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Abstract

Monitoring activities in industry may require the use of wireless sensor
networks, for instance due to di�cult access or hostile environment. But
it is well known that this type of networks has various limitations like
the amount of disposable energy. Indeed, once a sensor node exhausts its
resources, it will be dropped from the network, stopping so to forward
information about maybe relevant features towards the sink. This will re-
sult in broken links and data loss which impacts the diagnostic accuracy
at the sink level. It is therefore important to keep the network's monitor-
ing service as long as possible by preserving the energy held by the nodes.
As packet transfer consumes the highest amount of energy comparing to
other activities in the network, various topologies are usually implemented
in wireless sensor networks to increase the network lifetime. In this pa-
per, we emphasize that it is more di�cult to perform a good diagnostic
when data are gathered by a wireless sensor network instead of a wired
one, due to broken links and data loss on the one hand, and deployed
network topologies on the other hand. Three strategies are considered to
reduce packet transfers: (1) sensor nodes send directly their data to the
sink, (2) nodes are divided by clusters, and the cluster heads send the
average of their clusters directly to the sink, and (3) averaged data are
sent from cluster heads to cluster heads in a hop-by-hop mode, leading
to an avalanche of averages. Their impact on the diagnostic accuracy is
then evaluated. We show that the use of random forests is relevant for
diagnostics when data are aggregated through the network and when sen-
sors stop to transmit their values when their batteries are emptied. This
relevance is discussed qualitatively and evaluated numerically by compar-
ing the random forests performance to state-of-the-art PHM approaches,
namely: basic bagging of decision trees, support vector machine, multi-
nomial naive Bayes, AdaBoost, and Gradient Boosting. Finally, a way to
couple the two best methods, namely the random forests and the gradient
boosting, is proposed by �nding the best hyperparameters of the former
by using the latter.
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1 Introduction

During their life cycle, industrial systems are subjected to failures, which can be
irreversible or have undesirable outcomes varying from minor to severe. From
this context, it is important to monitor a system, assess its health, and plan
maintenance activities. Over the past years, research in Prognostic and Health
Management (PHM) �eld has gained a great deal of attention. PHM aims at
de�ning a maintenance schedule and preventing system shutdown. Yet, if the
prediction model and the provided measurements are not accurate, it is possible
that the maintenance activity will be performed either too soon or too late.

Health assessment is a key step for Remaining Useful Life (RUL) estimation.
Based on the analysis and the prede�ned thresholds, the machine/component's
health state is identi�ed. Sensory data is reported periodically to monitor criti-
cal components. This data corresponds to measurements of monitoring param-
eters and is useful to assess the machine/component's condition. Each monitor-
ing parameter has a threshold; once reached, the system is considered to be in
the corresponding state. Reliable health state estimations depend on accurate
measurements and fast data processing. The information in question is often
gathered by means of individual sensor nodes or via a wired network of sen-
sors. Nevertheless, for some applications, the use of a Wireless Sensor Network
(WSN) can be a requirement rather than a choice. For example, due to acces-
sibility or extra weight issues, connecting the sensors through physical wires is
not feasible. WSNs are designed for an e�cient event detection. They consist
of a large number of sensor nodes deployed in a surveillance area to detect the
occurrence of possible events. Such an activity necessitates e�ciency, which is
hard to achieve with the constraints of WSNs [9].

Available energy is a big limitation to WSN capabilities. In fact, sensor nodes
are small sized devices, resulting in tiny and non-re�llable batteries as energy
supply [5]. Therefore, to keep the network running for as long as possible,
we need to preserve the available energy. As reducing packet transfer distance
and frequency helps consume less energy, a possible solution would be combining
data into one packet and forward all the information at once to the base station:
this is called data aggregation.

Data gathering in WSNs can be either periodic or event-driven. In periodic
applications, data is gathered periodically while in event-driven applications
gathering depends on the occurrence of some events. In both cases, the goal
from aggregation is reducing energy dissipation by holding packets for as long
as possible in intermediate nodes. All packets will be combined together then
forwarded in the network. It is obvious to see that a decrease in energy consump-
tion leads to an increase in the overall delay, and vice versa. A reliable solution
would aim at �nding an acceptable tradeo� between energy consumption and
delay in WSNs [23].

Packet transfer consumes the highest amount of energy in the network. The
higher the distance of transfer gets, the more energy is consumed. It is therefore
preferable that the sensors communicate within the shortest radio range possi-
ble. Several solutions to preserve the network's energy have been investigated,
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and they include the study of the topology. In this paper, we compare several
network topologies and study their impact on the quality of health assessment.

The machine/component's health state goes through di�erent classes varying
from healthy to degraded. Health assessment consists in identifying the class
corresponding to the current health state. In this article, the use of random
forests (RF) is proposed for industrial functioning health assessment, particu-
larly in the context of devices being monitored using a WSN. A prerequisite in
prognostics and health management (PHM) is to consider that data provided by
sensors is either �awless or simply noisy. WSNs monitoring is somehow unique
in the sense that sensors too are subjected to failures or energy exhaustion,
leading to a change in the network topology. Thus, the monitoring quality is
variable too and it depends on both time and location on the device. To say
this di�erently, to extend the life of WSN nodes will increase the monitoring
duration, but it may decrease the diagnostic performance due to strategies de-
ployed in the network (aggregation, scheduling, etc.) that enlarges noise in a
certain way. Our aim is to show the e�ects of such strategies on the compromise
between monitoring duration and quality, and to propose a diagnostic approach
that is compatible with such strategies.

Indeed, various strategies can be deployed on the network to achieve fault
tolerance or to extend the WSN's lifetime, like nodes scheduling or data ag-
gregation. However, the diagnostic processes must be compatible with these
strategies, and with a coverage of a changing quality [1, 11]. The objective
of this research work is to show that RFs achieve a good compromise in that
situation, being compatible with a number of sensors which may be variable
over time, some of them being susceptible to errors. More precisely, we will
explain why random methods are relevant to achieve accurate diagnostics of an
industrial device being monitored using a WSN. Algorithms will be provided,
and an illustration on a simulated WSN will �nally be detailed.

The contributions of this article can be summarized as follows. The func-
tioning of RF is recalled and applied in the monitoring context, when data are
gathered by a wireless sensor network instead of a wired one. We show that
diagnostic is more di�cult in such networks, due to broken links, data loss, and
deployed network topologies. To do so, three aggregation strategies to reduce
packet transfers are considered, and their impact on the diagnostic accuracy is
discussed qualitatively. It is evaluated numerically by comparing the random
forests performance to state-of-the-art PHM approaches. Finally, a hybridation
of the two best methods (random forests and gradient boosting) is proposed, to
achieve the best RF hyperparameters selection by using gradient boosting.

The remainder of this paper is organized as follows. In Section 2 we give the
state of the art. Section 3 presents the proposed algorithm for WSN based diag-
nostics, namely the random forests. Its performance on various sensor topolo-
gies is shown in the next section, while the RF-based diagnostic is compared to
other machine learning methods in Section 5. This article ends by a conclusion
section, in which the contribution is summarized and intended future work is
outlined.
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2 State-of-the-art review

To perform a periodic data gathering in a wireless sensor network, data aggrega-
tion is achieved through organizing the network according to a logical structure,
mainly a tree or a clustering [28]. When a tree is used, aggregators are the inter-
nal nodes in the tree routed at the sink. With clustering structures, aggregators
are the Cluster Heads (CH). In [14, 19], the authors prove that clustering meth-
ods provide better results for data aggregation, as they consume less energy.
De�ning a speci�c cluster and choosing the CH (aggregator node in the clus-
ter) have an important impact on aggregation quality and energy consumption.
Besides, structured approaches incur high maintenance overhead in event based
applications. In fact, the source nodes change when a new event occurs. In
other words, when the network starts running, the structure is �xed based on
the positions of nodes sensing the event (source nodes). For the next round, the
event may occur somewhere di�erent in the network, which results in a change
in source nodes. Consequently, the �xed structure will perform poorly [34].

Reference Context Routing protocol WSN drawback

Kait et al.[21] Paddy growth Multi-hop rooting Ine�cient energy
to nearest neighbor protocol

Yoo et al. [33] Growing process of Parent-child tree Single point
melon and cabbage failure

Yang et al. [32] Irrigation Through (widely Ine�cient energy
separated) clusters protocol

Chiti et al. [7] Agro-food Dynamic �ooding Ine�cient energy
production protocol

Kabashi [20] Agriculture Shortest path graph Sensing holes
CNS [17] Agriculture Tree structure Single point

failure

Table 1: Comparison of WSN based monitoring. Note that none of them provide
a monitoring impact measurement of the WSN embedded protocol.

Several WSN topologies were used in existing monitoring applications, see
Table 1. In [21], Kait et al. propose a WSN-based paddy growth monitoring
system. Sensor nodes gather and send �eld data, such as temperature, periodi-
cally to the Base Station (BS). This is done by using multi-hop routing which is
not considered energy e�cient. Sensor nodes transmit data through the nearest
neighbor which might lead to the longest path. Moreover, this routing protocol
does not consider the energy level of the sensor nodes to generate transmission
path. Another interesting study by Yoo et al. [33] proposes a precision and
intelligence agricultural system referred to as the Automated Agriculture Sys-
tem. The goal of this system is to monitor and control the growing process of
melon and cabbage in a greenhouse. In the system, sensor nodes are organized
in a parent-child tree structure. The nodes join the network by broadcasting
a parent search packet. Furthermore, the nodes transmit data to the BS using
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three gateway nodes. However, the tree structure has a single point of fail-
ure. Yang et al. [32] developed an intensive WSN-based irrigation monitoring
system. Sensor nodes are placed by this system in widely separated clusters.
Thus, sensor nodes consume much energy for transmitting data to remote nodes
in other clusters.

Chiti et al. [7] propose next generation �rm for Agro-food productions. This
system uses Ambient Intelligence and WSNs. The proposed system provides
feedback and adaptability to increase productions in Agro-food. However, the
deployed WSN uses a dynamic �ooding ine�cient-energy routing protocol. This
is due to the fact that a large number of messages are broadcasted. Village
eScience for Life [20] is a WSN-based agriculture project. It is implemented in
developing regions in Africa and uses dynamic zone-based topology. This project
initially deploys sensor nodes into zones in such a way that each sensor node
remains within the transmission range of the nodes of at least two zones and
each node belonging to a zone elects nodes in neighboring zones to which it can
connect with a minimum transceiver power. Hence, several graphs are generated
and the graph requiring minimum transmission power is selected for routing.
However, this routing protocol does not guarantee to eliminate sensing holes.
COMMONSense Net (CNS) [17] is another WSN-based agriculture monitoring
project developed for semiarid regions in developing countries. The routing
protocol of CNS uses tree structure which is not reliable since a link failure
or sensor node failure can make other nodes unreachable to BS. Unlike the
earlier works that focus mainly on the WSN-based monitoring applications,
recent research [6] has signi�cantly considered studying the actual structure of
WSN through graph theory. In particular, geometric graphs are used in WSNs
[22] to model the relationship between a sensor node and its neighboring sensor
nodes [13, 24]. To sum up, each of the state-of-the-art algorithms contains WSN
drawbacks, and none of them provide a monitoring impact measurement of the
WSN embedded protocol.

Before studying WSN network dependability, we focused on �nding an al-
gorithm that is able to produce good diagnostics with incomplete monitoring
data [2]. As summarized in Figure 1, maintenance strategies evolved through
time and became predictive and condition based.

Figure 1: History of maintenance strategies.
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Condition-based maintenance (CBM) is a proactive process for maintenance
scheduling, based on real-time observations. It aims at assessing machine's
health through condition measurements. As any maintenance strategy, CBM
aims at increasing the system reliability and availability. The bene�ts of this
particular strategy include avoiding unnecessary maintenance tasks and costs, as
well as not interrupting normal machine operations [15]. In order to be e�cient,
a CBM program needs to go through the following steps [18], as illustrated in
Figure 2.

Figure 2: CBM Flowchart.

In this study, we limit our work to diagnostics. Sensory data are reported
periodically to monitor critical components. These data correspond to mea-
surements of parameters (pressure, temperature, moisture...), and are useful to
assess the machine's condition. Thresholds related to the monitored parameters
are �xed. Once a threshold is reached, the system is considered to be in the
corresponding state. In Figure 3, the successive steps of a diagnostic process
are illustrated.

Figure 3: Diagnostic's di�erent steps.

� Fault detection is used to report an anomaly in the system behavior.

� Fault isolation is charged of determining and locating the cause (or source)
of the problem. It identi�es exactly which component is responsible of the
failure.

� Fault identi�cation aims at determining the current failure mode and how
fast it can spread.

The diagnostics of a system's state of health is the equivalent of a classi�ca-
tion problem. In machine learning, classi�cation refers to identifying the class to
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which a new observation belongs, on the basis of a training set and quanti�able
observations, known as properties. In ensemble learning, the classi�ers are com-
bined to solve a particular computational intelligence problem. Many research
papers encourage adapting this solution to improve the performance of a model,
or reduce the likelihood of selecting a weak classi�er. For instance, Dietterich
argued that averaging the classi�ers' outputs guarantees a better performance
than the worst classi�er [8]. This claim was theoretically proven correct by
Fumera and Roli [12]. In addition to this, and under particular hypotheses, the
fusion of multiple classi�ers can improve the performance of the best individual
classi�er [30].

Two of the early examples of ensemble classi�ers are Boosting and Bagging.
In Boosting algorithm [26], the distribution of the training set changes adap-
tively based on the errors generated by the previous classi�ers. In fact, at each
step, a higher degree of importance is accorded to the misclassi�ed instances.
At the end of the training, a weight is accorded to each classi�er, regarding its
individual performance, indicating its importance in the voting process. As for
Bagging [3], the distribution of the training set changes stochastically and equal
votes are accorded to the classi�ers. For both classi�ers, the error rate decreases
when the size of the committee increases.

In a comparison made by Tsymbal and Puuronen [29], it is shown that
Bagging is more consistent but unable to take into account the heterogeneity of
the instance space. In the highlight of this conclusion, the authors emphasize
the importance of classi�ers' integration. Combining various techniques can
provide more accurate results as di�erent classi�ers will not behave in the same
manner faced to some particularities in the training set. Nevertheless, if the
classi�ers give di�erent results, a confusion may be induced. It is not easy
to ensure reasonable results while combining the classi�ers. In this context,
the use of random methods could be bene�cial. Instead of combining di�erent
classi�ers, a random method uses the same classi�er over di�erent distributions
of the training set. A majority vote is then employed to identify the class.

In this article, the use of random forests (RF) is proposed for industrial
functioning diagnostics, particularly in the context of devices being monitored
using a WSN. Up to now, a prerequisite in diagnostics is to consider that data
provided by sensors are either �awless or simply noisy. This prerequisite must
be relaxed in case where sensed data come from a wireless sensor network, as
data aggregation, node scheduling, and other energy optimization strategies
in possibly hostile environments lead to incomplete or totally erroneous sensed
values. We will show that RF, detailed in the next section, can get around these
problems, leading to an accurate diagnostics even in WSN harsh conditions, and
even without feature selection.

Finally, as the other ensemble learning methods, RF can indicate the impor-
tance weights of predictors, which is a signi�cant advantages of such approaches
in the determination of the failure origin.
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3 Proposed techniques

3.1 The research framework

As mentioned earlier in this article, the objective is to study the possibility
of using random forests for prognostic and health management purposes. The
latter have several advantages that make their use interesting in this context,
such as their compatibility with time-varying feature vectors (which can happen,
for example, when the sensors are on battery power: some batteries run out
over time, and the associated feature therefore disappears when the battery is
empty).

Our framework therefore consists of an industrial device on which predictive
maintenance is deployed based on a wireless sensor network. Each sensor sends,
as long as it can communicate (i.e., as long as it still has battery), its mea-
surement periodically to the sink. These measurements are potentially noisy:
typically, we want to deploy many sensors, therefore of poor quality, and in a
potentially hostile environment (high or very low temperature, etc.) And since
batteries can be drained or scheduling devices can be put in place to extend
the life of the network, we therefore potentially have features missing over time.
Finally, WSN-based PHM usually deploys data aggregation techniques, always
in order to extend the network's lifetime, and this operation corresponds to
feature aggregation.

Feature selection techniques are obviously to be implemented at the sink
level in the case where the industrial system is large, leading to a large network
of sensors (and therefore to a large number of features). This selection can be
done in various ways, e.g. univariate feature selection or by using the spareness
associated with `1 norms to preprocess the features. However, improving this
feature selection step is not the objective of this article, and a great deal of work
has already been produced on this theme.

Finally, based on a pre-established basis of knowledge, our framework con-
sists in deploying random forests at the sink level, in order to be able to predict
the RUL of the device under surveillance. This RF-based prediction is then
compared to other tools traditionally used in PHM, and includes a phase of
discovery of the best hyperparameters of each technique. These algorithms are
the Suport Vector Machines (SVM), the Classi�cation And Regression Trees
(CART), AdaBoost, Gradient Boosting, and multinomial Naive Bayes.

3.2 The proposal

The RF algorithm is mainly the combination of Bagging [3] and random sub-
space [16] algorithms, and was de�ned by Leo Breiman as a combination of tree
predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all trees in the forest [4]. This
method resulted from a number of improvements in tree classi�ers' accuracy.

This classi�er maximizes the variance by injecting randomness in variable
selection, and minimizes the bias by growing the tree to a maximum depth (no
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pruning). For the sake of completeness, the steps of constructing the forest are
recalled in Algorithm 1.

Algorithm 1 Random forest algorithm

Input: Labeled training set S, Number of trees T , Number of features F .
Output: Learned random forest RF .
initialize RF as empty
for i in 1..T do

S′i ← bootstrap (S)
initialize the root of tree i
repeat

if current node is terminal then
a�ect a class
go to the next unvisited node if any

else

select the best feature f∗ among F
sub-tree ← split(S′i, f

∗)
add (leftChild, rightChild) to tree i

end if

until all nodes are visited
add tree i to the forest

end for

In a RF, the root of a tree i contains the instances from the training subset S′i,
sorted by their corresponding classes. A node is terminal if it contains instances
of one single class, or if the number of instances representing each class is equal.
In the alternative case, it needs to be further developed (no pruning). For this
purpose, at each node, the feature that guarantees the best split is selected as
follows.

The information acquired by choosing a feature can be computed through
either the well-known entropy of Shannon, which measures the quantity of in-
formation, or the reputed Gini index, which measures the dispersion in a popu-
lation. The best split is then chosen by computing the gain of information from
growing the tree at given position, corresponding to each feature as follows:

Gain(p, t) = f(p)−
n∑

j=1

Pj × f(pj) (1)

where p corresponds to the position in the tree, t denotes the test at branch
n, Pj is the proportion of elements at position p and that go to position pj ,
f(p) corresponds to either Entropy(p) or Gini(p). The feature that provides
the higher Gain is selected to split the node.
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4 Experimental results

4.1 Proposed protocol

In order to illustrate the impact of topologies on the quality of health estima-
tions, we consider 90 sensor nodes; 30 nodes for each of the monitoring param-
eters: temperature, pressure, and humidity. The sensors are randomly placed
in the simulation window, and are equipped with batteries of 100j. The sink
is also placed randomly. With every data transfer, the energy of a sender is
reduced regarding its distance from the recipient.

Data simulation

� Under normal conditions, temperature sensors follow a Gaussian law of
parameter (20 × (1 + 0.005t), 1), while these parameters are mapped to
(35, 1) in case of a malfunction of the industrial device. These sensors
return the value 0 when they break down.

� The pressure sensors produce data following a Gaussian law of parameter
(5 × (1 + 0.01t), 0.3) when they are sensing a well-functioning area. The
parameters changed to (20, 2.5) in case of area failure in the location where
the sensor is placed, as long as the pressure sensors return 1 when they
are broken down.

� The Gaussian parameters are (52.5×(1+0.001t), 12.5) when both the area
and the humidity sensors are in normal conditions. These parameters are
set to (80, 10) in case of area failure in the range of this sensor, whereas
malfunctioning humidity sensors produce the value 3.

The probability that a failure occurs at time t follows an exponential distri-
bution of parameter 1÷ 100.

In other words, the predictors are constituted by 30 temperature variables, 30
pressure variables, and 30 humidity ones, they are all numerical. The dependent
Y variable, for its part, is the number of failures. Note that the predictors
are correlated (their Gaussian parameter depends on t), and that the reduced
number of features does not require a selection. Although low, this number of
features will still allow us to demonstrate the good performance of our approach
in relation to the state of the art.

Data is generated as follows.

Each sensor received 100 units of battery, and 2000 units for each aggregator.
This energy decreases over time, proportionally to the transmission distance
(for both sensors and aggregators), and proportionally to the times spent to
periodically collect a new data (i.e., computing a new random value according
to the probabilistic model) and for aggregating (averaging) a collection of data.
This duration is computed thanks to a call to the time function before and
after the operation. The �nal number of packets corresponds to what have
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Algorithm 2 Data generation

for each time unit t = 1..200 during the industrial device monitoring do
for each category c (temperature, pressure, humidity) of sensors do
for each sensor s belonging to category c do
if s has not yet detected a device failure then
s picks a new data, according to the Gaussian law corresponding to
a well-functioning device, which depends on both t and c
a random draw from the exponential law detailed previously is real-
ized, to determine if a breakdown occurs on the location where s is
placed

else

s picks a new datum according to the Bernoulli distribution of a
category c sensor observing a malfunctioning device

end if

end for

end for

end for

been de�nitively received at the sink level when all nodes have emptied their
batteries.

Considered topologies We have considered 3 di�erent topologies during
these simulations.

In the �rst scenario, we consider a default topology. When a node senses
new data, it forwards it directly to the BS. At the end of each round, the sink
will receive 30 di�erent measures of temperature, pressure, and humidity each.
The sink will only keep one value of each parameter. This is guaranteed by
computing an average using a Gaussian distribution.

In the second scenario depicted in Figure 4a, 9 sensors are added to the
topology. These sensors will be the aggregators (3 per parameter). Therefore,
the topology now presents 9 clusters and in each, nodes send the sensed data
to the CH. The CH aggregates the data packets from each round and sends
the computed value of the relative parameter to the sink node. It should be
noted that at this step, the CHs are placed randomly and their distance to their
cluster members is not optimized.

In the third and last topology, we also considered 9 clusters. This time after
all the sensors (CHs and regular nodes) are placed, each regular nodes �nds the
closest CH to it by using the K-mean algorithm, and adapts the same type (i.e.,
parameter). The aggregated data are then routed from CHs to CHs in direction
to the sink, to reduce the communication cost. This topology is depicted in
Figure 4b.

Let us notice that the �rst situation corresponds to what is usually consid-
ered in PHM. Conversely, the two other cases are related to data collected within
a wireless sensor network, which thus embeds various strategies to increase the
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(a) Situation 2 (b) Situation 3

Figure 4: Di�erent strategies to route aggregated data to the sink

network lifetime, namely the data aggregation in our considered scenarios. Ob-
viously, such aggregation may impact diagnostics, and usual machine learning
algorithms are not designed to face such data manipulations.

4.2 Obtained results

We collect data in the network using the topologies described in Section 4.1.
After data collection step, health assessment is performed through the RF al-
gorithm described in Section 3. Nodes that capture new data packets forward
the information (according to the corresponding network topology) towards the
sink for processing. The data is then fed to the RF algorithm to assess the
health of the monitored device.

We varied the number of trees in the forest from 1 to 100, and obtained in
total 18 di�erent forests. For each forest, we repeated the simulation 10 times.
During the simulation, the sensors communicate the data generated following
the laws described in Section 4.1. The simulations are timed, i.e., the simulation
does not end when the system fails, but when the simulation time is reached.
The decision for each tree is averaged over the 10 simulations, and the �nal
decision is averaged over all the decisions given by each tree in the forest. In the
following, we show the average number of errors in health estimation for each
of the 3 proposed topologies.

In Figure 5 we plotted the average number of errors in health estimation,
when all nodes can communicate with the BS. The error rate was maintained
below 50% at all times. With the number of trees increasing in the forest, the
error rate decreases and gets close to 0%. When the number of trees in the
forest is more than 9, the error rate becomes almost constant.

Figure 6 shows the average number of errors in health estimation, when data
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Figure 5: Error in health estimation for the star topology.

Figure 6: Error in health estimation for cluster topology.

is aggregated before being sent to the BS (as described in Section 4.1). The
error rate, compared to the previous simulation, was reduced by half, and was
stabilized when number of trees is greater than 20. Aggregating data reduces
the frequency of transferring packets in the network; CHs will receive data from
nodes within their range, combine them together and send them as one packet.
As a result, the overall activity of sensors will be reduced, and consequently they
will consume less energy. This means that sensors can live longer (comparing to
the previous topology) to ensure transferring relevant data to the BS for health
assessment. We can therefore conclude that reducing the number of packets in
the network helps improve the quality of diagnostics.

In Figure 7 we plotted the average number of errors in health estimation,
when nodes forward their data to the nearest aggregator. Error rate was reduced
by almost a half when the distance of transfer is reduced, and reached 0% when
the number of trees is greater than 80. Transferring data over a short distance
requires less energy from the sender. This helps preserve energy for a longer
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Figure 7: Error in health estimation for cluster topology with closest aggregator.

period and ensures that data needed for health assessment can be delivered to
the BS over that time period.

To summarize, aggregating data packets ensures that nodes degrade grace-
fully (rather than abruptly) and results in more accurate estimations, which
would have not been the case when using a common machine learning algorithm
usually implemented for PHM (in wired case). Also, having nodes transfer their
data over a short distance helps to preserve the available energy in the net-
work. The point from which the error rate is stabilized can be considered as the
optimal (or minimum) number of trees needed in the forest.

Figure 8 presents the delay between the time the system enters a failure
mode and the time of its detection. This is done in the absence of correlations
between the di�erent features. The 0 time value of delay, the negative values,
and positive values refer to in-time predictions, early predictions and late pre-
dictions of failures, respectively. The plotted values are the average result per
number of simulations which varies from 1 to 100. With time, sensor nodes start
to fail in order to simulate missing data packets. As a result, the RF algorithm
was able to detect 54 % of the failures either in time or before their occurrence.

For each of the 100 performed simulations, we calculated the average number
of errors in fault detection, produced by the trees in the forest. Figure 9 shows
that this error rate remained below 15 % through the simulation. This error
rate includes both "too early" and "too late" detections. When certain sensor
nodes stop functioning, this leads to a lack on information, which has an impact
on the quality of predictions; this explains a sudden increase in the error rate
with time. We can conclude from the low error rate in the absence of some data
packets that increasing the number of trees in the RF helps improve the quality
and accuracy of predictions.

As described in Section 4.1, a correlation was introduced between the fea-
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Figure 8: Delay in failure detection with respect to the number of simulations.
X value represents the size of the learning set, while Y value is the averaged
error between real and predicted RULs. Standard deviations are provided too.

Figure 9: Error rate in health assessment with respect to the number of sim-
ulations. X is again the size of the learning set, while Y value measures the
too-early vs. too-late detection. A value of �ve, for instance, means that there
were 5 more too-early detection than too-late ones, for the considered learning
size.

tures. Figure 10 shows the number of successful fault detection when the number
of tree estimators in the forest changes. As shown in this �gure, the RF method
guarantees a 60 % success rate when the number of trees is limited to 5. As this
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Figure 10: Number of successful health assessments with respect to the number
of trees: the accuracy increases with the forest.

number grows, the accuracy of the method increases to reach 80 % when the
number of trees is around 100. Comparing to the previous results, the correla-
tion between the features helps decrease the uncertainties in health assessment
when the number of trees increases. The algorithm is able to understand the
relationship between two features. Thus, when some values describing a fea-
ture are missing, the algorithm can deduct them from the available information
about the remained features.

5 Discussions

For the sake of discussion, we will evaluate in this section the RF-based diag-
nostic compared to other machine learning methods.

5.1 General comparison

Finding the optimal training of a classi�cation problem is most of the times a real
di�cult problem. Tree ensembles have the advantage of running the algorithm
from di�erent starting points, and this can better approximate the near-optimal
classi�er. In his paper, Leo Breiman discusses the accuracy of Random Forests.
In particular, he gave proof that the generalized error, although di�erent from
one application to another, always has an upper bound and so random forests
converge [4].

The injected randomness can improve accuracy if it minimizes correlation
while maintaining strength. The tree ensembles investigated by Breiman use
either randomly selected inputs or a combination of inputs at each node to
grow the tree. These methods have interesting characteristics as:

- Their accuracy is at least as good as Adaboost;
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- They are relatively robust to outliers and noise;

- They are faster than bagging or boosting;

- They give internal estimates of error, strength, correlation, and variable
importance;

- They are simple and the trees can be grown in parallel.

There are four di�erent levels of diversity which were de�ned in [27], level 1
being the best and level 4 the worst.

� Level 1: no more than one classi�er is wrong for each pattern.

� Level 2: the majority voting is always correct.

� Level 3: at least one classi�er is correct for each pattern.

� Level 4: all classi�ers are wrong for some pattern.

RF can guarantee that at least level two is reached. In fact, a trained tree
is only selected to contribute in the voting if it does better than random, i.e.,
the error rate generated by the corresponding tree has to be less than 0.5, or
the tree will be dropped from the forest [4]. Finally, in [31], Verikas et al. argue
that the most popular classi�ers like Support Vector Machine provide too little
insight about the variable importance to the derived algorithm. They compared
each of these methodologies to the random forest algorithm to �nd that in most
cases RF outperform other techniques by a large margin.

This general discussion emphasizes that Random Forests should be consid-
ered in the context of PHM based on wireless sensor networks data [10], and
that, due to their robustness and accuracy, they are real alternatives to state-of-
the-art PHM algorithms. To illustrate this point by an experimental comparison
between random forests and algorithms usually used for diagnosis such as Ad-
aboost and SVM, a new series of simulations will be conducted in the section
below.

5.2 Experimental comparison

Once again, we consider that data are gathered by the mean of a wireless sensor
network in which sensor nodes have a limited lifetime, and strategies are de-
ployed to optimize the network's lifetime like data aggregation and hop-by-hop
routing. Data have been generated by our simulator as detailed in Section 4.1.
As we take place in a WSN context, we considered that some nodes of the net-
work are speci�cally designed to aggregate data from their neighboring sensor.
200 terminal nodes have been deployed, and 16 aggregators have been added.
They have been linked to the closest terminal nodes according to the K-mean
method. At each time an aggregator receives 3 values, it computes their average
and transmits it towards the sink.
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Situations 2 and 3 of Section 4.1 have been tested, depending on whether
each aggregator sends its averaged values directly to the sink, or to the nearest
aggregator that is closer to the sink. Note that this last situation reduces the
transmission cost (thus enlarging the networks' lifetime), but data arrived to the
sink are more averaged. In addition, all the sensors have limited batteries that
are drained over time due to data transmission; they are spread randomly, if we
except that the aggregators are well positioned thanks to the use of K-means.
As a consequence, the sensors die one after the other as time goes by, impacting
the evolution of the number of sensors having detected a failure.

Figure 11: Failures at sink level when data are directly sent from each aggregator
to the sink

A failure is randomly simulated according to a Poisson law. This failure dis-
rupts the industrial system from close to close, and thus the number of sensors
detecting aberrant values increases over time. In spite of the aggregation pro-
cess, this increase is clearly observed at the sink level when the aggregators send
their averages directly (Situation 2, see Figure 11), but tends to be less apparent
when the averages are again aggregated during cluster routing (Situation 3, see
Figure 12).

Various experiments have �nally been conducted to compare the ability of
Random Forests to accurately predict a failure to other machine learning ap-
proaches proposed in the PHM literature. The following regressors have been
selected in this set of experiments, because they are frequently considered for
prognostics and health management: a simple bagging of decision trees, the
support vector machine, AdaBoost, Gradient Boosting, and multinomial Naive
Bayes. Scikit-Learn [25] library has been used to implement the machine learn-
ing algorithms on data provided by our WSN simulator. No modi�cation of
the hyperparameter default values has been performed, due to the �meaningful
default values� conception of this library: Scikit-Learn provides reasonable de-
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Figure 12: Failures at sink level when aggregated data are sent from aggregators
to aggregators towards the sink

fault values for most parameters, making it easy and fast to create a basic and
operational machine learning system. This is also the case for Random Forests,
for which no hyperparameter optimization has been performed here, allowing
an unbiased comparison of the various approaches (see the next section for a
measure of performance increase when improving the hyperparameter selection).

Figure 13: Comparison of mean absolute regression error in testing phase, for
various machine learning algorithms in Situation 3.

At each time, the objective was to predict the number of sensors that de-
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tected a failure from the aggregated data received at the sink. In doing so,
we obtain a regressor capable of evaluating the severity of a failure, and we
can easily make a classi�er by looking at whether this number is strictly pos-
itive (there is a breakdown) or zero (there is no breakdown). The simulator
has been launched several time, and N values collected at the sink level have
been randomly picked from this basis of knowledge. The number of times the
Poisson law has returned a new failure within sensors has been stored too as
the objective function: the explanatory variables are the physical data captured
and aggregated, and the variable to be explained is the number of failures. We
tested forty N values equally distributed in the interval [0, 1000], to see if the
regression error decreases when the basis of knowledge increases. Finally, 80%
of these variables have been used for training, and the 20% remained values for
evaluation during the testing stage.

Figure 14: Comparison of mean absolute regression error in testing phase, for
various machine learning algorithms in Situation 2.

As can be seen in Figure 13, both the Naive Bayes and SVM fail to reduce
the regression error in Situation 3, even with the largest basis of knowledge.
The same statement holds for SVM even in the simpler case of Situation 2,
as can be seen in Figure 14. Obviously, the support vector machine fails to
learn how to predict the severity of the failure, due to the fact that data have
been averaged on some nodes in the network, and the same conclusion can be
drawn, to a lesser extent, for the Naive Bayes method. In other words, the
use of these methods for prognostic and health management must be seriously
discussed in case the data are acquired via a wireless sensor network: energy
saving strategies usually deployed in such networks can strongly impact their
ability to make good predictions.

The four other machine learning algorithms reach good prediction scores
in testing phase when a single aggregation stage is performed, as shown in
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Figure 15: Comparison of mean absolute regression error in testing phase, for
the best machine learning algorithms in Situation 2.

Figure 15. However, AdaBoost predictions are worse when several aggregation
layers are made in the network, and the bagging of decision trees loses stability,
as illustrated in Figure 16. To sum up, only Gradient Boosting was able to
perform as well as Random Forests, in the context of a diagnostic on data
gathered by a wireless sensor network embedding aggregation layers.

Figure 16: Comparison of mean absolute regression error in testing phase, for
the best machine learning algorithms in Situation 3.
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5.3 Hyperparameter optimization

The number of trees is not the only parameter to optimize in RF, and the
regression error can be greatly reduced by playing on its many parameters.
To illustrate this fact in a PHM scenario, we have considered the following
parameters:

� max depth: the maximum depth of the tree.

� max features: the number of features to consider when looking for the
best split.

� min samples split : the minimum number of samples required to split an
internal node.

� min samples leaf : the minimum number of samples required to be at a
leaf node.

The integer search interval has been de�ned as follows: between 1 and 10 for
the max depth hyperparameter, between 1 and the total number of features for
max features, between 2 and 1000 for min samples split, and �nally between 1
and 100 for min samples leaf. The same dataset as in the previous section has
been considered, and it has been separated again as learning and testing sets
(80% and 20% respectively).

Figure 17: Convergence of mean absolute error function during RF's parameters
optimization (number of calls in abscissa)

Various strategies are possible to achieve a hyperparameter optimization of
the regression error in random forests. As GB and RF proved to be both �-
nalists in the previous evaluation, we have considered here a mix of the two
methods: gradient boosted regression trees have been used for RF hyperparam-
eter selection, in which the model is improved by sequentially evaluating the
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Regressor RMSE MAE MAPE
Gradient Boosting 0.6602 0.1282 0.0091

AdaBoost 0.7885 0.3153 0.0091
CART 2.5494 1.8418 0.2693
SVM 59.7767 39.6415 2.6860

Random forests 0.2604 0.1218 0.0089

Table 2: Comparison of best Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE) after hyperparam-
eter optimization

score function at the next best point, thereby �nding the optimum with as few
evaluations as possible. The sequential optimization has been called 100 times
and the optimum has been reached in 35 iterations, leading to a minimum of
the mean absolute error between real and predicted number of failures equal to
0.1406. Best parameters are respectively equal to 10 (max depth), 4 (max fea-
tures), 2 (min samples split), and 1 (min samples leaf). Obtained convergence
curve is depicted in Figure 17, leading to a real improvement of RF performance
to achieve reliable diagnostics on data collected within a WSN.

For the sake of completeness and fairness, this hyperparameter optimization
has been performed too in the case of SVM (penalty parameter C of the error
term), AdaBoost (learning rate and maximum number of estimators at which
boosting is terminated), CART (max depth of the tree, minimum number of
samples required to split an internal node, and minimum number of samples
required to be at a leaf node), and gradient boosting (max depth, learning rate,
number of boosting stages to perform, and minimum number of samples required
to split an internal node). The optimization has been performed via a Bayesian
optimization using Gaussian Processes, with a relevant search space depending
on the considered regressor, and 100 iterations. Obtained results are compared
in terms of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE); they are provided in Table 2.
As can be seen, the ensemble-based regressors can be really optimized, in such
a way that they outperform the SVM. Note that random Forests and Gradient
boosting have obtained in average the best results.

To put it in a nutshell, in the case where prognostic and health management
is based on data gathered through a wireless sensor network, the prediction
of the RUL should be based on Random Forest regression. This is for the
following reasons. First of all, many regression algorithms are incompatible with
the type of features produced by such networks. Indeed, data aggregation and
scheduling policies, and the depletion of sensor batteries, cause feature vectors
to have variable sizes over time. However, most machine learning techniques
(SVM, neural networks...) are incompatible with these variable feature vector
sizes. On the other hand, our simulations have shown that, even if these feature
vectors remain �xed in size, the performance of random forests is better than
that of the usual fault prediction techniques, for the various metrics considered,
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and whether or not there is hyperparameter optimization.

6 Conclusions

In this paper, we proposed the random forests algorithm for diagnostics when the
industrial device is monitored by a wireless sensor network. When the gathered
data is incomplete, the algorithm adapts quickly to the change and continues to
deliver reliable diagnostics. We also illustrated the impact of network topology
on the quality of information at the sink level, by comparing two cluster topolo-
gies to the star one. We showed that organizing the network in clusters helps
preserve the overall energy but reduces the quality of data used for diagnostics.
We also showed that reducing the distance of packet transfer may impact the
results. The relevance of random forests in such situations is explained and RF
is compared to state-of-the-art PHM algorithms. Numerical experiments show
that some of the latter have an obvious loss of accuracy when data are provided
by a WSN, which is the case for instance of the support vector machines.

This good performance of the random forests for diagnostics in a wireless
sensor network context has however been obtained only through simulations and
qualitative discussion, which is a limitation of this research work. A real imple-
mentation of this algorithm in a deployed WSN should be operated, to reinforce
the con�dence put in RF for diagnostics in such kind of networks. Another
limitation of this study is that only diagnostics aspects of PHM have been con-
sidered. This is why, in future work, we intend to develop a prognostic approach
taking into consideration all the constraints discussed in this paper. We also
intend to study the dependability of wireless sensor networks to improve both
energy consumption and the quality of data at the sink level. The e�ects of an
accurate feature selection on the performance of the aforementioned algorithms
will be �nally investigated deeply.
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