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ABSTRACT
A distributed modular robot is composed of many autonomous mod-
ules, capable of organizing the overall robot into a specific goal
structure. There are two possibilities to change the morphology of
such a robot. The first one, self-reconfiguration, moves each module
to the right place, whereas the second one, self-assembly docks the
modules at the right place. Self-assembly is composed of two steps,
(1) identifying the free positions that are available for docking and
(2) docking the modules to these positions. This work focuses on the
first step. This paper presents a distributed planning algorithm that
can decide which positions can be filled and can create any 3D shape,
including shapes with internal holes and concavities. Our algorithm
consider kinematic constraints and prevents positions from being
blocked. Each module embeds the same algorithm and coordinates
with the others by means of neighbor-to-neighbor communication.

KEYWORDS
modular robots; programmable matter; self-assembly; sequence plan-
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1 INTRODUCTION
In this work, we target modular robots composed of many homoge-
neous modules with limited computing resources that can change
the way their modules are connected by releasing or docking some
of them in order to create a given shape, thus creating intelligent
objects. In nature, we have many examples of distributed organized
constructions, for example ants, termites and bees. Decomposing the
rules that govern these beings represents a big challenge for modular
robotic.

One of the most interesting capability of a system of modular
robots is the ability of the modules to move towards a different
position, that way changing the global shape or morphology of the
whole. This is called self-assembly or even self-reconfiguration when
modules are always connected during the process.

The expected properties of modular robots [21] are: (1) versatility,
modules can self-assemble into many morphologies and can be used
to fulfill different tasks, (2) robustness, as a faulty module can be
replaced by another, and (3) affordable price, as the mass production
of identical modules is likely to reduce the overall cost.
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Figure 1: Example of possible and impossible docking positions
due to kinematic restrictions.

Self-reconfiguration and self-assembly are hard problems for
three reasons. First, the number of possible unique configurations for
a modular robot is huge: (c .w)n where n is the number of modules,
c the number of possible connections per module and w the ways of
connecting the modules together [9]. In our locomotive example with
61,780 modules, there are (12 × 12)61,780 possible unique configura-
tions for our 12 neighbors modular robot considering isomorphic
configurations. Second, as modules can move or dock at the same
time, the branching factor of the tree describing the configurations
is O(mk ) withm being the number of possible movements and k the
number of modules free to move [1]. Third, as a consequence of the
previous reason, the exploration space of a reconfiguration between
two situations is exponential in n which prevents from finding a
complete optimal planning.

There are two ways of designing the self-assembly algorithm: cen-
tralized on one module or distributed on every module. As we tackle
robots composed of thousands of modules, a centralized algorithm
would exceed the available memory on one module whereas a dis-
tributed algorithm would scale well. As the algorithm is distributed,
each robot can be seen as an autonomous agent.

In our work, we focus on solving the problem of assembling 3D
structures that may contain internal holes. While building the whole
structure, modules are docking at available places but some positions
may become impossible to reach, blocked by other modules.

Previous approaches focus on centralized planning or distributed
planning for configurations without internal holes. In this paper, we
present a distributed algorithm assisted by a shape description to
create close-packed structures and assemble any morphology.

Underwater stochastic assembly has been described on [16]. Ro-
bot attraction works by a system of valves that can be controlled.
Thanks to the flow of water, free modules can come to the wanted
position. Attraction gradient [15] is a method of attraction to avoid
that all free modules move concurrently to the same position. It is
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one of the methods that can be used in conjunction with the algo-
rithm presented in this paper. In both cases, local modules have the
knowledge of their neighbor positions that can be filled and accel-
erate the convergence to the final structure by means of message
passing or valves to attract modules to dock on these positions.

The main method consists of an initial seed module that knows
the final shape coded into a string and is given a relative position over
the target shape. This module waits for the connection of neighbors
that are freely around the structure and allows its docking whenever
possible based on the rules that will be described. When a neighbor
is attached to a module already in place, it receives a position relative
to the first one and the final string code of the map.

An efficient encoding of the goal shape description is essential
for a good behavior on a modular robots system as the description
size can grow linearly with the number of robots present. As well
as being memory efficient, it has to be efficient at checking whether
positions are inside the goal shape as it is a recurrent task that involve
energy consumption and time.

The self-assembly algorithm consists of three steps. The first
step is to create the description of the final scene in a spatially
efficient way and transfer it to a seed module within its position on
the representation. The second step is to structure the plane creation,
a solution for a two-dimensional lattice is the first structural goal.
Finally, the third step consists in synchronizing the 2D solutions to
get a three-dimensional representation.

The module we use in our work is a 3D Catom developed in
the Claytronics project [5]. This module is a quasi-spherical robot
with 12 connectors [10]. Neighborhood of each module is placed
in a Face Cubic Centered lattice (FCC) that corresponds to a dense
organization of spheres. This theoretical model is currently under
development to make a 5mm diameter robot.

In the next section, we review the related works and highlight
the difference with our proposal. In section 3, we present the model,
the particularities of the modular robot used, and the details about
the problem we aim to address. Then, we describe how our idea
and algorithm works on section 4. Section 5 is used to discuss the
applications of the algorithm and the results of its performance. The
conclusion and future works are discussed in section 6.

2 RELATED WORKS
The Self-assembly planning proposed in this paper is complemen-
tary to previous research on self-assembly and self-reconfiguration
systems. Previous methods were proposed although there is a lack
of solutions that work in distributed systems and can handle internal
holes as can be seen on Table 1, which presents an overview of
previous methods.

Wefler and Nagpal [19, 20] proposed an algorithm for distributed
construction of structures without holes. These robots carry blocks
and deploy them at the right position, avoiding empty spaces in the
final object. They use three types of robots displacements to arrive
to the proposed positions: random walking, systematic search and
gradient-following. In our paper, we extend this idea to allow the
construction of structures with holes.

In [16, 17], Tolley et al. worked around the kinematic restrictions
and the importance of planning the self-assembly for their under-
water robots. To have the order in which these robots should be

connected, they start from the virtual assembled shape and remove
the possible robots. Once there is no more robot left, the reverse
order is used to assemble the modules without blockage. They also
proposed an distributed approach to self-assembly layer by layer that
limits the number of available positions for docking and the overall
time for self-assembly. The robots they use do not have motion but
move by the fluid flow they are in, with a control of their valves
attracting robots to their allowed positions.

In [13], Seo et al. present an assembly planning algorithm for con-
structing planar structure out of rectangular modular robots avoiding
narrow corridors. Their approach is based on graph properties as
topological sort and results in a specific centralized order that is
deployed to robots before assembly begins. In [14], they extend their
idea to allow models with internal holes.

Jones and Matarić [7] create a transition rule set to self-assembly
agents to generate a consistent assembly of a desired goal structure.
The decisions are made by the agent docking in the existing structure
and not by the structure and, as a result, no attraction rule can be
derived.

Stoy et al. show in [15] an algorithm for 3D self-reconfiguration
representing the final structure with overlapping bricks automatically
generated from a CAD model. They adopted a porous scaffold of
modular robots to prevent local minima and ensure that robots do not
get stuck. That leads to a porous representation that allows modules
to move freely in any direction. In our work we look for a dense
representation for the final robot module structure.

Naz et al. published in [8] a parallel, decentralized and asynchro-
nous algorithm for self-reconfiguration in two-dimensional lattice
based robot modules. Their algorithm avoids collisions by having
a gap of one empty cell between robots that are in transit using
communications and can self-reconfigure to almost any compact
goal shapes.

In [12], Rubenstein et al. propose a parallel, decentralized
and asynchronous algorithm for the Kilobot swarm system to
self-reconfigure two-dimensional robots in almost any shape. It has
been applied on hardware system with more than a thousand swarm
robots. Their system does not need to avoid collisions as it works
on a lattice-free system and can construct sparse shapes using what
they called collective artificial intelligence.

Gilpin et al. published in [3] about their programmable matter
module system where each module has the size of 12mm per side
and is capable of creating 2D shapes by self-disassembly. They start
with a latched system and the modular robot detach unnecessary
modules. In [4] they propose a 3D creation that rely on stochastic
forces to self-assemble a close-packed crystalline lattice of modules
and then self-disassemble into the specific shape. It is a functional
approach that can reduce the complexity but it requires a bigger
number of robots to assemble a specific shape as some robots will
be discarded by the disassembly.

3 MODEL AND DEFINITION
3.1 Module background
Our modular robot model is abstracted from the model of a Claytron-
ics Atoms, as Catoms[6], where modules are placed in a regular grid,
oriented along the ®x , ®y and ®z axes. The grid is defined by a large set
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Table 1: Robots Planning Algorithm Overview

Author Architecture Dimension Distributed Compact Representation Internal Holes
Wefler and Nagpal [19, 20] Heterogeneous Modular Robots 3D Yes Yes No

Tolley et al. [16, 17] Underwater Modular Robots 3D No Yes Yes
Stoy et al. [15] Porous Scaffold Modular Robots 3D Yes No Yes

Seo et al. [13, 14] Rectangular Modular Robots 2D No Yes Yes
Jones and Matarić [7] Modular Robots 2D Yes Yes Yes

Naz et al. [8] Modular Robots 2D Yes Yes No
Rubenstein et al. [12] Swarm Robots 2D Yes No No

Our method Modular Robots 3D Yes Yes Yes

of cells where each cell can only contain one block. Each cell of the
grid has 2 different states: empty or filled with a block.

We first assume that modules are organized in a 2D square lat-
tice and can only communicate with their directed neighbors. Any
communication to distant modules needs a certain number of hops.
Modules have sensors to detect without communication the presence
of docked neighbors.

The position Pc of the cell c in the grid is given by coordinates
in Z2. Each block can be directly connected to up to four neighbors
in a 2D lattice. We will generalize the method to 3D models at
Section 4.2 considering connected overlapping layers.

The following properties are applied to each module:
• Same hardware executing the same program;
• Unique id;
• Is able to get its orientation relative to global referential using

embedded sensors;
• Detect the presence of docked neighbors in the adjacent cells;
• Communicate with its connected neighbors.

Modules can move freely in different environments, as swarm or
underwater robots, or connected and assisted by neighbors. In both
cases, the movement of docking in a final position must satisfy the
rule of docking (see Rule 1).

RULE 1. A module can dock on a cell only if there is no two
adjacent cells in symmetrically opposed planes to that cell that are
occupied.

Rule 1 defines a kinematic restriction applied to 2D and 3D lattice.
Indeed, we assume there must be enough space to allow modules
to arrive at the cell. Figure 3 shows an example of case that can
be restricted by Rule 1 if modules A and B are part of different
contiguous row.

Let G be the goal shape, we assume that each module Bi stores
locally a copy of G. A module Bi has a position Pi (xi ,yi ), with
(xi ,yi ) ∈ Z

2.
These modules can be extended to use a FCC 3D lattice which is

made of a regular square grid on each horizontal layer
−−→
XY and inter-

leaved modules on
−−→
XZ and

−−→
YZ axes. Using this lattice allow modules

to have up to 12 neighbors and to create a dense organization of
quasi-spherical modules [10] (Figure ??).

3.2 Problem definition
The main idea is to start from a single initial seed module S0 which
stores G and has a position in the target object. This module attracts
many others to assemble an intermediate set of modules in the

Figure 2: Importance of sequence planning shown on a Mug
model made by 12,000 modules. Red modules represent dock-
ing problems using two simple planning algorithm. On the left,
choosing a stochastic order produces 3,691 modules that does
not verify the docking rule. On the right, filling regularly each
module neighborhood in sequence results in 231 positions that
could not be filled.

Figure 3: Modular robots and kinematic constraints in a row:
only one contiguous line of blocks can be allowed. Modules A
and B cannot be part of different contiguous line to avoid posi-
tions to get blocked.

connectors of S0 that must have a neighbor according to G and must
ensure that all positions in G can still be reached. S0 sends G to
its new neighbors with their relative coordinates. One after another,
new modules in the structure attracts new neighbors to build a dense
target object.

Modules should have enough memory to store a description of
the goal shape G. As a consequence we use an optimized shape
description. Stoy and Nagpal[15] propose a vector method that uses
overlapping bricks to overcome the memory and scale problem. The
model defines an approximation of the shape that can be used to scale
the size of the representation although some quality loss. Another
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vector method [18] for programmable matter has been proposed
which requires low memory and with no quality loss. It uses a CSG
model as description of the scene and the associated tree can be
easily compressed to be stored in each module.

The robots can attract others only when this action will not cause
future positions to get blocked and lead to holes on the system. For
example, in Figure 3 we show that if cells A and B becomes occupied
before the center cell, creating two contiguous rows, this will lead to
a future position getting blocked. At each row just one contiguous
line of robots should be possible to avoid blocked positions. In
another general example, Figure 2 shows the construction of a mug
without an algorithm that avoid these blocked cells.

The condition of having only one contiguous line of robots by
row is the first of two conditions to avoid unwanted holes in the final
object. The second condition is attracting a node in an existent row
only when one corner of its cells is on a final state, as represented in
Figure 5.

4 DISTRIBUTED SELF-ASSEMBLY
ALGORITHM

Algorithm 1: Algorithm input and function detailed for
border following over module on position P .

Input :
G // global goal shape

P // position of Bi
dir ∈ {N ,E, S,W } // initial direction of following

searchDir ∈ {CW ,CCW } // direction of rotation

1 Function borderFollowing(P ,dir , searchDir ):
2 j ← (dir + 3) mod 4; // predecessor direction

3 for i ∈ [0...3] do
4 Q ← P + NextDir (j, searchDir );
5 if Q ∈ G then
6 borderFollowing(Q, j, searchDir );
7 return;
8 end
9 j ← (j + 1) mod 4;

10 end
11 end

The use of an efficient method for scene encoding is a critical
aspect that can reduce the memory, the time of transfer and the energy
used in a system of self-reconfiguration modular robots. In this work
we use a compact method based on CSG [11] know as CSG4PM
Constructive Solid Geometry for Programmable Matter [18] that
is a vector description that ensures scalability, fidelity and reduced
memory when compared to other methods. This method consists
in defining a tree of objects that can be combined using boolean
operators in order to model the final solid object. Depth-first search
algorithm on the tree can be used to solve the in/out problem as
knowing if the cell C is inside the model or not.

Algorithm 2: Algorithm functions for modules attraction.

1 Function northAttraction(Bi ):
2 if isNorthSeed(Bi ) // Rule 2

3 then
4 sendAttractSignalTo(⟨xi ,yi + 1⟩);
5 end

6 Function southAttraction(Bi ):
7 if isSouthSeed(Bi ) // Rule 3

8 then
9 sendAttractSignalTo(⟨xi ,yi − 1⟩);

10 end

11 Function westAttraction(Bi ):
12 ifWest(Bi ) ∈ G then
13 if SouthWest(Bi ) ∈ G ∧

hasModuleOnSouthConnector (Bi ) then
14 getAuthorizationToAttract(South(Bi ),WEST );
15 else if isOnInternalHole(Bi ) then
16 borderFollowingToGetAuthorizationToAttract();
17 else
18 sendAttractSignal(⟨xi ,yi − 1⟩);
19 end
20 end

21 Function eastAttraction(Bi ):
22 if East(Bi ) ∈ G then
23 if NorthEast(Bi ) ∈ G ∧

hasModuleOnNorthConnector (Bi ) then
24 getAuthorizationToAttract(North(Bi ), EAST );
25 else if isOnInternalHole(Bi ) then
26 borderFollowingToGetAuthorizationToAttract();
27 else
28 sendAttractSignal(⟨xi ,yi + 1⟩);
29 end
30 end

31 Function getAuthorizationToAttract(Bi ,direction):
32 if direction =WESTt then
33 if isConnected(West(Bi ) then
34 sendAuthorizationToAttract(North(Bi ),WEST ) ;
35 else if direction = EASTt then
36 if isConnected(East(Bi ) then
37 sendAuthorizationToAttract(South(Bi ), EAST ) ;
38 end

39 Function sendAuthorizationToAttract(Bi ,direction):
40 if direction =WESTt then
41 sendAttractSignal(⟨xi − 1,yi ⟩);
42 else if direction = EASTt then
43 sendAttractSignal(⟨xi + 1,yi ⟩);
44 end
45 end
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Figure 4: Light-gray modules represent seeds which are respon-
sible for attracting a new module on its north row. Each contigu-
ous row can have only one seed to avoid blocked positions. The
rightmost module is alway elected, except for Module A, since
it is part of an internal hole.

Figure 5: Cells that should be in place before attracting neigh-
bors. Before attracting a module in cell A, modules B and C
should already be in place. B and C are not direct neighbors, so
to communicate they need a common neighbor module to know
if both are already in place. The construction method fills space
by adding modules along the diagonal line in both directions
simultaneously (NW and SE).

4.1 2D Self-Assembly Algorithm
The algorithm follows these steps: First, the goal object G is en-
coded using the CSG4PM method and transferred to the first seed
module. From the initial seed module it can try to attract modules
on its sides connected to cells that are in G. For each of these sides
it requires specific rules that can be solved using the goal shape de-
scription, the sensor of neighbor presence and neighbor-to-neighbor
communication.

A typical case of forbidden position is created if a row on the goal
shape description has more than one contiguous row of modules on
the system. Only one module, that is called seed, is responsible for
attracting a module to a next or previous line.

Modules can decide if they are seed without any communication
but using the shape description of G. To decide if a module is a seed,
it applies the Rules 2 and 3, for north and south seeds respectively.
The first rule elects the rightmost module that has its north position
inside the shape description as seed. A row can have more than one
seed, for example seed modules B and C in Figure 4. A module can
decide if it is a seed too if its north-east position is not inside the
shape description and its north position is. The same can be done

for their opposite direction, a module can be a seed for its previous
row. In this case they use their south and south-west positions as
reference.

The following rules define a module Bi in its position as a north
or south seed:

RULE 2.

isNorthSeed(Bi ) =⇒ ¬isNorthLineOnMerдe(Bi )∧

⟨xi ,yi + 1⟩ ∈ G∧
(⟨xi + 1,yi + 1⟩ < G ∨
⟨xi + 1,yi ⟩ < G)

RULE 3.

isSouthSeed(Bi ) =⇒ ¬isSouthLineOnMerдe(Bi )∧

⟨xi ,yi − 1⟩ ∈ G∧
(⟨xi − 1,yi − 1⟩ < G∨
⟨xi − 1,yi ⟩ < G)

Figure 4 have in light-gray seeds for their corresponding north
position. Module marked as B is a seed due to the fact that its north
position is in the shape description and their north-east position is
not. Module C is seed as it is the rightmost module of the line and
its north position is inside the shape. An exception is the module
A which is in a case of merging line, a consequence of the internal
hole, and will be discussed later.

A module can attract another to its west side when the cell located
on its south-west has finished. Modules in a regular grid do not have
direct communication with modules in their diagonal, as the case
of the south-west location. A module on its south can be used as
intermediate to this communication when south module is present
(Figure 5). Otherwise, if there is no module on its south, it can be
a case of internal hole and the module sends a message over the
inner border, following the Algorithm 1 to communicate and have
the certitude the module is already in place before attracting on its
west side.

The same method is applied when attracting a module on its east
side but with the symmetrically opposed verification. It is based on
the presence of the module on its north-east location, when it is in G.
If the north-east cell is not inside the shape description it can attract
a module immediately. The Algorithm 2 shows the rules to attract
neighbors on all its four sides.

Modules in the internal border may not yet be in place when
executing a border following algorithm. In this case, the current
module creates a queue of messages which is transmitted after the
docking, sent along with module position and goal scene description.
Algorithm 1 shows how border following works on a distributed
environment.

The following data is used and transmitted when a module arrives
at its final position:
• Target scene description
• Relative position over the target scene
• Queue of messages for merge synchronization

Module A on Figure 4 is not an elected seed as, in this case
of internal hole, it would have two seeds for the same north row
and may lead to a situation as foreseen in Figure 3. The algorithm
verifies that is a point of row merge using the Rule 4. Thereafter, it
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should check if it is a case of internal or external hole. It can be done
by running the same algorithm (see Algorithm 1) and counting the
number of turns it made to complete the hole. No communication is
necessary as it only needs the scene description.

RULE 4.

isNorthLineOnMerдe(Bi ) =⇒
(
⟨xi + j,yi ⟩ < G∧

⟨xi + j,yi + 1⟩ ∈ G∧
⟨xi + n + 1,yi ⟩ ∈ G∧

⟨xi + n + 1,yi + 1⟩ ∈ G
)

∀j ∈ {1, . . . ,n}
RULE 5.

isSouthLineOnMerдe(Bi ) =⇒
(
⟨xi − j,yi ⟩ < G∧

⟨xi − j,yi + 1⟩ ∈ G∧
⟨xi − n − 1,yi ⟩ ∈ G∧

⟨xi − n − 1,yi − 1⟩ ∈ G
)

∀j ∈ {1, . . . ,n}
Figure 6 shows the construction of an object with internal hole.

The red module detects it is in a merge situation and awaits to be
sure the other side is in place before continuing. Modules change
their color to blue to show the route of messages from East to West,
and to green when they are transmitting a response. The message
follows the border of the hole and requires only as extra information
the previous direction of the message.

4.2 3D Self-Assembly
In this subsection we propose a solution for a three-dimensional
lattice self-assembly.

For our 3D self-assembly we assume there can be only one initial
point of start for a contiguous next plane. The module that is respon-
sible for attracting another to the next plane is called 3D seed. Each
module can locally determine if it is a 3D seed using G description,
without neighbor-to-neighbor communication.

Modules can use the same algorithm to follow the inner border
and always select the module with the lowest value on ®x axis and
then with the lowest value on ®y axis. For each module on the actual
plane they check if the respective next plane module is on a border
and is the lowest. In the case where the next plane is bigger than the
actual plane, the lowest module of the exterior border of the actual
plane is a seed if there is a module on top of it.

A seed module can attract for the next plane only when the current
plane has finished, therefore a consensus on when plane have finished
is necessary. Using the given self-assembly algorithm generates an
implicit spanning tree that is used to send data to the first module of
the plane. Planes can know how many modules they have using the
description scene. This number of modules is used to confirm the
plane is completed.

This method is efficient as each plane starts its construction imme-
diately after it arrives at a final state, but it does not handle objects
with loops as two planes growing separately and merging in a certain
point. A solution to objects with loops is synchronizing the planes,
constructing each plane one after another. To synchronize plane con-
struction, when a plane is subdivided in many local connected areas,

Figure 6: Example of constructing a model with internal hole
in a two-dimensional square lattice. The task is parallelized as
many positions can be filled at the same time. The modular ro-
bot drawn in red detects a section of line merge made by the in-
ternal hole. It sends a message following the inner border (blue
modules) and waits for an unlock message. At the moment the
message arrives in the south-west position of the red module,
the module sends a response in the reverse path (green). This
verification is necessary before a module docks on the red mod-
ule west side in order to have no position blocked.

Figure 7: Three classes of target structure: Power Button, Let-
ter C and Bumpy respective representations.

we define a tree of seeds linking 3D seeds of connected planes. Then
when a local connected area has finished, a message (EndO f Plane)
is sent to the root of the tree of 3D seeds. This root 3D seed sends
the authorization to create the next plane after having received all
EndO f Plane messages.

5 EXPERIMENTAL EVALUATION
We have implemented and evaluated the algorithm using VisibleSim
[2], a C++ simulator for modular robots. VisibleSim enables the
users to run event-based simulations. An event is a task executed
by the module simulating one of its actuator, for example attracting
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Figure 8: Locomotive example made by 61,780 Catoms con-
structed using the distributed 3D self-assembly algorithm. Each
cell in the target shape could be filled with modules.

a new robot and sending a message. Messages and events can be
pushed to the system with communication and actuator simulated
delays. In order to test our algorithm, we use random delays with
a large range which change the orders of docking, making each
evaluation executed on the system unique.

We studied the number of messages by the scaling factor and
the number of simultaneous attracting positions for four classes of
target structure (called “power button”, “letter c”, “bumpy” and “2D
locomotive”) presented in Figure 7 and Figure 8. We made a more
realistic experimentation using a locomotive 3D model shown in
Figure 8, described by 61,780 Catoms. In order to have a proper
comparison with the other target structures we used a lateral view of
the locomotive for a 2D representation. Efficiency of our algorithm
is affected by geometrical and topological characteristics of the goal
shape:

• The “power button” model proposes a simple case of internal
hole (homeomorphic to a torus) with concave parts;
• The “letter c” model is a concave shape homeomorphic to a

sphere;
• The “bumpy” model contains several internal holes at once;
• The “2D locomotive” groups many complex areas with holes,

convex and concave parts.

For each representation three versions were used, each one scaling
the size of the structure by two. As for the representation of the
power button, we start with a structure using 815 robots, scale it to
3, 318 and 13, 233 modules. Through our experiments, we show the
effectiveness of our method in terms of number of messages and
number of available docking positions at the same time.

5.1 Messages Evaluation
The number of messages scales linearly with the number of modules
as shown in Figure 9. The messages on the system are composed of
an initial communication, where a recently docked module sends a
message to a neighbor module, asking for initial data as a relative
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Figure 10: Relative number of available docking positions over
the percentage of construction. It shows parallelism of the
method by having as many docking positions as possible at the
same time.

position. This initial communication increases the number of mes-
sages by 2n. Communication is also used to define when a position
can be occupied and requires more communication depending on the
target structure. Therefore, by experimental results, the proposed al-
gorithm requires an average of 5n messages. For example, the bumpy
structure has more internal holes and requires a greater number of
messages, but no significant difference was found between the four
classes of the target structure.
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5.2 Available Docking Positions Evaluation
The number of available positions attracting modules can speed up
the convergence to the final object as many modules can arrive at
the same time in different positions. The movement of free modules
to their correct position has a large impact in the overall time of the
self-assembly. The algorithm attracts new modules in the diagonal of
the target structure, and placing the initial seed at a position relative
to the middle of the structure can make the convergence twice as fast
as there are two diagonals, one facing the west side and the other
facing east. The number of available docking positions is related
with the goal morphology and the position of the initial seed.

Be D the number of available positions and N the total number of
modules, D√

N
is a relation of the number of available docking posi-

tions that does not change when scaling the target. Figure 10 shows
the relative number of available docking positions by the construc-
tion percentage. As power button can have up to 4 diagonals being
filled at the same time it has, at a certain step of the construction,
more available docking positions.

6 CONCLUSION
We presented a distributed algorithm for a system of modular robots
that is capable of generating an attraction list of its available posi-
tions. Our algorithm prevents positions from becoming impossible
to reach and is able to create close-packed structures with internal
holes that are applicable to a variety of modular robotic systems.
One of the tasks that requires lots of time in a self-assembly system
is to find the exact location for the modules to dock. We show with
our results that the algorithm can have many simultaneous docking
positions and accelerate the creation of a model with a linear number
of messages.

In future works, we hope to extend the actual plane-by-plane al-
gorithm to be able to have more available parallel docking positions
on a 3D lattice. We would also like to combine this planning with
algorithms to control module movements. Finally, it would be inter-
esting to have the algorithm implemented and tested on an existing
hardware.
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