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Introduction

Smart Home technologies are among the most emerging trends in Internet of Things (IoT) today. Latest studies show the intelligence of smart devices and sensor networks in improving the quality of people's life [START_REF] Paul | The internet of things-a comprehensive survey[END_REF]. IoT devices are being used to collect data in order to analyze the behaviour and proper uses of energy. Whereas energy consumption has always been an important issue as the number of devices using electrical power are increasing. Since the mid 80's, researchers mentioned the importance of energy forecasting in the future of smart buildings as it plays an essential role in energy and cost saving. Whereas buildings represent around 40% of the world energy usage, they are considered as the most cost-effective areas to reduce energy consumption. [START_REF] Lee | Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons[END_REF]. Therefore, this issue created an important challenge for the researchers to analyze the energy consumption in order to reduce it. Many studies have concluded that weather is one of several conditions that could affect the energy usage in a building [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF], and weather data performs an important role for energy prediction and performance assessment of smart buildings and urban environments [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF].

Different models have been used to predict power consumption like Autoregressive Integrated Moving Average model (ARIMA) [START_REF] Kaur | Time series analysis and prediction of electricity consumption of health care institution using arima model[END_REF], simple and multiple Linear Regression, Neuro-Fuzzy model [6], Support Vector Regression, Support Vector Machines (SVM) [7], Artficial Neural Network (ANN) [8], Time-Series [9], or a combination of regression, Nearest Neighbor and ANN, whereas ANN has been considered to achieve the best results for energy prediction. Based on the statistics mentioned in [START_REF] Amasyali | A review of data-driven building energy consumption prediction studies[END_REF], an overall of 47% of the energy consumption prediction models utilized ANN as machine learning algorithms, while 25% used SVM, 4% decision trees and 24% other statistical models. ANNs are the most used algorithms for energy consumption in buildings. In [10], it was used to predict energy consumption of a building simulation using EnergyPlus and presented a state-of-the-art result. They concluded that an ANN model with multiple outputs (larger number of neurons) has a better performance than an ANN with single output. Also a study in [11] Many studies have compared the uses of classification and regression algorithms to Artificial Neural Network models in predicting energy consumption in buildings with varying results. In [START_REF] Ahmad | Trees vs neurons: Comparison between random forest and ann for high-resolution prediction of building energy consumption[END_REF], ANN with two hidden layers and Back Propagation (BP) was compared to a decision tree algorithm (Random Forest (RF)). ANN performed better results than RF. The data used was a combination of weather (dew point temperature, outdoor air temperature, wind speed and humidity) and temporal information (month of the year, day of the week and hour of the day). In [START_REF] Ahmad | A review on applications of ann and svm for building electrical energy consumption forecasting[END_REF], ANN was tested along with SVM and times series algorithms. ANN and SVM showed adjacent results, but a better performance when combined together. While in [START_REF] Daut | Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: A review[END_REF], they reviewed different studies of hybrid approaches, where SVM, ANN and BPNN were combined with Swarm Intelligence (SI) method. SVM showed better performance than ANN.

On the other hand, some studies showed that deep learning methods have outperform the traditional machine learning techniques. In [START_REF] Paterakis | Deep learning versus traditional machine learning methods for aggregated energy demand prediction[END_REF], Multilayer Perceptron (MLP) was compared with Gaussian Processes, Support Vector Machines, Ensemble Boosting, Linear Regression and Regression Trees for predicting aggregated energy demand and showed a state of art results. While in [START_REF] Fan | Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques[END_REF], MLP showed almost the worst performance in comparing with 7 different algorithms (ARIMA, MLR, SVR, BT, RF, KNN and MARS) to predict next day energy consumption, where SVR and RF showed the best results. In [START_REF] Mynhoff | Statistical learning versus deep learning: Performance comparison for building energy prediction methods[END_REF] different deep learning methods (DBN, MLP, ANN-NAR and ANN-NARX) were compared against traditional statistical learning models (SVM, HMM and FHMM) for building energy prediction, where DBM showed a robust performance in different scenarios followed by MLP.

In this paper, we have used the same dataset of [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF], which contains data for around 4.5 months. In their study [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF], they compared four different models: Linear Regression (LR), decision tree models: Gradient Boosting Method (GBM), RF and SVM, where GBM presented the best results. Our objective was to create an efficient data model based on MLP and compare it with the results of the four classification models, to achieve better performance, and to reach the optimum configuration for our model.

The rest of this paper is organized as follow: Section 2 describes our developed system, how we configured it and its functionality, Section 3 presents the dataset and types of information used in our experiment, Section 4 discusses the experiment and results, and Section 5 concludes the paper.

Dataset

The used dataset contains 35 different variables of weather information (temperature, humidity, pressure, wind speed, visibility, dew point), appliances and light energy consumption, and temporal data (Table 1). It was collected from an indoor and outdoor sensors network of a two storey building and a nearby airport. The building contains 10 temperature sensors (9 indoor and 1 outdoor) and 8 humidity sensors (7 indoor and 1 outdoor) (Figures 1 and2).

The weather station provides: temperature, humidity, visibility, pressure, wind speed and dew point temperature. The data was recorded every 10 minutes for 137 days, including the light energy, everyday consumption and the number of seconds from midnight.

We implemented the same setup as in [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF], the data was split using CARET algorithm, 75% for training and 25% for testing. CARET creates a balanced split using a maximum dissimilarity approach [START_REF] Willett | Dissimilarity-based algorithms for selecting structurally diverse sets of compounds[END_REF]. The features were scaled between 0 and 1 with min-max normalization x = x-min x max x-min x , to ease the network training. Also in [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF] they used BORUTA package [START_REF] Kursa | Feature selection with the boruta package[END_REF] to identify the most important features, which defined the Number of Seconds from Midnight (NSM) and light energy as the most important variables in predicting the consumption. The dataset was tested on several scenarios by using all the features or by omitting some of them. 

System description

We model energy consumption with a multi-layer feed-forward neural network, where the feature vector at the input layer (Table 1) is mapped through a set of hidden layers to a single output representing the power consumption of the house (Figure 3). Each hidden layer in the network provides a specific representation of the input by building upon the output of the previous layer. With such level of abstraction, the network is able to build a robust representation of the input at high dimensions [START_REF] Goodfellow | Deep learning[END_REF]. The connection between two adjacent layers in the network can be defined as:

y n j = i h n-1 i w ij + b n j h n j = f (y n j )
where y j is the output of neuron j at layer n, h n-1 i the activation of neuron i at layer n -1, w ij and b j the weight and bias of the connection to neuron j from the previous layer, and f a nonlinear activation function.

Non-Linear activation function

We used the Rectified Linear Unit (ReLU) activation to achieve non-linearity;

the function is used on the output of each neuron. It works by rectifying the input to 0 when y <= 0 or by preserving the signal when it is positive.

h n j = ReLU (y n j ) ReLU = f (y) = max(0, y)
The ReLU activation function is simple in terms of computation. It solves the vanishing gradient problem, and works better than sigmoid and other activation functions. ReLU is considered the most recommended activation function for feed forward neural networks, as it helps to generalize a variety of non-linear data [START_REF] Gu | Recent advances in convolutional neural networks[END_REF].

Layer normalization

The distribution of the output activation at each layer is subject to high change during training; which is known as the internal covariate shift. This instability in the input may allow the network to get stuck in a saturated mode, which would lead to slow convergence. Layer normalization is used to reduce the covariate shift at each layer in the network by fixing the mean and variance of the input. More specifically, the input is normalized across all features, regardless of the batch size. The mean (µ) and variance (σ) across all hidden units at a given layer l are computed as follow:

µ l = 1 H H i=1 a l i σ l = 1 H H i=1 (a l i -µ l ) 2
where H denotes the number of hidden units in a layer, and a l i is the activation unit i at a hidden layer l.

Weight initialization

The network weights allow for the preservation of a stable variance throughout the network layers. We initialized them as per [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF] method, which improved the results and helped the network to converge faster. This method holds the signal from vanishing to zero or exploding to a high value. The weight matrices W ij were initialized with a uniform distribution given as

W ij ∼ U (- √ 6 n , √ 6 
n ), where n is the total number of input and output neurons at the layer (assuming all layers are of the same size).

Network training

We train the network via gradient descent with mean square error (MSE) as loss function, which is the squared difference between the predicted power consumption and the expected output. Adam optimizer is used with initial learning rate of 0.005 and batch size of 500. This algorithm is considered as an upgrade for RMSProp [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF], which provides a bias correction and a momentum.

Similar to Adadelta and RMSprop, it stores an exponentially decaying average of the past squared gradients and the past gradients (similar to momentum). It also offers a flexible learning rates for the stochastic gradient descent update, computed from the first and second moments of the gradients. 

Experiments and Results

Evaluation metrics

We used four standard metrics to evaluate the performance of our system: Coefficient of determination R 2 , Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Their formulas are shown in Table 2. The R 2 is the proportion of variance between the predicted and testing variable, whereas RMSE is the percentage of difference between them. MAE is the percentage of difference between the predicted variables, while MAPE express the accuracy. 

Coefficient of determination

R 2 = 1 - n t=1 (Yi-Y i ) 2 n t=1 (Yi-Y i ) 2
Root mean squared error RMSE =

1 n n t=1 (Y i -Y i ) 2 Mean absolute error MAE = 1 n n t=1 (Y i -Y i ) Mean absolute percentage error MAPE = 1 n n t=1 (Yi-Y i ) Yi

Hyperparameters optimization

The selection of the number of layers and neurons in each layer can affect the model performance. To find the optimal parameters, we conducted a set of experiments with different configurations for the number of layers and neurons.

In these experiments, all the features (weather, lights and temporal information)

were used. To allow more generalization, we applied dropout [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] to the last hidden layer by randomly removing 50% of the neurons in that layer. However, we tested some models without dropout to access the improvements. Table 3 shows all the tested combinations, where L is the number of layers used in each model, N is the number of neurons per layer, DropOut shows the use of drop out at the last layer, Epochs is the number of complete passes through the data, and the four performance metrics represent the results. It is worth noting that layer normalization greatly improved network convergence. We noticed, for instance, a six fold increase in speed when training using layer normalization.

Our best system configuration is a MLP, with four hidden layers as illustrated in Figure 3. We used 512 neurons for each layer and we applied a dropout on the last layer. We also tried it without dropout and showed good results (a very slight difference), but we noticed a faster convergence when using dropout. The system needed a small number of Epochs to perform the best results, whereas, the second best configuration (3 hidden layers MLP without a dropout) used five times more epochs. and 4) all features data which includes weather, lights and temporal information.

MLP yielded the best results with weather data and temporal information.

In [START_REF] Candanedo | Data driven prediction models of energy use of appliances in a low-energy house[END_REF], four algorithms were used to predict the power consumption: LR, RF, SVM, and GBM. and yielded the best performance. Table 5 shows the performance of MLP, in the four different scenarios, in comparison with other models on the same dataset.

We notice that adding the temporal information has improved the results by 1% in all the experiments, whereas MLP looks more sensitive than GBM to lights feature which degraded the performance by 6%. 

Conclusions

One of the key factors for integrating systems and making homes and cities more intelligent is the energy savings that can be achieved. Therefore, energy prediction plays an important role in reducing power consumption. In this work, we propose to model a energy prediction system based on a Multilayer Perceptron neural network. Several data categories have been used, i.e.; light energy, temperature, humidity, day of the week, etc., collected from a Wireless Sensor Network installed in a two storey building. We compared the performance of our system against four classification algorithms, namely: Linear Regression, Support Vector Machine, Gradient Boosting Machine and Random Forest. We assessed the importance of temporal information and light energy as additional features for the prediction model. The temporal features slightly improved the

  mentioned the use of Long Short Term Memory (LSTM) with Auto-Encoders (AE) in predicting solar energy consumption using weather data and achieved best results over several Deep Learning (DL) models. Furthermore in [12], different approaches were suggested based on the energy forecasting time range, where they suggested Neural Network based Genetic Algorithm (NNGA) for short and middle term prediction (for a day or a month) and Neural Network based Particle Swarm Optimization (NNPSO) for long term prediction (for a year). Both approaches were compared with the Conventional Neural Network (CNN) and performed better results.
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 2 Figure 2: Building second floor [3]
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 3 Figure 3: MLP with 4 hidden layers and back propagation
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Table 1 :

 1 Dataset variables 

	T1 Kitchen Temperature	RH1 Kitchen Humidity
	T2 Living room Temperature	RH2 Living room Humidity
	T3 Laundry room Temperature	RH3 Laundry room Temperature
	T4 Office room Temperature	RH4 Office room Humidity
	T5 Bathroom Temperature	RH5 Bathroom Humidity
	T6 Temperature Outside	RH6 Humidity Outside
	T7 Ironing room Temperature	RH7 Ironing room Humidity
	T8 Teenager room Temperature	RH8 Teenager room Humidity
	T9 Parents room Temperature	RH9 Parents room Humidity
	To Weather Station Temperature	Weather Station Pressure
	RHo Weather Station Humidity	Weather Station Windspeed
	Weather Station Visibility	Weather Station Tdewpoint
	Week status Weekday	Week status Weekend
	Day of week Monday	Day of week Tuesday
	Day of week Wednesday	Day of week Thursday
	Day of week Friday	Day of week Saturday
	Day of week Sunday	light energy
	NSM Number of seconds from midnight	

Table 2 :

 2 Model evaluation criteria

Table 3 :

 3 Validating the best system configuration using all the data features

	L N	DropOut Epochs RMSE R2	MAE	MAPE
	1 128 Yes	19149	77.234	0.408	43.354	48.365
	1 256 Yes	23425	74.285	0.450	41.870	46.829
	1 512 Yes	11178	73.549	0.462	39.793	43.019
	2 512 Yes	1940	69.415	0.526	34.570	35.714
	3 256 Yes	24563	67.298	0.541	31.892	31.640
	3 256 No	42610	68.889	0.534	32.293	31.999
	3 512 Yes	4778	67.182	0.550	31.281	30.860
	3 512 No	26748	66.245	0.567	30.599	29.160
	4 512 Yes	5401	66.295 0.567 29.556 27.961
	4 512 No	14549	66.743	0.562	30.094	28.550
	5 512 Yes	3280	66.881	0.556	29.250	27.269
	5 512 No	12560	66.974	0.558	29.688	28.392
	4.3. Comparative results				
	After choosing the best configuration of layers and neurons, we tested our
	most performing MLP model with four different scenarios: 1) weather-only data
	which includes all the information from sensors inside the house and nearby
	airport station, 2) weather and lights information, 3) weather and temporal
	information (days of the week and Number of Seconds from Midnight (NSM)),

  The best model GBM was able to predict 57% of the variance R 2 with 66.65% RMSE, 35.22% MAE and 38.29% MAPE when using all the

	features. GBM performed its best with no lights and achieved slightly better
	results 58% R 2 , 66.21% RMSE, 35.24% MAE and 38.65% MAPE, where the
	number of seconds till mid-night was considered the best feature to predict the
	consumption for all the algorithms.
	In our experiments, MLP showed considerably better error rate 61.75% RMSE,
	an accuracy R 2 61%, 28.52% MAE and 28.34% MAPE using only weather data.
	The importance of this result is that we omitted the most important feature
	(NSM) used by GBM in [3]. Our MLP achieved the best results at around 7k
	epochs. Table 4 shows the training (Trn) and Validation (Val) scores for the
	best scenario (without light energy variable). Figures 4, 5, 6 and 7 show the
	performance with respect to the four standard metrics.
	We also tested the second best performing MLP (three hidden layers 512
	neurons per layer without dropout) and showed high performance in the best
	scenario (using weather and temporal data): 63% R 2 , 60.03% RMSE, 27.45%
	MAE and 26.85% MAPE. Furthermore, we tried our best MLP configuration
	(four layers 512 neurons per layer) with a dropout on each layer to test its
	performance on same scenario (using weather and temporal data) and we got
	the following results: 57% R 2 , 65.63% RMSE, 28.29% MAE and 25.51% MAPE.

Table 4 :

 4 Training and validation scores for the best scenario

		Epoch RMSE R2	MAE MAPE
	Trn	7557	20.059	0.962 10.810 13.254
	Val	7557	59.840	0.643 27.283 27.096

  2 , 67.34% RMSE, 29.60% MAE and 28.03% MAPE),

	second by using all the features (56% R 2 , 66.29% RMSE, 29.55% MAE and
	27.96% MAPE), and third by using weather and temporal information only,
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without lights (64% R 2 , 59.84% RMSE, 27.28% MAE and 27.09% MAPE). The last experiment showed the best results with a slight improvement of around 2%

Table 5 :

 5 Models performance in the testing set

	System	RMSE	R 2	MAE MAPE %
	MLP weather only	61.75	0.61	28.52	28.34
	MLP no date	67.34	0.55	29.60	28.03
	MLP no lights	59.84	0.64 27.28	27.09
	GBM no lights	66.21	0.58	35.24	38.65
	MLP all features	66.29	0.56	29.55	27.96
	GBM all features	66.65	0.57	35.22	38.29
	RF all features	68.48	0.54	31.85	31.39
	SVM all features	70.74	0.52	31.36	29.76
	LR all features	93.18	0.16	51.97	59.93

performance for all systems, while the lights energy decreased the performance.

For our method, we note a decrease by 10% in relative performance while the difference was negligible for the other classifiers (less than 1% for Gradient Boosting Machine). Our system outperformed the other four classifiers in all scenarios. Based on the conducted experiments, we conclude that weather information would be enough to predict energy consumption. This enables lowcost solutions for energy predictions. Further experiments should be performed on different datasets to validate our results.
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