag

(
A>E[BT−1] + E[BT−1]A

))
+ η2d2diag

(
A>diag(E[BT−1])A

)
.

For any diagonal matrix ∆ and symmetric matrix A, we have

‖diag(A>∆A)‖ ≤ ‖A‖21→2‖∆‖. (28)

Therefore, by taking the operator norm on both sides of the equality, we have

‖diag(E[BT ])‖ ≤ (1 + η2d2‖A‖21→2)‖diag(E[BT−1])‖+ 2η‖diag(A>E[BT−1])‖
(29)

We conclude using ‖diag(A>E[BT−1])‖ ≤ ‖A‖1→2‖E[BT−1]‖1→2 and ‖A‖1→2 ≤
1.
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We also have to understand how the `1→2 norm evolves.

Lemma 4. We have

‖E[BT ]‖1→2 ≤ η ‖E[BT−1]‖+ (1 + η) ‖E[BT−1]‖1→2 + η2d2 ‖diag(E[BT−1])‖.
(30)

Proof. Expanding the recurrence relationship gives

‖E[BT ]‖1→2 = ‖E[BT−1]‖1→2 + η
(
‖A>E[BT−1]‖1→2 + ‖E[BT−1]>A‖1→2

)
+ η2d2‖diag(A>diag(E[BT−1])A)‖1→2.

For a diagonal matrix ∆, we have ‖∆‖1→2 = ‖∆‖. This leads to

‖E[BT ]‖1→2 = ‖E[BT−1]‖1→2 + η (‖A‖‖E[BT−1]‖1→2 + ‖E[BT−1]‖‖A‖1→2)

+ η2d2‖A‖21→2‖diag(E[BT−1])‖.

Finally, using ‖A‖1→2 ≤ 1 concludes the proof.

We then have to understand how the operator norm of E[BT ] evolves

Lemma 5. We have

‖E[BT ]‖ ≤ (1 + 2η)‖E[BT−1]‖+ η2d2 ‖diag(E[BT−1])‖. (31)

Proof. Expanding the recurrence relationship (12) return

‖E[BT ]‖ = E[BT−1] + η(‖A>E[BT−1]‖+ ‖E[BT−1]A‖) + η2d2‖diag(A>diag(E[BT−1])A)‖.

Then using similar inequalities as in the proof of the lemmas above, we have the
result.

Lemma 6. Let ‖A‖ = 1, then we have

‖diag(E[BT ])‖ ≤ αmax
j

(1− ε− sj) + β‖(1− ε)I −A‖1→2 + γmax
j

(1− ε−Ajj)

(32)

where

α = 2
η

ηd2 + 1

(
1− ηT−2(ηd2 + 2)T−2

1− η(ηd2 + 2)
− 1− ηT−2

1− η

)
β = 2

η

ηd2 + 1

(
ηd2

1− ηT−2(ηd2 + 2)T−2

1− η(ηd2 + 2)
+

1− ηT−2

1− η

)
γ = 1 + η2d2

1− ηT−2(ηd2 + 2)T−2

1− η(ηd2 + 2)
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Proof. Expanding the recurrence and using equations (27), (30), and (31) yields
the following system ‖E[BT ]‖

‖E[BT ]‖1→2

‖diag(E[BT ])‖

 ≤
I + η

2 0 ηd2

1 1 ηd2

0 2 ηd2

 ‖E[BT−1]‖
‖E[BT−1]‖1→2

‖diag(E[BT−1])‖

 (33)

To obtain the result, we expand the inequality by recurrence. Therefore, we are
interested in computing the T -th power of the matrix in inequality (33). We
have I + η

2 0 ηd2

1 1 ηd2

0 2 ηd2

T

= I +

T∑
i=1

ηi

2 0 ηd2

1 1 ηd2

0 2 ηd2

i . (34)

After computing the power matrices, it result that

‖diag(E[BT ])‖ ≤
T∑
i=1

(
ηi
2(ηd2 + 2)i−1 − 1

ηd2 + 1

)
‖E[B0]‖

+

T∑
i=1

(
ηi
2ηd2(ηd2 + 2)i−1 + 1

ηd2 + 1

)
‖E[B0]‖1→2

+

(
1 + η2d2

T∑
i=1

(η2d2 + 2η)i−1

)
‖diag(E[B0])‖. (35)

We conclude after computing the sums and bounding from above ‖E[B0]‖ by
maxj(1− ε− sj).

Lemma 7. For η < 1 and ε > 0, we have

max
s∈[0,1]

(1 + 2η s)T (1− ε− s) ≤ 1 +
(1 + 2η(1− ε))T

η(T + 1)
(36)

Proof. Denote f(s) = (1 + 2η s)T (1 − ε − s). Differentiating f and setting to
zero, we obtain

2ηT (1 + 2η s)T−1(1− ε− s)− (1 + 2η s)T = 0

⇐⇒ 2ηT (1− ε− s)− (1 + 2η s) = 0

⇐⇒ T (1− ε)− 1/2η

T + 1
= s

Let sc =
T−ε−1/2η

T+1 denote this critical point. Consider the two following cases :

- if sc /∈ [0, 1], then f has no critical point in the domain and therefore is
maximised at either domain endpoint, i.e.

max
s∈[0,1]

f(s) = max{f(0) = 1− ε, f(1) = −ε(1 + 2η)T } ≤ 1
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- if sc ∈ [0, 1], then f is maximised at sc and the value of f at sc is(
1 + 2η

T (1− ε)− 1/2η

T + 1

)T(
1− ε− T (1− ε)− 1/2η

T + 1

)

=

(
1 +

2ηT (1− ε)− 1

T + 1

)T(
1− ε+ 1/2η

T + 1

)

≤ (1 + 2η(1− ε))T
(
1 + 1/2η

T + 1

)
≤ (1 + 2η(1− ε))T

η(T + 1)
.

This analysis proves that the maximum value f can achieve is less than
max{1, (1+2η(1−ε))T

η(T+1) } ≤ 1 + (1+2η(1−ε))T
η(T+1) }. Hence the result.
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