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SURFACE SINGULARITIES AND PLANAR CONTACT
STRUCTURES

by Paolo GHIGGINI,
Marco GOLLA & Olga PLAMENEVSKAYA (*)

Abstract. — We prove that if a contact 3-manifold admits an open book de-
composition of genus 0, a certain intersection pattern cannot appear in the homol-
ogy of any of its minimal symplectic fillings, and moreover, fillings cannot contain
symplectic surfaces of positive genus. Applying these obstructions to canonical
contact structures on links of normal surface singularities, we show that links of
isolated singularities of surfaces in the complex 3-space are planar only in the case
of An-singularities. In general, we characterize completely planar links of normal
surface singularities (in terms of their resolution graphs); these singularities are
precisely the rational singularities with reduced fundamental cycle (also known as
minimal singularities). We also establish non-planarity of tight contact structures
on certain small Seifert fibered L-spaces and of contact structures arising from the
Boothby–Wang construction applied to surfaces of positive genus. Additionally, we
prove that every finitely presented group is the fundamental group of a Lefschetz
fibration with planar fibers.
Résumé. — Dans cet article on démontre que si une structure de contact sur

une variété de dimension trois est portée par un livre ouvert à pages planaires, alors
une certaine configuration d’intersections n’apparaît dans l’homologie d’aucun de
ses remplissages minimaux. On démontre de plus que les remplissages d’une telle
variété de contact ne contiennent pas de surface symplectique de genre positif. En
appliquant ces obstructions aux structures de contact canoniques sur les bords des
singularités normales de surfaces, on montre que les bords des singularités isolées de
surfaces dans l’espace complexe de dimension trois sont planaires seulement pour
les singularités de type An. En général, nous caractérisons complètement les bords
planaires des singularités normales de surfaces (par leurs graphes de résolution) :
ces singularités sont précisément les singularités rationnelles avec cycle fondamental
réduit (aussi appelées singularités minimales). On montre aussi la non-planarité des
structures de contact tendues sur certains petits L-espaces de Seifert ainsi que celle
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des structures de contact obtenues par la construction de Boothby–Wang appliquée
aux surfaces de genre positif. De plus, on démontre que tout groupe de présentation
finie est le groupe fondamental d’une fibration de Lefschetz à fibres planaires.

1. Introduction and background

Since the groundbreaking work of Giroux [12], open books have played
a major role in 3-dimensional contact topology; certain properties of open
books are related to questions of tightness and fillability. While a compati-
ble open book decomposition is not unique, one can ask what the smallest
possible genus of a page is.

In particular, contact manifolds that admit planar open book decom-
positions (i.e. with page of genus zero and possibly multiple boundary
components) have a number of special properties. For example, Etnyre
showed that any weak symplectic filling of a planar contact structure has
a negative definite intersection form [8]; it follows that any contact struc-
ture that arises as a perturbation of a taut foliation cannot be planar,
since it admits fillings with arbitrary b+

2 [6, 7]. This implies, by [16, 31],
that if Y is a graph manifold which is not an L-space, then Y admits a
non-planar contact structure. (Recall that L-spaces, whose name derives
from their Floer-homological similarity to lens spaces, are 3-manifolds with
the simplest possible Heegaard Floer homology [29].) By contrast, all con-
tact structures on lens spaces are planar [32]; the same is known for some
other L-spaces, although in general L-spaces can admit non-planar contact
structures as well [19]. (Note that overtwisted contact structures are always
planar by [8].)
In this paper we develop new obstructions in terms of the topology of

symplectic fillings: namely the presence of either a certain pattern in the
intersection form or embedded symplectic surfaces with positive genus. Us-
ing these obstructions, we rule out planarity for a number of interesting
contact structures. All contact manifolds in this paper are assumed closed
and co-oriented.

Before stating the general conditions, we interpret our obstructions for
canonical contact structures on links of normal surface singularities. Our
first result is for isolated singularities of hypersurfaces in C3, the second is
for more general surfaces. (The definitions involved in the second statement
are more technical, and we defer them to Section 5.)
Consider a complex surface Σ ⊂ CN with an isolated critical point at

the origin. For a sufficiently small ε > 0, the intersection Y = Σ ∩ S2N−1
ε
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with the sphere S2N−1
ε = {|z1|2 + |z2|2 + · · · + |zN |2 = ε} is a smooth

3-manifold called the link of the singularity. The induced contact structure
ξ on Y is the distribution of complex tangencies to Y , and is referred to as
the canonical contact structure on the link. The contact manifold (Y, ξ) is
independent of the choice of ε, up to contactomorphism.

Theorem 1.1. — Let (Y, ξ) be the link of an isolated singularity of a
complex surface in C3 with its canonical contact structure. Then ξ is planar
if and only if the singularity is of type An.

Theorem 1.2. — Let (Y, ξ) be the link of a normal surface singularity
with its canonical contact structure. Then ξ is planar if and only if the
singularity is rational with reduced fundamental cycle.

Rational singularities with reduced fundamental cycle are also known
as minimal singularities in the literature; they were first introduced by
Kollár [18]. We avoid the latter term because of possible confusion with
its other common meaning (referring to the absence of symplectic (−1)-
spheres, or exceptional divisors). These singularities can be defined in terms
of their dual resolution graphs; namely, a rational singularity with reduced
fundamental cycle has a good resolution whose graph is a tree of spheres
with no bad vertices (see Definition 5.1).
Deformation theory of rational singularities with reduced fundamental

cycle (and more generally, sandwiched singularities) was studied in [17].
In [30], Starkston and the third author will discuss the theory of [17] from
the symplectic topology viewpoint, using planar open books, and study the
relation between smoothings and symplectic fillings of canonical contact
structures for this class of singularities.

The “if” direction of Theorem 1.2 was essentially proven by Schönen-
berger [32], who established planarity of contact structures obtained by
Legendrian surgery on Legendrian links associated to graphs with no bad
vertices. From a different perspective, contact structures on links of singu-
larities whose graphs have no bad vertices were discussed by Némethi and
Tosun [23], who showed that in this case the Milnor open books (associ-
ated to the Artin cycle Zmin) are planar. Milnor open books are open books
that arise as follows: if f is a holomorphic function on the complement of
the singular point on the surface, the function f/‖f‖ defines a fibration
on the link in the complement of the set {f = 0}. (This set is the binding
of the open book.) The Milnor open book supports the canonical contact
structure in the link of the singularity by Caubel, Némethi, and Popescu-
Pampu [5, Theorem 1.3]. A connection between the constructions of [23]

TOME 70 (2020), FASCICULE 4



1794 Paolo GHIGGINI, Marco GOLLA & Olga PLAMENEVSKAYA

and [32] is given by Gay and Mark in [9], who give an explicit open book
and factorization of its monodromy.
It is known that for general links of singularities, the smallest possible

genus of compatible Milnor open books can be strictly greater than the
minimal genus of arbitrary open books compatible with the canonical con-
tact structure [3]. Together with [23], Theorem 1.2 shows that Milnor open
books (in the sense of [23, Section 2.2]) minimize the genus in the planar
case.

Corollary 1.3. — Let (Y, ξ) be the link of a normal surface singularity
with its canonical contact structure. If ξ is planar, then ξ has a Milnor open
book which is planar.

As a corollary of the proof of Theorem 1.2, we obtain the following; we
say that a singularity is planar if the canonical contact structure on its link
is planar.

Corollary 1.4. — There can be no strong symplectic cobordism from
a non-planar normal surface singularity to a planar one. In particular, a
planar normal surface singularity cannot be deformed to one whose link is
not planar.

This corollary goes in the direction of arguing that there can be no We-
instein cobordism from a non-planar contact structure to a planar one, or,
more generally, that the support genus is non-decreasing under symplectic
cobordisms.

For general planar contact manifolds, we show that a contact structure
given by a plumbing graph with a bad vertex cannot be planar if the vertices
adjacent to the bad one have weight −2 or −3, as in conditions (1.1).

Theorem 1.5. — A planar contact manifold cannot have a minimal
weak symplectic filling W with the following property: for some k > 0,
there exist homology classes B1, . . . , Bk, X ∈ H2(W ) such that

(1.1)

Bi ·X = 1, i = 1, . . . , k
Bi ·Bj = 0, i 6= j

Bi ·Bi ∈ {−2,−3}, i = 1, . . . , k
X ·X > −k.

In other words, the intersection graph of W cannot have a configuration
shown in Figure 1.1.

In particular, we have the following corollary for small Seifert fibered
L-spaces.

ANNALES DE L’INSTITUT FOURIER
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• • . . . • •

•

a1 a2 ak−1 ak

x

Figure 1.1. This intersection pattern cannot appear in the homology
of a Stein filling of a planar contact structure if −x < k, ai = −2 or
ai = −3 for each i. There can be more edges going out of each of the
vertices labelled with ai and out of the central vertex. All weights on
additional vertices are also supposed to be negative.

Corollary 1.6. — Tight contact structures on a Seifert fibered space
M(−2; r1, r2, r3) are never planar if this manifold is an L-space and

r1, r2, r3 >
1
3 .

Here we use the notationM(e0; r1, r2, r3) for small Seifert fibered spaces;
e0 ∈ Z, ri ∈ (0, 1) ∩ Q, and the space is given by the surgery diagram in
Figure 1.2. Contact structures on these spaces were extensively studied (see
e.g. [20, 34] and references therein). Many of them turn out to be planar:
every contact structure on M(e0; r1, r2, r3) is planar if e0 6 −3 [32], and
the same is true for M(e0; r1, r2, r3) for e0 > −1 whenever this manifold is
an L-space [19]. Corollary 1.6 contrasts these planarity results.

e0

− 1
r1
− 1
r2
− 1
r3

Figure 1.2. The Seifert fibered space M(e0; r1, r2, r3).

Our results stated above are special cases of a rather general examina-
tion of the homology of possible Stein fillings. The major tool comes from
Wendl’s theorem, saying that any Stein filling of a planar contact mani-
fold admits a Lefschetz fibration with the same planar fiber, and whose
vanishing cycles can be obtained by a positive factorization of the mon-
odromy of the planar open book into Dehn twists [36]. (In particular, all
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curves along which the Dehn twists are perfomed are homologically essen-
tial, which for planar pages is equivalent to being homotopically essential.)
Note that Wendl’s theorem is extended to show that any minimal weak
symplectic filling of a planar contact structure is deformation equivalent to
a Stein filling admitting a Lefschetz fibration with the same properties [24].
Given a Lefschetz fibration, we can compute the homology and intersection
form of the filling from the factorization of the monodromy; together with
the examination of all possible fillings, this leads to proofs of Theorems 1.1
and 1.5.
In the proof of Theorem 1.2, we consider the plumbing of symplectic

surfaces and make use of the following result, which may be of independent
interest.

Theorem 1.7. — If a contact 3-manifold (Y, ξ) has a weak symplectic
filling containing a symplectic surface of positive genus, it is not planar.

One could be tempted to prove this result by removing a tubular neigh-
bourhood of the surface and invoking Etnyre’s result on the nonexistence
of symplectic semi-fillings of planar contact structure; see [8, Theorem 1.2].
However, a tubular neighbourhood of a symplectic surface has a concave
boundary (and therefore, its complement has a convex boundary) if and
only if its self-intersection is positive. This case is already ruled out by
the negative definiteness of any filling of a planar contact structure (also
from [8, Theorem 1.2]), while in the case of negative self-intersection the
result is genuinely new.

As an immediate corollary of Theorem 1.7, we prove non-planarity of
Boothby–Wang contact structures for g > 0. Given two integers g > 0 and
b > 0, we denote by Yg,b the total space of the circle bundle with Euler
number −b over a closed surface of genus g. Let ξg,b be the Boothby–Wang
contact structure on Yg,b, i.e. the contact structure induced on the (convex)
boundary of the symplectic disk bundle over a surface of genus g, and Euler
number −b; see, for instance, [9]. Since the 0-section of the disk bundle is
symplectic, we have

Corollary 1.8. — Let ξg,b be the Boothby–Wang contact structure on
the circle bundle Yg,b with b > 0. Then ξg,b is planar if and only if g = 0.

Let Σg,b be the surface of genus g with b holes, and τ∂ the boundary multi-
twist, i.e. the product of right-handed Dehn twists along each boundary
component. Then ξg,b is supported by the open book (Σg,b, τ∂), and thus
Corollary 1.8 extends a partial result of Wand [35, Corollary 7.6].

ANNALES DE L’INSTITUT FOURIER
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It is useful to compare our obstructions to previous results. As noted
above, Etnyre proved that any weak symplectic filling of a planar con-
tact structure is negative definite, and that for a planar integral homol-
ogy sphere, any weak symplectic filling must have a diagonal intersection
form [8]. This implies, for example, that the canonical contact structure on
the Poincaré homology sphere (the link of the E8-singularity) is not planar.
In fact, one can observe that Etnyre’s proof yields a stronger statement:
the intersection form of any weak symplectic filling of a planar rational
homology sphere embeds in a diagonal lattice of some (possibly higher)
rank. It follows that the canonical contact structures on the links of the
E6- and E7-singularities cannot be planar, either. On the other hand, Et-
nyre’s result gives no information for the links of the Dn-singularities, as
the corresponding intersection forms embed in the standard lattice.
Another obstruction to planarity, in terms of Heegaard Floer homology,

was developed by Ozsváth, Stipsicz and Szabó [28]. This obstruction is also
trivial for the links of the Dn-singularities. More generally, the Heegaard
Floer obstruction is always trivial for L-spaces. By contrast, our obstruction
often gives non-trivial information in the case of L-spaces, see Corollary 1.6
above.
Using factorizations of mapping classes, Wand gave another obstruction

to planarity [35]. Wand’s results are closer in spirit to ours, as he also
uses Wendl’s theorem and examines topology of fillings, however both the
specific approach and the obstruction Wand obtains are different from ours.
In particular, Wand shows that the sum of the Euler characteristic and
signature is the same for all weak fillings of a planar contact manifold.
Then, if one is able to find two weak symplectic fillings W1, W2 for (Y, ξ)
such that χ(W1) + σ(W1) 6= χ(W2) + σ(W2), it follows that (Y, ξ) cannot
be planar. (Wand also examines how certain relators in the mapping class
group affect χ + σ.) However, this obstruction fails to address the case
when there is a unique filling; for example, it is known that the filling is
unique for the links of the Dn-singularities [27], so Wand’s approach gives
no obstruction here. Wand’s obstruction is also trivial when the underlying
contact 3-manifold is a rational homology sphere, and all its fillings are
negative definite (this is true, in particular, for all L-spaces); indeed, for a
negative definite Stein filling W of a rational homology sphere we always
have χ(W ) + σ(W ) = 1 since b3(W ) = b1(W ) = 0. We are also able to
answer a question of Wand in our Corollary 1.8, proving non-planarity for
a family of contact structures that cannot be handled by Wand’s means
(see [35, Corollary 7.6] and subsequent discussion).

TOME 70 (2020), FASCICULE 4
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As a byproduct of our intersection form calculation, we also get the
following corollaries. These were first proven by Oba [26, Lemma 3.1,
Lemma 3.2] using the Heegaard Floer obstruction from [28]. It is instructive
to obtain these results more directly, from the basic topology of fillings.

Corollary 1.9. — Let (W,ω) be a weak symplectic filling of a pla-
nar contact manifold (Y, ξ). If B ∈ H2(W ) is a class of square −1, B is
represented by an embedded symplectic sphere that can be blown down.

Corollary 1.10. — Let Y be an integral homology sphere, equipped
with a planar contact structure ξ. Then any minimal weak symplectic filling
of (Y, ξ) is an integral homology ball.

Non-trivial examples of fillings as in Corollary 1.10 do exist; a number of
examples were constructed by Oba [25]. More generally, we show that one
can construct Stein fillings with prescribed fundamental groups.

Proposition 1.11. — Every finitely presented group is the fundamen-
tal group of the total space of a Lefschetz fibration over the disk with planar
fibers.

Amore precise version of this statement, yielding also examples for Corol-
lary 1.10, is given in Proposition 6.1. Note that Proposition 1.11 is similar
to a theorem of Amorós, Bogomolov, Katzarkov, and Pantev [1] and to
Gompf’s theorem [13]: Gompf showed that any finitely presented group is
the fundamental group of a closed symplectic 4-manifold, and in [1], a closed
symplectic 4-manifold with prescribed fundamental group is constructed as
a symplectic Lefschetz fibration over a closed surface. Unlike [1, 13], where
no bounds are given for the genus of the fiber, we work with manifolds with
boundary but restrict to Lefschetz fibrations with planar fibers.

Organization

In Section 2, we explain how to compute the intersection form and first
Chern class of the filling constructed from a positive factorization of the
monodromy of a planar open book, and prove Corollaries 1.9 and 1.10, and
Theorem 1.7. In Section 3, we prove Theorem 1.1 (after considering the key
example of D4). In Section 4, we prove Theorem 1.5 and Corollary 1.6. In
Section 5, we prove Theorem 1.2. Finally, in Section 6 we discuss funda-
mental groups and prove Proposition 1.11.
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2. Computing topological invariants of a planar Lefschetz
fibration

In this section, we explain how to compute the intersection form and the
first Chern class for a Lefschetz fibration over a disk with planar fibers.
The second homology classes of a Lefschetz fibration are given by certain
linear combinations of the vanishing cycles, and both the intersection form
and the evaluation of the first Chern class can be described directly in
terms of the vanishing cycles. This is a consequence of fairly straightfor-
ward topological considerations, and we think that these facts, especially
Proposition 2.1, should be known to experts (see Remark 2.2 below), but
complete statements and the proofs seem to be absent from the literature.

Let P be the page of a planar open book decomposition of Y ; P is the
disk D with holes. In this paper, the 3-manifold Y is always assumed to
be oriented, and the open book decomposition we consider is compatible
with a co-oriented contact structure. An orientation of the contact planes,
together with an orientation of Y , determine the orientation of the binding
of the open book and the orientation of the page P . Let us assume that
the monodromy φ of the open book is the product of positive Dehn twists
about homologically non-trivial simple closed curves α1, . . . , αm in P for
some m. Each curve αi divides P into two components, and we orient it
as the boundary of the region Ai disjoint from ∂D. With this orientation,
αi defines a class in H1(P ) that we denote with [αi]P . For convenience, we
will also assume that the αi are smoothly embedded and that they intersect
transversely. This implies that the union of the αi disconnects P into finitely
many connected components. Unless otherwise stated, homology is taken
with coefficients in Z.
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Let W be the total space of a Lefschetz fibration over a disk D, with
planar fiber P . We assume that W , P , and D are compatibly oriented. (If
∂W is equipped with a contact structure and an open book with fiber P as
above, the orientations of W and D are uniquely determined.) If D′ ⊂ D
is a small disk that contains no critical points, then W is obtained from
P ×D′ by attaching 2-handles to copies of the vanishing cycles contained in
the vertical boundary P × ∂D′ so that distinct handles are attached along
knots contained in distinct fibers.
We first describeH2(W ) and give a convenient way to visualize homology

classes. We use the exact sequence of the pair (W,P × D′); since P × D′
retracts onto P , we can replace the former with the latter:

0 −→ H2(W ) j∗−→ H2(W,P ) ∂∗−→ H1(P ) −→ H1(W ) −→ H1(W,P ) = 0.

The group H2(W,P ) is freely generated by the cores of the attached 2-
handles; we can identify these generators with the vanishing cycles. Next,
H2(W ) is isomorphic to im j∗, which in turn equals ker ∂∗. So H2(W ) can
be identified with null-homologous linear combinations of vanishing cycles
(thought of as 1-chains in P ).

Further, in H1(P ) a linear combination b1[α1]P +b2[α2]P + · · ·+bm[αm]P
is null-homologous if and only if the total winding number at each hole of P
is zero. Notice that the curves correspond to distinct vanishing cycles, but
their homology classes may coincide. In our setting, each αi is a vanishing
cycle, so it is a simple closed curve on the planar surface P ; then, with
the chosen orientation convention, each αi has winding number 0 or 1 at
each hole.
We denote by [αb]W the homology class in H2(W ) corresponding to the

linear combination αb =
∑
biαi; we stress that whenever we write [αb]W

it will be implicit in the notation that [αb]P =
∑
bi[αi]P = 0 ∈ H1(P ).

Consider the linear combination of 2-chains Ab =
∑
biAi, where as above

Ai is the oriented region in D with ∂Ai = αi. While it is possible to
compute the self-intersection already at this point, using transversality for
singular chains, we find it more satisfactory to represent homology classes
by oriented embedded surfaces as follows.
Since [αb]P = 0 ∈ H1(P ), the 2-chain Ab has multiplicity 0 near each

boundary component of P . Let αb be the boundary of Ab; we construct a
surface corresponding to αb as follows. Let D′′ = 1

2D
′ ⊂ D′ be a smaller

disk, and identify its boundary with S1 ⊂ C. Let |b| =
∑
|bi|, and consider

|b| fibers P1, . . . , P|b| of P ×D′ over the points ηj = exp(2πji/|b|) in ∂D′′.
Rewrite the sum

∑
biAi as ε1Ai1 +· · ·+ε|b|Ai|b| , where each εi is ±1. Using

ANNALES DE L’INSTITUT FOURIER
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the same notation, we will consider Aij as a copy of the corresponding
region in the fiber Pj over ηj .
Look at a hole h of P . We ignore all indices i such that αi has winding

number 0 around h, since the corresponding 2-chain Ai is disjoint from h.
Since the winding number of αb around h is 0, all other indices, considered
with their multiplicity, can be paired up; more precisely, we can rewrite
Ab = Aj1 −Ak1 + · · ·+Ajn

−Akn
+A′, where A′ is a 2-chain disjoint from

the hole h. Note that as before, all 2-chains in the expression for Ab are
the regions in the disk D, oriented compatibly with P if they come with a
+ sign, and oppositely otherwise.
Using a standard innermost argument and connecting the paired-up 2-

chains by oriented tubes, we can actually tube away all intersections of
Ab with h × ∂D′′ by adding cylinders that are parallel to ∂h × ∂D′′ in
P × ∂D′′. The result is an oriented embedded surface in P × D′ whose
boundary consists of a number of vanishing cycles. In W , vanishing cycles
are null-homologous, so they can be capped off with a Lefschetz thimble to
make an oriented embedded closed surface inW representing the homology
class [αb]W . See Figure 2.1.

A2 A3

A1

(a) The three curves α1, α2, α3
and the corresponding regions
A1, A2, A3.

η2

η1 η3

(b) The surface representing the
homology class: the three × de-
note the critical point of the pro-
jection associated to α1, α2, α3,
and the corresponding cones are
the three Lefschetz thimbles.

Figure 2.1. Constructing an embedded surface representing the ho-
mology class [α2 − α1 − α3]W .
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Now we can determine the intersection form of W , by computing the
intersection of two classes.

Proposition 2.1. — Consider two homology classes B = [b1α1 + · · ·+
bmαm]W , B′ = [b′1α1 + · · ·+ b′mαm]W in H2(W ). Then

B ·B′ = −(b1b
′
1 + · · ·+ bmb

′
m).

In particular, B ·B = −(b2
1 + · · ·+ b2

m).

Proof. — We construct representatives of B and B′ as above, starting
with fibrations over disjoint small disks D′1 and D′2 away from the critical
points. The parts of the surfaces contained in P × D′1 resp. P × D′2 are
then disjoint, but intersections may appear after we cap off the vanishing
cycles on the boundary of these surfaces. This is schematically depicted in
Figure 2.2. Intersections now come in two sorts:

(1) the self-intersection of the cap (thimble) corresponding to the van-
ishing cycle αi, and

(2) the intersection of the caps corresponding to the distinct vanishing
cycles αi and αj .

In case (1), this self-intersection equals, by construction, the framing of αi
along which the corresponding 2-handle is attached, relative to the page
P . A standard result in topology of Lefschetz fibrations (see e.g. [15, Sec-
tion 8.2]) says that for each critical point, the corresponding 2-handle is
attached along the vanishing cycle with the framing −1 relative to the page
framing. This implies that the self-intersection of each thimble is −1.
In case (2), the intersection of the caps is given by the intersection of the

curves αi and αj on the page P . Indeed, the cap for αi is a thimble that
connects a copy of the curve αi in the fiber over some point ηs with is = i

to the corresponding critical point in a singular fiber, see Figure 2.1. The
projection of this thimble to the base disk is a path from ηs to the critical
value in the disk. Similarly, the projection of the cap for αj is a path from
a point ηt with it = j to the critical value corresponding to the vanishing
cycle αj , see Figure 2.2. The two caps will be disjoint if these two paths
are disjoint. If the paths intersect at a point p ∈ D, the intersection of
the two thimbles with the fiber Pp over p is given by curves isotopic to αi
resp. αj . The intersection of caps is then given by the sum of contributions
of all such points p, and each intersection point of the paths contributes
[αi]P · [αj ]P to the sum. Since P is planar, we see that [αi]P · [αj ]P = 0
for the simple closed curves αi and αj ; thus, the total contribution is 0 in
case (2). �
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Figure 2.2. The two “tentacled” figures are meant to represent two
embedded surfaces constructed from two linear combinations of cycles
as above. The two small circles are D1 and D2, and the tubes lie over
them. Intersections happen over the regular fibers (dotted) and over
the vanishing cycles (crossed).

Remark 2.2. — In case (2) we use planarity in an essential way; the
formula would have additional terms for a higher-genus page. A version
of Proposition 2.1 holds in the case of a higher-genus fiber, with a similar
proof, but there are extra terms given by the intersections [αi]P · [αj ]P that
can be non-trivial in general. This fact is mentioned, without proof, in the
course of the proof of [2, Lemma 16]. We focused on the planar case since
it is sufficient for our purposes, the statement is simpler, and the surface
representatives are easier to visualize.

Corollary 2.3. — Let W be a Stein filling of a planar contact 3-
manifold, and B ∈ H2(W ) a non-zero homology class. Then B ·B 6 −2.

Proof. — By Wendl’s theorem [36], W corresponds to a factorization
of the monodromy into positive Dehn twists along curves α1, . . . , αm. We
know by [8] that B·B < 0. The class B is [b1α1+· · ·+bmαm]W , where not all
of the coefficients bi vanish. Suppose that B ·B = −(b2

1+· · ·+b2
m) = −1; this

implies that all bi vanish except for one, say b1 = ±1, but this contradicts
the fact that all vanishing cycles are homologically essential in P . �
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We immediately get Corollaries 1.9 and 1.10.

Proof of Corollary 1.9. — LetW be a weak symplectic filling of a planar
contact manifold (Y, ξ). Suppose that B · B = −1 for a class B ∈ H2(W ).
By [24], if W were minimal, W would be deformation equivalent to a Stein
filling (given by a Lefschetz fibration with planar fibers), and so the previous
corollary would give a contradiction. Suppose now that E is the homology
class of a symplectic (−1)-sphere in W ; if E = ±B the proof is complete.
We claim now that, if E 6= ±B, then E ·B = 0. To this end, let B ·E = x,
and look at the subspace of H2(W ) generated by E and B; the intersection
form of W , restricted to this subspace, is

(−1 x
x −1

)
; by [8], this matrix has

to be negative definite, and this can happen if and only if x = 0. It follows
thatW can be blown down along a sphere in E, and that, in the blowdown,
B ·B = −1. By induction, we can blow down to a minimal weak filling W0;
since this can be deformed to a Stein filling, Corollary 2.3 now gives a
contradiction. �
Proof of Corollary 1.10. — Let (W,ω) be a minimal weak symplectic

filling of (Y, ξ). By [24], (W,ω) can be deformed to a Stein filling; hence
it has a handle decomposition with no 3-handles, so that H3(W ) = 0
and H3(W ) ∼= H1(W,Y ) = 0. Since Y is an integral homology sphere,
by Poincaré–Lefschetz duality the intersection form Q of W is unimodu-
lar. From the long exact sequence of the pair (W,Y ), it also follows that
H1(W ) = 0. Again, by Poincaré–Lefschetz duality and the universal coef-
ficient theorem, H2(W ) is torsion-free.
By results of Etnyre [8], since Y is an integral homology sphere and ξ

has a planar open book decomposition, then the intersection form Q of W
embeds in the negative definite diagonal lattice ZN for some N . Since Q
is unimodular, Q is in fact a direct summand of ZN , and in particular it
is itself diagonalizable. Therefore, unless the filling is a rational homology
ball, H2(W ) must have a class with self-intersection −1, but this is not
possible by Corollary 2.3. �
There are many examples of planar, fillable integral homology spheres

that are not contactomorphic to the standard tight S3; we discuss these in
Section 6.
We now turn to the calculation of the first Chern class c1(J) for a compat-

ible almost-complex structure on a Lefschetz fibration. Although planarity
is crucial in the next proposition, much of the proof follows the lines of the
well-known calculation of c1 for Stein domains corresponding to Legendrian
surgeries [14, Proposition 2.3].
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Proposition 2.4. — Let (Y, ξ) be the contact structure associated to
the planar open book (P, φ). Let (W,ω) be the symplectic filling of (Y, ξ)
associated to the factorization of φ into positive Dehn twists along the
curves α1, . . . , αm, oriented coherently with the outer boundary of P ⊂ D2.
If J is an almost-complex structure compatible with ω, then

〈c1(J), [b1α1 + · · ·+ bmαm]W 〉 = b1 + · · ·+ bm.

Note that something similar follows by work of Gay and Stipsicz [10,
Corollary 2.3]; they observe that, up to deformation, (W,ω) embeds in the
complement of a line in a blowup X of CP2. Therefore H2(W ) embeds in
the lattice generated by the homology classes of (some of) the exceptional
divisors of X; the first Chern class evaluates as 1 on each of these divisors,
thus recovering an analogue of Proposition 2.4. However, there are examples
of Stein 4-manifolds that admit such an embedding, but are nevertheless
not planar; for instance, the following 4-manifold is realised as a subdomain
in blowup of C2, as the corresponding embedding shows, but the planarity
of its boundary is excluded by Theorem 1.2.

• •

•

•

−2 −2

−3

−2

= • •

•

•

e3−e4 e2−e3

e1−e2−e3

e4−e5

Proof. — As before, the space W is obtained from P ×D′ by attaching
2-handles. The complex bundle (TW, J) is trivial over P × D′, and c1(J)
measures the obstruction to extending a trivialization over the 2-handles.
We will argue that for each 2-handle, this obstruction is the same in the
appropriate sense. We can assume that the 2-handles are attached to fibers
of P × D′ over points in a small arc in ∂D′. Fix an embedding P ⊂ C
and trivialize the complex bundle T (P ×D′) = TP × TD′ over the chosen
fibers by a framing (u, v), where u is a constant vector field in P ⊂ C and
v is an inward normal to ∂D′ in D′ ⊂ C. This trivialization extends to a
complex trivialization of T (P × D′) over the entire product P × D′. Each
2-handle Hk can be identified with a fixed copy of D2 × D2 ⊂ iR2 × R2,
and we can pick a complex trivialization of its tangent bundle that restricts
to the circle S1 × {0} ⊂ Hk as the framing (τ, ν), where τ is the tangent
and ν the outward normal vector fields to S1 = ∂D2 ⊂ iR2. (Indeed, the
framing (τ, ν) differs from the restriction of the product framing to S1 by
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an element of π1(SU(2)), and so (τ, ν) can be extended over the entire
handle since SU(2) is simply connected, see [14, Proposition 2.3]). When
we attach the handle by identifying S1 × 0 ⊂ Hk with the vanishing cycle
αk, ν is identified with v, and τ is identified with the tangent vector field
to αk. Therefore, ν and v together span a trivial complex line bundle, and
c1(J) equals the first Chern class of the complex line bundle defined by τ
and u. To evaluate the latter on the core of the handle Hk (as a relative
Chern class), we must look at the rotation number of u relative to τ along
the vanishing cycle αk in the page P . Since P is planar and αk is a simple
closed curve in P , it is clear that this rotation number equals r = ±1. (The
sign depends on the orientation conventions). Note also that the value of r
is the same for all handles, since the tangent bundles over different pages
are identified by our choice of trivialization, and different vanishing cycles
in the same page P ⊂ C are identified via an isotopy in C. It follows that

(2.1) 〈c1(J), [b1α1 + · · ·+ bmαm]W 〉 = r(b1 + · · ·+ bm),

where r = ±1.
To pin down the sign, we consider the lens space L(3, 1). The canonical

contact structure ξ0 on L(3, 1) is the Boothby–Wang structure associated
to the disk bundle over S2 with Euler number −3. As mentioned in the in-
troduction, ξ0 is supported by the open book on the 2-holed disk P , where
the monodromy φ is the multi-twist along the boundary; more precisely,
Gay and Mark [9] show that this factorisation corresponds (up to defor-
mation equivalence) to the symplectic disk bundle filling (W,ω) of ξ0. As
above, call J an almost-complex structure compatible with ω.
Note that the 0-section of the disk bundle is a symplectic sphere S, whose

homology class generates H2(W ); in particular, S satisfies the adjunction
formula, and the symplectic form integrates positively over it.
The class [α1 − α2 − α3]W , where α1 is parallel to the outer boundary,

generates H2(W ). Since the corresponding 2-chain is made by a part of
the page (with positive orientation) and three vanishing cycles (where ω
vanishes), the symplectic form integrates positively over this linear combi-
nation.
In particular, S = [α1 − α2 − α3]W , with its symplectic orientation.

Applying the adjunction formula and (2.1)

−r = 〈c1(J), [α1 − α2 − α3]W 〉 = 〈c1(J), [S]〉 = S · S + χ(S) = −1,

hence r = 1, as claimed. �
We now use Propositions 2.1 and 2.4 to prove Theorem 1.7.
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Proof of Theorem 1.7. — Suppose that (W,ω′) is a weak symplectic
filling that contains a symplectic surface of genus g > 0, and call A its
homology class. Let J ′ be an almost-complex structure compatible with
ω′. Without loss of generality, we may assume that (W,ω′) is minimal;
then Wendl’s theorem guarantees that there is a deformation from (ω′, J ′)
to (ω, J), such that (W,ω) is supported by a planar Lefschetz fibration,
corresponding to a factorization of a planar monodromy φ of ξ into positive
Dehn twists along α1, . . . , αm ⊂ P .
Note that 〈c1(J), A〉 = 〈c1(J ′), A〉, since evaluation of c1(J) can only take

discrete values. Suppose A = [b1α1 + · · ·+ bmαm]W . From Proposition 2.4
we obtain:

〈c1(J), A〉 = b1 + · · ·+ bm.

On the other hand, since A is represented by an ω′-symplectic surface of
genus g, it satisfies the adjunction formula:

〈c1(J ′), A〉 −A ·A = 2− 2g 6 0.

Putting everything together:∑
(bj + b2

j ) = b1 + · · ·+ bm + b2
1 + · · ·+ b2

m 6 0.

However, each of the summands on the left-hand side is non-negative, and
evaluates to 0 only if bj ∈ {−1, 0} for each j. If g > 1, we are already
done. If g = 1, the signs of all coefficients of bj agree, and therefore, by a
winding number argument, [b1α1 + · · ·+ bmαm]P cannot be zero in H1(P ),
as desired. �
The previous theorem rules out the presence of symplectic surfaces of

genus g > 0. Symplectic spheres can exist in a weak symplectic filling of a
planar contact structure, and we will now describe their homology classes
explicitly in terms of vanishing cycles of a Lefschetz fibration deformation
equivalent to the given minimal symplectic filling.
Let us set up some notation and terminology first. We say that two curves

α and α′ in P ⊂ D2 are separated if there is no hole in P around which
both α and α′ have positive winding number. (Equivalently, this means
that α and α′ are homologous to β = ∂D and β′ = ∂D′ such that D
and D′ are disjoint.) We say that α dominates α′, and we write α � α′,
if there is no hole in P around which the winding number of α′ is larger
than the winding number of α. (Equivalently, this means that α and α′ are
homologous to β = ∂D and β′ = ∂D′ such that D contains D′.) Note that
� is not a partial order on isotopy classes of curves, but rather it induces
one on homology classes of embedded curves.
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Lemma 2.5. — Suppose that (W,ω′) is a minimal weak filling of a
planar contact manifold (Y, ξ), deformation equivalent to a Stein filling
(W,ω) supported by a planar Lefschetz fibration with vanishing cycles
α1, . . . , αm ⊂ P . If there is an embedded symplectic sphere in (W,ω′) in
the homology class [b1α1 + · · ·+ bmαm]W , then all coefficients bi are either
0 or ±1, and there is exactly one coefficient +1. Without loss of generality,
suppose that the homology class is [α1−α2− · · · −α`]W ; then α1 � αj for
every j = 2, . . . , `, and αj and αj′ are separated for every j 6= j′ among
2, . . . , `.

Proof. — The proof is immediate once we write the adjunction formula
as in the previous proof; indeed, the equation∑

(bj + b2
j ) = 2

implies that all coefficients bj are either 0 or −1, except for exactly one
j, for which bj = −2 or bj = 1. However, the first case is excluded, since
otherwise all coefficients would have the same sign.
We now turn to the second part of the statement. Since [α1−α2− · · · −

α`]W is a homology class in H2(W ), [α1]P = [α2]P + · · ·+ [α`]P . Fix a hole
in P , and let us consider the winding number wi of αi around it. Since
[α1 − α2 − · · · − α`]P = 0 ∈ H1(P ), its total winding number around the
hole is 0; on the other hand, by linearity, it is also w1 − w2 − · · · − w`, so
we have w1 = w2 + · · ·+w`. Since each wi is either 0 or 1, we immediately
see that α1 � α2, . . . , α`, and that αi and αj are separated whenever 2 6
i 6= j 6 `. �

3. Links of hypersurface singularities

In this section, we turn our attention to links of isolated singularities of
complex hypersurfaces in C3. Consider a complex hypersurface Σ ⊂ C3,
given by an equation F (z1, z2, z3) = 0 with an isolated critical point at
the origin, and let (Y, ξ) be the link of the singularity with its canonical
contact structure, so that Y = Σ∩{|z1|2 + |z2|2 + |z3|2 = ε}. The manifold
(Y, ξ) is Stein fillable, with the standard filling given by the Milnor fiber
{F (z1, z2, z3) = η} ∩D6

ε for small η > 0; the Milnor fiber is the smoothing
of Σ ∩ {|z1|2 + |z2|2 + |z3|2 6 ε}.

We now consider an example, the link of the D4-singularity. As a 3-
manifold, this is described by the surgery diagram of Figure 1.2 where e0 =
−1/r1 = −1/r2 = −1/r3 = −2; that is, it is the boundary of the plumbing
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associated to the graph D4 (see Figure 3.2). This example illustrates the
main idea of our obstruction and will also be the key case of Theorem 1.1.

Lemma 3.1. — The canonical contact structure on the link of the D4-
singularity is not planar.

Proof. — Consider the Milnor fiber W of the D4-singularity. This is a
Stein filling of the canonical contact structure on the link. The intersection
form ofW is given by the D4-graph (Figure 3.2). We label its central vertex
X, and the other vertices A, B, C.

For the sake of contradiction, suppose that the canonical contact struc-
ture on D4 admits an open book with planar page P . As before, by Wendl’s
theorem we know that W admits the structure of a Lefschetz fibration
whose fiber is the page P , and the vanishing cycles come from a positive
factorization of the monodromy. The intersection form on W can be com-
puted as in Proposition 2.1; we now examine possibilities for vanishing
classes that could produce D4.
To begin, we need to have four classes with self-intersection −2. By

Proposition 2.1, each of these must be given by the difference of two curves,
corresponding to two distinct vanishing cycles (which could, however, be
isotopic as curves in P ); moreover, it must be a null-homologous linear
combination, so the two curves should be homologous. This means that
the two curves must encircle the same holes of the disk. Note that the
curves do not have to bound an annulus and do not have to be homotopic,
see Figure 3.1.

Figure 3.1. Simple closed curves in P are homologous if and only if
they encircle the same holes. The curves shown are homologous but
not homotopic in the three-holed disk.

Let the class of the central vertex X be [α − β]W . Similarly, the class
A is given by two homologous curves, and since A ·X = 1, exactly one of
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these curves must coincide with α or β. We may assume that A = [γ−α]W
(where the vanishing cycle γ is different from both α and β); note also
that α and β must be distinct vanishing cycles. Similarly, both classes B
and C must be given by pairs of vanishing cycles, so that exactly one of
the curves in the difference representing each pair coincides with α or β.
However, since A ·B = A · C = B · C = 0, no curves may be used in more
than one pair, which is clearly not possible. Indeed, if B = [β− δ]W , C can
use neither α nor β. �
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. — Since the Dn-graph contains D4, the argument

of Lemma 3.1 applies to show that the link of the Dn-singularity is not
planar for any n > 4.

• • . . . ••

•

•

−2 −2 −2−2

−2

−2

Figure 3.2. The Dn-graph, which has n vertices, all labeled with −2.

For links of all other surface singularities, the theorem follows from pre-
viously known results. Indeed, by [33], the only surface singularities with
negative definite Milnor fiber are the simple singularities An, Dn, En. Et-
nyre’s theorem says that every filling of a planar contact structure must
be negative definite [8], and since the Milnor fiber gives a Stein filling, it
follows that only the links of A-D-E singularities can be planar. The case
of E8 is ruled out by [8, Theorem 1.2], as the corresponding link is an in-
tegral homology sphere with a non-standard intersection form. The cases
of E6 and E7 are similarly ruled out using [8, Theorem 1.2]: although not
stated explicitly in Etnyre’s paper, the same proof applies to show that for
a planar rational homology sphere, the intersection form of any Stein filling
must embed in a negative definite diagonal lattice. The links of E6 and E7
are rational homology spheres; the corresponding Milnor fibers, i.e. fillings
given by the plumbing graphs, have intersection forms E6 and E7. Neither
embeds into the standard lattice, thus the canonical structures on the links
of E6 and E7 cannot be planar.

Alternatively, the cases of E6 and E7 follow from Lemma 3.1, as the E6-
and E7-graphs both contain the D4-graph.
Finally, the links of the An-singularities are the lens spaces L(n+ 1, n),

and their canonical contact structures are easily seen to be planar [32]. �
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4. The homological obstruction

We now prove Theorem 1.5; the argument is very similar to the proof
of Lemma 3.1. As in Section 2, we use the notation αb to denote the
linear combination b1α1 + · · ·+ bmαm of curves associated to the m-tuple
b = (b1, . . . , bm). Moreover, given an m-tuple b, we call the set {i | bi 6= 0}
the support of b. In other words, the support of b is the set of curves used
by αb. By extension, we also call the same set the support of the associated
homology class [αb]W (when this makes sense).

Lemma 4.1. — SupposeW is the minimal weak symplectic filling of the
contact structure (Y, ξ), associated to the factorization of the monodromy
φ : P → P , where P is planar. Suppose B1, B2 ∈ H2(W ) satisfy

B1 ·B1, B2 ·B2 ∈ {−2,−3}, B1 ·B2 = 0.

Then, B1 and B2 have disjoint support.

Proof. — The proof is split into three cases:
(1) B1 ·B1 = B2 ·B2 = −2,
(2) B1 ·B1 = −2, B2 ·B2 = −3, and
(3) B1 ·B1 = B2 ·B2 = −3.

(The case B1 · B1 = −3, B2 · B2 = −2 is clearly symmetric to the second
case, so we can omit it.)
To fix the notation, suppose that W is associated to the factorization of

φ into Dehn twists along curves α1, . . . , αm. We recall that, if a class in a
minimal weak filling of a planar contact structure has self-intersection −2,
then it is represented by the difference of two homologous curves. Along
the same lines, if a class as above has self-intersection −3, it is of the form
±[αi − αj − αk]W , where [αi]P = [αj ]P + [αk]P . In particular, there are
holes in P around which αi and αj (respectively, αk) have both winding
number 1.

(1) Without loss of generality, suppose that B1 = [α1 − α2]W , where
α1 and α2 are homologous in P . If the support of B2 is not disjoint
from that of B1, then B2 = [αi−αj ]W where i or j is either 1 or 2,
and [ai]P = [aj ]P . One easily sees that neither combination works:
for example, if B2 = [α3−α1]W with α3 6= α1, α2, then B1 ·B2 = 1,
if B2 = [α2 − α1]W , then B1 ·B2 = 2, and other cases are similar.

(2) As above, suppose B1 = [α1 − α2]W . If the support of B2 is not
disjoint from that of B1, the only possibility is that ±B2 = [α3 −
α1 − α2]W , since α1 and α2 must appear with the same sign. But
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α1 and α2 have winding number 1 around the same holes, and so
their sum cannot be homologous to a simple closed curve α3.

(3) Without loss of generality, suppose that B1 = [α1 − α2 − α3]W .
(Note that here we are using that the assumptions are unchanged
if we change sign to either B1 or B2.) Suppose that the support
of B2 is not disjoint from that of B1. Up to relabeling the indices
and up to changing the sign of B2, the only possibility is that B2 =
[α4 − α1 − α2]W . But, again, as observed above, α1 and α2 have
winding number 1 around some hole, and so their sum cannot be
homologous to a simple closed curve α4. �

Proof of Theorem 1.5. — Suppose we have a configuration of curves
B1, . . . , Bk, X as in the statement. By the previous lemma, B1, . . . , Bk have
pairwise disjoint supports. Since X meets non-trivially each of B1, . . . , Bk,
its support must intersect at least the support of each of them, and in
particular X ·X 6 −k, thus leading to a contradiction. �
Proof of Corollary 1.6. — For Seifert fibered L-spaces M(−2; r1, r2, r3),

ri ∈ (0, 1)∩Q, the classification of tight contact structures was given in [11].
Every tight contact structure on this space can be obtained by expanding
the rational parameters − 1

ri
as continued fractions,

− 1
ri

= ai0 −
1

ai1 − 1
ai

2−···

and making a Legendrian surgery diagram where each − 1
ri
-framed circle

is replaced by a chain of Legendrian unknots with Thurston–Bennequin
numbers given by the coefficients ai0 + 1, ai1 + 1, . . . . Since by assumption
r1, r2, r3 > 1

3 , we have that a1
0, a

2
0, a

3
0 ∈ {−2,−3}. Thus, the corresponding

plumbing graph for the Stein filling satisfies the hypotheses of Theorem 1.5,
and therefore the contact structure is not planar. �
We observe that Theorem 1.5 applies in many situations where the filling

is not a plumbing of spheres.

Example 4.2. — Consider the Legendrian surgery diagram of Figure 4.1,
where k > 2 and the Legendrian knots L0, . . . , Lk satisfy the following
properties:

• 1− k < tb(L0) < 0;
• for each i > 0, tb(Li) ∈ {−1,−2};
• at least one of the knots L0, . . . , Lk is non-trivial.

Then the corresponding Stein 4-manifold (W,J) is not diffeomorphic to
a plumbing of spheres, but it contains a configuration of homology classes
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L0

L1 Lk
. . .

Figure 4.1. The Legendrian surgery diagram for Example 4.2. The
Legendrian knots Li have k − 1 < tb(L0) < 0, tb(L1), . . . , tb(Lk) ∈
{−1,−2}.

that satisfy the assumptions of Theorem 1.5. Therefore, the boundary (Y, ξ)
of (W,J) is not a planar contact manifold.

Finally, we observe that the technique of the proof of Theorem 1.5 has
a limit. Indeed, the configuration below gives no obstruction to planarity
simply by looking at intersection forms, as the intersection form given by
the graph in the figure below can be embedded into the intersection form
of the unique symplectic filling of L(6, 5). The filling W is associated to
the open book (S1 × I, τ6), where τ is the right-handed Dehn twist along
the core of the annulus, and the underlying 4-manifold of the filling is
diffeomorphic to a linear plumbing of five spheres of self-intersection −2.
There are six vanishing cycles, α1, . . . , α6, all parallel to the core of the
annulus; the homology classes of the spheres in the plumbing are [α1 −
α2]W , . . . , [α5 − α6]W . The embedding we seek is then given as follows
(here we omit the suffix for the homology classes for readability):

• •

•

•

−2 −2

−4

−2

= • •

•

•

[α2−α3] [α3−α4]

[α1+α2−α5−α6]

[α1−α2]

The boundary of the plumbing given above is the Seifert manifold
M
(
−2; 1

2 ,
1
2 ,

1
4
)
. It has three tight contact structures, each presented by

a contact surgery diagram directly coming from the plumbing graph [34]
(see also [11, 19]). Theorem 1.5 gives no information on planarity of these
contact structures; however, Theorem 1.2 shows that two of them (one con-
jugate to the other) are not planar. We do not know whether the third one
(which is self-conjugate) is planar or not.
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5. Links of normal surface singularities

The goal of this section is to prove Theorem 1.2. We will use terminology
and results from Section 2 without explicit mention; before proving the
theorem, we recall a few facts and definitions concerning resolutions of
surface singularities and plumbing graphs.

Given a complex surface X with an isolated singularity at 0, we can con-
sider its resolution π : X̃ → X. The resolution is good if the irreducible
components of the exceptional divisor π−1(0) are smooth complex curves
that intersect transversely at double points only. The topology of the reso-
lution is encoded by the (dual) resolution graph Γ. The vertices of Γ corre-
spond to irreducible components of the exceptional divisor and are labeled
by the genus and the self-intersection (weight) of the corresponding curve;
the edges record intersections of different irreducible components. The link
of the singularity is then the boundary of the plumbing of disk bundles over
surfaces according to Γ. A good resolution is not unique, but graphs arising
from different resolutions are related by a finite sequence of blow-ups/blow-
downs of vertices corresponding to spheres with self-intersection −1.
It is known that a surface singularity is normal if and only if its resolution

graph is negative definite. (This property simultaneously holds or fails for
resolution graphs of all good resolutions.) For a graph with negative integer
weights associated to its vertices, recall that a bad vertex is a vertex v with
weight −w(v) such that

0 < w(v) < valence of v.

A normal surface singularity is known to be rational if its graph has no
bad vertices, but the converse is not true. (We refer the reader to [21] for
details of the definitions above and their topological significance.) We will
need a subclass of rational singularities:

Definition 5.1. — A normal surface singularity whose dual resolution
graph is a tree of spheres with no bad vertices is called a rational singularity
with reduced fundamental cycle.

In this paper we only work with resolution graphs, without referring to
any other properties of this class of singularities. Némethi [22] proved that
a normal surface singularity is rational if and only if its link is an L-space.
Using this, Theorem 1.2 implies that if the canonical contact structure on
a link of singularity is planar, then this link must be an L-space.

As mentioned in the introduction, canonical contact structures are known
to be planar for links of rational surface singularities with reduced funda-
mental cycle. We now prove the converse: if the canonical contact structure
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admits a planar open book, then the resolution graph is a tree of spheres
with no bad vertices. We begin with two lemmas; both are probably well-
known, but for convenience we give their proofs.

Lemma 5.2. — Suppose the graph Γ is minimal, i.e. it contains no ver-
tices of weight −1 given by spheres. Then (W,ω′) is minimal.

Proof. — The assumption on Γ translates as: for each vertex Ei, either
the weight wi = Ei · Ei satisfies wi < −1, or wi = −1 and g(Ei) > 0.

We claim that no homology class E =
∑
i aiEi on which ω integrates

positively can satisfy E · E = −1 and g(E) = 0; such a class would also
have to satisfy c1(E) = 1, by adjunction.
We first claim that all the coefficients ai are positive. Since any class

with all negative coefficients obviously cannot be symplectic, it is enough
to show that all coefficients must have the same sign. First, we observe
that the class E is indecomposable, i.e. if we write E = E′ + E′′, where
E′ · E′′ = 0, then either E′ = 0 or E′′ = 0; in fact, since Γ is negative
definite, if E decomposed as E′+E′′, both E′ and E′′ would have negative
square, and E ·E = E′ ·E′ +E′′ ·E′′ 6 −2. This, in turn, implies that the
support of E, i.e. the set of vertices for which ai 6= 0, is connected. Suppose
now that the coefficients do not all have the same sign; then there are two
coefficients ai < 0 < aj such that Ei · Ej = 1. Write |E| for the homology
class |E| =

∑
i |ai|Ei. We now observe that

−1 = E · E =
∑
i

a2
iwi +

∑
i,j

aiajEi · Ej

<
∑
i

a2
iwi +

∑
i,j

|ai||aj |Ei · Ej = |E| · |E| 6 −1.

Now we know that ai > 0 for each i. Adjunction for each vertex shows
that c1(Ei) = 2− 2g(Ei) +wi, and the latter quantity is never positive by
assumption. Hence,

1 = c1(E) =
∑
i

aic1(Ei) 6 0. �

Lemma 5.3. — Let (C, 0) be a curve singularity in (C2, 0). The Milnor
fiber of C has genus 0 if and only if (C, 0) is either smooth or a double point.

Proof. — Indeed, if g is the genus of the Milnor fiber of (C, 0), µ its
Milnor number, r its number of branches, and δ its delta-invariant, then
g = 1+δ−r; since the multiplicity of (C, 0) is at least r, then δ > r(r−1)/2,
and g is positive unless the singular point is smooth or an ordinary double
point. (See, for instance, [4, p. 572–574] for more details.) �
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We now turn to the proof of Theorem 1.2. The strategy is the following.
Suppose we have a normal surface singularity, and let Γ be the graph as-
sociated to its smallest good resolution. If Γ is not minimal, then we blow
down to the minimal graph; we will show that this either has a singular
curve or a point of higher intersection (e.g. a tangency or a singular point
with more than two branches). In either of the two cases, we can construct
a divisor by smoothing (some of) the singularities, and this divisor will have
positive genus. If, on the other hand, Γ is minimal, we will apply Wendl’s
theorem, and argue that there can be no vertices with higher genus, nor
cycles in the graph, nor bad vertices (in a way similar to the proof of 1.5).

Proof of Theorem 1.2. — The canonical contact structure of the link of
a normal surface singularity (X, 0) ⊂ CN has a symplectic filling given by
a good resolution π : X̃ → X. Note that X̃ lives in a blowup of CN , hence
it is Kähler, and in particular it has a symplectic form ω′; the preimage
π−1(0) is a complex divisor, and in particular it is symplectic. More pre-
cisely, Y = X ∩ S2N−1

ε is filled by W = π−1(D2N
ε ), with the (restriction

of the) symplectic structure ω′. The irreducible components of the excep-
tional divisor are then symplectic surfaces in X̃, so that (Y, ξ) is the convex
boundary of a plumbing of symplectic surfaces; as in the introduction, the
plumbing is encoded by the resolution graph Γ.
We would like to use Wendl’s theorem and arguments with vanishing

cycles as before; however, the filling (W,ω′) is not necessarily minimal,
and we have to perform some blow-downs before a compatible Lefschetz
fibration can be found. Reduction to the case of minimal fillings is done
as follows. If (W,ω′) is not minimal, i.e. it contains a symplectic sphere E
with E ·E = −1, we use Lemma 5.2 to find a vertex of genus 0 and weight
−1 in the graph Γ. Suppose now that the graph Γ contains vertices of genus
0 and weight −1. We blow down the corresponding divisors until we get a
minimal graph. The corresponding resolution may no longer be good; there
may be singular curves among the components of the exceptional divisor
or multiple intersection points. We can smooth out the singular curve by
replacing each singular point (of the curve in a surface) by its Milnor fiber.
Similarly, if there are intersection points of multiplicity greater than 2 or
tangencies, we also smooth them out (as a reducible singularity). This
process creates a divisor of positive genus, because, thanks to Lemma 5.3,
the Milnor fibre of a curve singularity is planar if and only if we have a
smooth or a double point. As a result, we found a symplectic surface of
positive genus in a symplectic filling of (Y, ξ), so by Theorem 1.7, (Y, ξ)
cannot be planar in this case.
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It remains to prove the statement of the theorem for the case where a
good resolution X̃ is also minimal, i.e. (W,ω′) contains no spheres of self-
intersection −1. Obviously, in this case Γ contains no vertices corresponding
to spheres with weight −1. The minimal weak symplectic filling (W,ω′) is
deformation equivalent to a Lefschetz fibration, and we can use the results
of Section 2. We need to prove the following three facts, for (Y, ξ) planar:

(1) all surfaces in the plumbing have genus 0;
(2) there are no cycles in the graph;
(3) the graph has no bad vertices.
Condition (1) is guaranteed by Theorem 1.7, so we only need to prove

conditions (2) and (3).
(2) Suppose that there is a cycle; namely, that there are classes

A1, . . . , Ac+1 = A1,

such that Ak · Ak+1 = 1 for every k = 1, . . . c. The divisor A1 ∪ · · · ∪ Ac is
represented by symplectic spheres with positive, transverse intersections;
smoothing all intersections, we obtain a symplectic torus, which contradicts
Theorem 1.7.
(3) The filling (W,ω′) is deformation equivalent to a Lefschetz fibration

with the planar fiber; write α1, . . . αm for its vanishing cycles. The argument
is now similar to the one in the proof of Theorem 1.5. Suppose B is a
vertex of the graph with B · B = `, connected to vertices A1, . . . , An.
Lemma 2.5 describes the class of B; without loss of generality, assume that
B = [α1 − α2 − · · · − α`]W , so that α1 dominates the curves α2, . . . , α`.
Again by Lemma 2.5, we know that there exist indices ik and collections

of indices Jk 63 ik such that Ak = [αik −
∑
j∈Jk

αj ]W , with αik � αj for
every j ∈ Jk. For convenience, let JB = {2, . . . , `}. We can then compute:

0 = Ak ·Ak′ = δ(ik, Jk′) + δ(ik′ , Jk)− δ(ik, ik′)−#(Jk ∩ Jk′),(5.1)
1 = B ·Ak = δ(1, Jk) + δ(ik, JB)− δ(1, ik)−#(JB ∩ Jk)(5.2)

where δ(i, J) = 1 if i ∈ J , and is 0 otherwise, and δ(i, i′) = 1 if i = i′, and
is 0 otherwise.
Let us focus on (5.2) first. From it, we deduce that at least one among

1 ∈ Jk and ik ∈ JB holds. Suppose that both hold simultaneously; then
α1 � αik and αik � α1, which implies that the two curves α1 and αik are
homologous, and therefore that B = [α1 − αik ]W and Ak = [αik − α1]W ,
which clearly contradicts the assumption that B ·Ak = 1.

Next, we claim that 1 ∈ Jk can only hold for at most one of the classes
Ak = [αik −

∑
j∈Jk

αj ]W . Indeed, suppose that we have 1 ∈ Jk and 1 ∈ Jk′
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for two distinct classes Ak, Ak′ . This implies that both leading terms αik
and αik′ dominate α1. Then we must have αik 6∈ Jk′ , because otherwise
αik would be separated from α1, and similarly αik′ 6∈ Jk. It follows that
Ak ·Ak′ 6 −1, a contradiction.
Finally, we want to show that ik 6= ik′ for every pair k, k′; to this end, we

use (5.1). Suppose that there are two indices, k, k′, such that ik = ik′ = i;
this implies that i 6∈ Jk, Jk′ , and that δ(ik, ik′) = 1. But then 0 = Ak ·Ak′ 6
−1, clearly a contradiction.

Summarizing, we see that the set JB = {2, . . . , `} must contain all the
leading elements i1, . . . in of the classes A1, . . . , An, except possibly one.
Since i1, . . . in are all distinct, it follows that n 6 `, i.e. that B is not a bad
vertex. �
We conclude this section with the proof of Corollary 1.4.
Proof of Corollary 1.4. — Let (Y, ξ) be a planar contact 3-manifold.

The proof of Theorem 1.2 above shows that no filling of (Y, ξ) can contain
the exceptional divisor of a resolution of a non-planar singularity. If there
were a strong symplectic cobordism (W ′, ω′) from the link (Ys, ξs) of a
non-planar normal surface singularity to (Y, ξ), then one could glue the
resolution of (Ys, ξs) to obtain a strong symplectic filling (W,ω) of (Y, ξ)
containing a forbidden configuration.
The second half of the statement is now straightforward, since a defor-

mation from (S, 0) to (S′, 0) gives rise to a Weinstein cobordism from the
link of (S′, 0) to the link of (S, 0). �

6. Planar Lefschetz fibrations with prescribed
fundamental group

We will now construct planar Lefschetz fibrations with prescribed fun-
damental group. Recall that the deficiency of a presentation 〈x1, . . . , xm |
r1, . . . , rn〉 is m−n, and that the deficiency of a finitely presented group is
the maximal deficiency over all its presentations. A group is perfect if its
abelianization is trivial.

Proposition 6.1. — Let G be a finitely presented group. Then there
exists a planar Lefschetz fibration on a 4-manifold W with fundamental
group G. Moreover, if G is perfect and has deficiency 0, W can be chosen
to be an integral homology Stein 4-ball. In this case, ∂W is an integral
homology 3-sphere.
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The family of perfect, finitely presented groups of deficiency 0 is quite
rich: for instance, it contains fundamental groups of integral homology
spheres. In fact, let G = π1(Y ) be the fundamental group of an integral
homology 3-sphere Y ; G is perfect since its abelianization is H1(Y ) = 0.
Moreover, G has non-positive deficiency, since it is perfect; it has non-
negative deficiency since a genus-g Heegaard decomposition of Y gives a
presentation of G with g generators and g relators (which is, in particular,
a finite presentation).
The proof of Proposition 6.1 easily follows from the following lemma.

Lemma 6.2. — Let 〈x1, . . . , xm | r1, . . . , rm−d〉 be a presentation of a
group G of deficiency d. Then there exists another presentation 〈y1, . . . , yn |
s1, . . . , sn−d〉 of G such that:

(1) each word sj is a positive word in y1, . . . , yn;
(2) each generator yi appears at most once in each word s1, . . . , sn−d;
(3) the cyclic order of the generators yi is preserved in each word sj .

Proof of Proposition 6.1. — By Lemma 6.2, G has a presentation
〈y1, . . . , yn | s1, . . . , sn−d〉 with the properties (1), (2), and (3) as above.
Consider the n-holed disk P , with fundamental group π1(P ) = 〈y1, . . . , yn〉.
We assume that the generators y1, y2, . . . , yn are given by loops going
around one hole each, as in Figure 6.1(a). By the properties (1), (2),
and (3), each word sj is represented by an simple closed curve αj in P .
Indeed, since by (1) and (2) each generator enters in the word sj positively
and at most once, we can take the curve αj enclosing the corresponding
holes, with a counterclockwise orientation. By (3), the cyclic order of the
generators in the loop given by αj is the same as in the word sj ; it fol-
lows that αj represents sj . See Figure 6.1(b) for an example. Let φ be
the product of positive Dehn twists along α1, . . . , αn−d. By construction,
the associated Lefschetz fibration W is a Stein domain whose fundamental
group is precisely G.

If G is perfect, H1(W ) = G/G′ vanishes; if, moreover, G has deficiency
0, using a presentation with d = 0 yields H2(W ) = 0, since the classes
[α1]P , . . . , [αn]P are linearly independent in H1(P ). �

Before proving Lemma 6.2, let us introduce the concept of badness for a
presentation. We say that a word is long if its length is at least 3, and short
if it is of length 2. Given a presentation P = 〈a1, . . . , am | w1, . . . , wm−d〉,
we define its badness b(P) as follows. Let b−(P) be the sum of the number
of occurrences of a−1

i over all generators ai; let also bi+(P) be the sum of the

TOME 70 (2020), FASCICULE 4



1820 Paolo GHIGGINI, Marco GOLLA & Olga PLAMENEVSKAYA30 PAOLO GHIGGINI, MARCO GOLLA, AND OLGA PLAMENEVSKAYA

y1

y2
y3

y4

y5

the fundamental group of the 5-
holed disk, with basepoint in the
center.

y1

y2
y3

y4

y5

(b) A simple closed curve repre-
sentative for the word y3y5y1.

Figure 6.1. Generators and a simple closed curve in the 5-holed disk.

the loop given by αj is the same as in the word sj ; it follows that αj repre-

sents sj . See Figure 6.1b for an example. Let φ be the product of positive

Dehn twists along α1, . . . , αn−d. By construction, the associated Lefschetz

fibration W is a Stein domain whose fundamental group is precisely G.

If G is perfect, H1(W ) = G/G′ vanishes; if, moreover, G has deficiency

0, using a presentation with d = 0 yields H2(W ) = 0, since the classes

α1, . . . , αn are linearly independent in H1(P ). �
Before proving the lemma, let us introduce the concept of badness for a

presentation. We say that a word is long if its length is at least 3, and short

if it is of length 2. Given a presentation P = 〈a1, . . . , am | w1, . . . , wm−d〉,
we define its badness b(P) as follows. Let b−(P) be the sum of the number

of occurrences of a−1i over all generators ai; let also bi+(P) be the sum of the

number of occurrences of ai in long words, and b+(P) =
∑
i max{bi+(P)−

1, 0} (that is, we are ignoring the first appearance of each ai in long words,

if there is one, as well as all appearances of ai in short words). Let b(P) =

b−(P) + b+(P).

For instance, consider the presentation P = 〈a, b, c, d | bad, cab, ab−1ac−1〉;
then we have b−(P) = 2, ba+(P) = 4, bb+(P) = 2, bc+(P) = bd+(P) = 1, and

hence b(P) = 6.

A key feature of b that will be used in the proof is that it is insensitive

to the labelling of the generators, in the sense that it is invariant under

permutation of the indices of generators.
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α1, . . . , αn are linearly independent in H1(P ). �
Before proving the lemma, let us introduce the concept of badness for a

presentation. We say that a word is long if its length is at least 3, and short

if it is of length 2. Given a presentation P = 〈a1, . . . , am | w1, . . . , wm−d〉,
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to the labelling of the generators, in the sense that it is invariant under
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number of occurrences of ai in long words, and b+(P) =
∑
i max{bi+(P)−

1, 0} (that is, we are ignoring the first appearance of each ai in long words,
if there is one, as well as all appearances of ai in short words). Let b(P) =
b−(P) + b+(P).

For instance, consider the presentation P=〈x, y, z, t |yxt, zxy, xy−1xz−1〉;
then we have b−(P) = 2, bx+(P) = 4, by+(P) = 2, bz+(P) = bt+(P) = 1, and
hence b(P) = 6.
A key feature of b that will be used in the proof is that it is insensitive

to the labelling of the generators, in the sense that it is invariant under
permutation of the indices of generators.
Proof of Lemma 6.2. — Notice that a presentation of badness 0 satisfies

properties (1), (2), and (3), up to reordering the generators. (The converse,
however, is not true.) In fact, short words respect all cyclic orders, and,
when the badness is 0, each generator appears in at most one long word;
hence each long word can be used to define a compatible order on the
corresponding subset of generators.
To prove the lemma, it is enough to show that, given a presentation P of

deficiency d and positive badness, we can always find another presentation
P ′ for the same group with the same deficiency and with b(P ′) < b(P).
There are three cases to consider. Either the inverse of a generator ap-

pears, or a generator appears more than once somewhere in the presenta-
tion. Without loss of generality, assume that this generator is a1, and let
w be one of the culprit words.
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In the first case, the presentation P ′ is obtained from P by adding a gen-
erator am+1 and the relation a1am+1, so that am+1 = a−1

1 ; we then replace
one occurrence of a−1

1 in w1 by am+1. We have replaced one occurrence of
a−1

1 with a new generator, so b−(P ′) = b−(P)−1, and we created a positive
short word, so b+(P ′) = b+(P).
In the second case, we add two generators am+1, am+2 and the relations

a1am+1, am+1am+2, so that am+2 = a−1
m+1 = a1; we then replace one

occurrence of a1 in w by am+2. We have replaced one extra occurrence of
a1 with a new generator, and created two positive short words, so b−(P ′) =
b−(P) and b+(P ′) = b+(P)− 1.
In either case, b(P ′) = b(P) − 1, and this concludes the proof of the

lemma. �
In fact, one can extract a bound on the Euler characteristic of the page

P in terms of the original presentation P for G: the algorithm above gives
a page P with χ(P ) > 1− n− 2b+(P)− b−(P).
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