
HAL Id: hal-02182484
https://hal.science/hal-02182484

Submitted on 16 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Grounding of Game Descriptions with Tabling
Jean-Noël Vittaut, Jean Méhat

To cite this version:
Jean-Noël Vittaut, Jean Méhat. Efficient Grounding of Game Descriptions with Tabling. Computer
Games - Third Workshop on Computer Games, CGW 2014, Held in Conjunction with the 21st Euro-
pean Conference on Artificial Intelligence, ECAI 2014, Aug 2014, Prague, Czech Republic. pp.105-118,
�10.1007/978-3-319-14923-3_8�. �hal-02182484�

https://hal.science/hal-02182484
https://hal.archives-ouvertes.fr


Efficient Grounding of Game Descriptions with Tabling

Jean-Noël Vittaut and Jean Méhat

LIASD - University of Paris 8, France
jnv@ai.univ-paris8.fr, jm@ai.univ-paris8.fr

Abstract. We present a method to instantiate game descriptions used in General
Game Playing with the tabling engine of a Prolog interpreter. Instantiation is
a crucial step for speeding up the interpretation of the game descriptions and
increasing the playing strength of general players.
Our method allows us to ground almost all of the game descriptions present on
the GGP servers in a time that is compatible with the common time settings of
the GGP competition. It instantiates descriptions more rapidly than previous pub-
lished methods.

This is an extended version of the article published in ECAI’14
Fast Instantiation of GGP Game Descriptions Using Prolog with Tabling.

1 Introduction

General Game Playing (GGP) aims at conceiving programs capable of playing a large
variety of games without knowing the rules in advance. The Game Description Lan-
guage (GDL) [8] has been used to communicate the rules of the game to be played at
the beginning of a match in the General Game Playing competition since 2005.

Fast interpretation of GDL is important because it can significantly improve the
strength of a player. Björnsson and Schiffel [1] [13] have compared the speed of several
GDL reasoners1 and they show that the reasoners are at least two to three orders of
magnitude slower than hard coded versions of games. The two fastest reasoners they
tested use a Prolog interpreter.

An approach to speed up a reasoner is to ground the rules, binding all variables
with atoms. This instantiation of the rules can lead to better performance because it
saves the time used to bind variables during unification and it eases the building of
Propositional Nets [4]. Kissmann and Edelkamp [6] have shown that instantiation can
allow from about 4 to 250 times more node expansions in a Monte-Carlo search on the
tested games. Instantiation is also useful in the domain of action planning [7].

We use the tabling engine built in a Prolog interpreter. Tabling consists in storing
answers for subgoals and reusing them whenever the same subgoal is called again. It
was first implemented in the XSB programming language [9]. At the cost of a modifi-
cation of the unification process, it avoids redundant sub-computations and deals with

1 Flux Player, Cadia Player, Java Eclipse, Java Prover, GGPBase Prover, C++ Reasoner



infinite loops. We use here the tabling as implemented in the YAP Prolog interpreter
because of its performance, its availability and our familiarity with this interpreter [10],
[11], [12].

This paper is structured as follows: firstly we describe the Game Description Lan-
guage; then we describe our method of instantiation of GDL programs which makes use
of the Prolog tabling engine and we compare the performance of our method against
other approaches.

2 The Game Description Language

The Game Description Language (GDL) allows to describe combinatorial perfect in-
formation games. It has also been extended to handle incomplete and imperfect infor-
mation games (GDL-II). It uses first order logic and is similar to Datalog with negation
as failure. Its syntax consists of Lisp S-expressions. A game is described with a set of
facts and rules; a few keywords are reserved for logic and game-specific features (see
table 1); variables begin with a question mark.

Table 1. GDL Keywords

Logical operators
<= clause declaration
or disjunction
and implicit in the premisses of a rule
not negation
distinct evaluates to true only if the two terms differ

Static predicates
role defines the names of the players
init defines initial state of the game
input defines a superset of possible moves
base defines a superset of the game state components

Dynamic predicates
terminal true if the game state is terminal
goal player’s rewards
legal legal moves in the current game state
next transition to the next game state
does player’s moves
true defines the game state components

Numerical atoms
integers from 0 to 100 defined for goal

We distinguish the dynamic predicates depending on the state of the game from the
remaining static ones, the instantiated values of which are independent from the state



of the game and can be computed once and for all upon receiving the game description.
GDL missing arithmetic, game descriptions usually contain the description of arith-
metic operations on the numbers they need: it usually leads to a large number of static
rules.

The predicates true and does are always dynamic because they trivially depend
on the state of the game. The dynamic property is recursively extended to all predicates
using at least one dynamic predicate even if it appears within a negation or a disjunction.

The other predicates mentioned as dynamic in table 1 are marked as such to keep
them in the grounded rules even in the rare cases where they are static e.g. when the
goal of a player is independent from the final position of the game.

By extension, a term is dynamic or static, depending on the predicate it is formed
on. Note that terms of the form (or T1 T2 . . . Tn) or (not T1) are: dynamic if they
contain at least one dynamic term Ti; static if all of the Ti are static terms. Likewise a
rule is dynamic if its conclusion is dynamic.

3 Instantiation of GDL rules

The instantiation of GDL rules is done in successive steps. We firstly present an overview
of the whole process and then give some details on these steps and justify their useful-
ness.

3.1 Overview

The instantiation starts with a cleaning step where or is removed from any rule. Then
we compute base and input facts if they are not provided in the description.

Next we rewrite each rule, removing negated terms, renaming true and does as
base and input and adding a side effect. This side effect stores, in the instantiated
game description, a grounded version of the initial rule with static terms removed.

In the Prolog engine we use, tabling is enabled at the predicate level. Then, to force
the tabling engine to process each and every rule, we change the predicate name of every
rule conclusion so we can use tabling at the rule level. To keep our program correct, we
add a new rule the role of which is allowing to call the new predicate with its old name.

Then we add a series of rules the conclusion of which is always the ground atom
and premises are queries asking for all the answers related to the new predicate intro-
duced previously.

Finally, we call the Prolog interpreter with the ground goal. The grounded de-
scription is stored into a data structure shared between Prolog and the driver program
by the Prolog interpreter solving the ground goal. This instantiated description is only
made of grounded terms, called fluents, and logic connectors.

3.2 Eliminating (or T1 T2 . . . Tn) terms

The or operator has been deprecated in GDL since 2007 [3]. However, it is used in
old game descriptions and players need to support it to play these games. As it is easy
to rewrite a game description into a game description without or or use the built in



Prolog or operator, most players support this feature. Even in the 2013 official GGP
competition, the game description of Eight Puzzle used it.

Removing any instance of the or operator ensures that we obtain at the end a
grounded program in a disjunctive form. It also simplifies the next steps in case there is
a disjunction between static and dynamic terms.

If a rule contains a term T of the form (or T1 T2 . . . Tn), we simply duplicate
the rule replacing T with Ti. We proceed recursively on the new rules which could still
contain some term using or. Table 2 shows an example of this transformation from the
Connect Five game description.

Table 2. A rule containing an or with 4 sub-terms is rewritten as 4 different rules.

Rule with or Rules without or

(<= (conn5 ?r)
(or (col ?r) (row ?r)

(diag1 ?r) (diag2 ?r)))

(<= (conn5 ?r) (col ?r))
(<= (conn5 ?r) (row ?r))
(<= (conn5 ?r) (diag1 ?r))
(<= (conn5 ?r) (diag2 ?r))

3.3 Adding input and base predicates

The base predicate is used to enumerate all the terms that can be used in any reachable
game state. Similarly, input allows one to pre-compute all the moves that can become
legal in the course of any match of the described game. These predicates are a recent
addition to GDL and we suppose they were introduced to facilitate the instantiation of
game descriptions.

However, older GDL game descriptions do not provide input and base but are
still in use on the servers running permanent tournaments that we use as a test bed for
GGP competitions. The set of game descriptions including these predicates is small
and does not contain many games that are commonly used for testing and performance
comparison purposes.

Moreover, different descriptions of these predicates can lead to dramatic differences
between grounded game descriptions, for instance the input predicate of the Break-
through game description is defined more lazily on the Tiltyard server than on the Stan-
ford server. It leads to a grounded description that contains 20 times more rules.

For these reasons, we do compute them when the game description does not pro-
vide them. Separating their computation from the strictly speaking grounding phase
allows us to distinguish their respective computation times. It also allows us to discard
undesirable rational tree terms which are infinite terms that this method can generate.

This step is detailed in section 4 in which we propose a method sharing many steps
with the instantiation method we are currently describing.

Once computed, the input and base fluents are added to the description so there
will be no difference with the case where the predicates are provided with the GDL
description.



3.4 Eliminating not, renaming true and does

From each rule R, we construct a new rule g(R) by removing every (not T) term
where T is a dynamic term; renaming every (true T) and (does T1 T2) term
respectively with (base T) and (input T1 T2).

Removing the not operator in dynamic predicates allows us to compute any possi-
ble instantiation without risking an elimination by the negated term. It is a safe operation
since GDL guarantees that any negated term always has to be fully instantiated. Con-
sequently, the elimination cannot lead to a situation where one of the variables remains
not instantiated. It is also necessary since the tabling engine we use cannot handle recur-
sion through a negation. A drawback is that the process will produce useless grounded
rules, since the not operator is never checked: these useless rules would never prove
anything when used by a reasoner working with the instantiated description.

Replacing (true T) and (does T1 T2) by (base T) and (input T1 T2)
allows us to ground all the rules in one pass, without computing base and input if
they are already provided by the description.

Table 3 contains an example of this step on some rules of the Connect Five game
description.

Table 3. Computation of g(R): the negations are eliminated and does are replaced by input

R g(R)

(<= (goal x 50)
(not line of 5))

(<= (goal x 50))

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal ?r noop)
(role ?r))

(<= (next (cell ?x ?y ?r))
(does ?r (mark ?x ?y)))

(<= (next (cell ?x ?y ?r))
(input ?r mark ?x ?y)))

3.5 Removing static terms

Terms formed on static predicates do not need to appear in the instantiated rules since
their truth is known regardless of the state of the game: if true they can be removed; if
false the entire rule can be discarded; conversely if they appear within a not, they can
be removed if false and the rule can be discarded if true.

Consequently, we compute a rule s(R) from the initial rule R by removing any
static term or its negation from R.

This step could be skipped with no effect on the correctness of the method but
without it, we would have to either post-process the instantiated rules to eliminate any
true static term or include all of the static terms from the game description.



3.6 Adding the side effect and introducing a new symbol

The rules g(R) and s(R) are combined to produce the two new rules that will be part
of our final grounded description. Given a rule g(R) of the form:

(<= (p U1 . . . Up) T1 . . . Tn)

we derive the two new rules:

(<= (p# U1 . . . Up) T1 . . . Tn (store s(R)))
(<= (p U1 . . . Up) (p# U1 . . . Up))

where p is the original predicate symbol of the conclusion of g(R). The store pred-
icate has the side effect of storing the s(R) instantiated rule in a data structure shared
between the Prolog interpreter and the driver program; it always evaluates as true. p#
is a new unique symbol, different for each processed rule. It is necessary to prevent
the tabling engine from tabling rules with side effects because it would lead to missed
instantiations: the rule including the side effect is not tabled while the second is.

These two rules are logically equivalent to the rule g(R) since the side effect always
evaluates as true.

An example of this step on rules from the Connect Five game description is shown
in table 4

Table 4. Each original rule is transformed into two new rules: one with a new conclusion symbol
and a side effect; the other with the original conclusion

Initial rule Derived rules

(<= (goal x 50)
(not line of 5))

(<= (goal# x 50)
(store (<= (goal x 50)

(not line of 5))))
(<= (goal x 50)

(goal# x 50))

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal# ?r noop)
(role ?r)
(store (<= (legal ?r noop)

(not (true (ctrl ?r))))
(<= (legal ?r noop)

(legal# ?r noop))

(<= (next (cell ?x ?y ?r))
(does ?r (mark ?x ?y)))

(<= (next# (cell ?x ?y ?r))
(input ?r (mark ?x ?y))
(store (<= (next (cell ?x ?y ?r))

(does ?r (mark ?x ?y)))))
(<= (next (cell ?x ?y ?r))

(next# (cell ?x ?y ?r)))



3.7 Tabling predicates and creating the instantiation query

Finally, to generate all instantiations in one Prolog query, we add a new predicate
ground, the goal of which is to query all the rules with side effects. Therefore, a
rule like

(<= ground (p# U1 U2 ...Un))

is added for each new symbol p# introduced in the previous step.
We set up the Prolog interpreter to table all predicates with the only exception of the

new predicate symbols introduced in the previous subsection and the ground predicate
which does not need to be tabled. By querying all the solutions to the ground goal,
the store predicate inserts instantiated rules into the data structure shared between
the Prolog interpreter and the driver program. In table 5 we show the result of the
instantiation of one rule of Connect Five.

Table 5. One of the rules of Connect Five is instantiated in two rules

Initial rule Grounded rules

(<= (legal ?r noop)
(role ?r)
(not (true (ctrl ?r))))

(<= (legal x noop)
(not (true (ctrl x))))

(<= (legal o noop)
(not (true (ctrl o))))

4 Computing input and base

Our instantiating method requires we generate the input and base predicates when
not provided in the GDL description. We describe two ways of computing them: an
iterative method which is equivalent to the one used by Kissmann and Edelkamp [6];
and our method using tabling which can be performed in one step.

4.1 Iterative method

We compute two sets B and I that contain all the fluents that can occur in a game
state or as a legal move. We initialize B with the facts defined via init in the game
description; I is initially empty:

I = ∅
B = {(true T) s.t. (init T) is true}

We temporarily redefine the not operator as always true. We then iterate, generat-
ing legal move fluents, adding the new ones to I and the new game state fluents to B
until reaching a fixed point:

I = I ∪ {(does T1 T2) s.t. (legal T1 T2) is true}
B = B ∪ {(true T) s.t. (next T) is true}



We use tabling for all the predicates at each iteration and flush the tables at every update
of I and B.

The performance of this method strongly depends on the number of iterations re-
quired to reach the fixed point. It often happens that only a few elements are added to
B at each iteration. It is, for instance, the case in many games where the state of the
game contains a step term which simply counts how many moves have been played
to prevent infinite matches (see figure 1).

(<= (next (step 1)) (true (step 0)))
(<= (next (step 2)) (true (step 1)))
...
(<= (next (step 100)) (true (step 99)))

Fig. 1. A step counter is commonly used in many descriptions to prevent infinite matches. This
fragment of a game description allows it to increment until a maximum figure of 100.

When this kind of counter is present in the game description, the method must be
iterated the number of times that the counter needs to be incremented before reaching
its final value.

To alleviate this specific problem, we first use the original GDL description to sim-
ulate a fake match from the initial position; we repeatedly compute the next state of
the game that can be reached without playing a move. We halt this process when the
reached state is empty or when a game state has already been seen. All the fluents that
appeared in any game state are used to seed the B set along with the init predicates.

More generally, the aforementioned procedure processes any next rule not de-
pending on the does predicate to compute fluents in order to initialize the B set. It
provides an amelioration for many game descriptions however, it would not be difficult
to conceive game rules capable of defeating this procedure.

4.2 One step method

We process the original GDL description with the same transformations we detailed in
section 3, the only difference being that we do not add the side effect to the rules.

We also enable tabling for the same predicates that we mentioned in section 3.7 and
add the three following rules to seed the B set with the initial state and add new fluents
to B and new legal moves to I:

(<= (base ?x) (init ?x))
(<= (base ?x) (next ?x))
(<= (input ?r ?m) (legal ?r ?m))

Then by querying the Prolog interpreter with goals (base ?x) and (input ?r
?m), we obtain all the fluents of these predicates enabling the instantiation of the whole
game description more efficiently.



5 Exprerimental results

We collected the 246 different game descriptions that were active in February 2014 on
the Dresden server2.

We firstly measured the time necessary to generate input and base on the vast
majority of game descriptions that do not include them using the iterative and one step
methods.

Then we measured the time necessary to instantiate the game description enriched
with the input and base fluents computed in the previous step except for the six game
descriptions that already include them: for these, we used the predicates of the original
game description. The time measured takes into account the translation of GDL terms
from the Prolog interpreter into the driver program representation.

The experiments were run on one core of an Intel Xeon E5-4610 2.40GHz with
520Gb RAM. This amount of memory was more than enough to compute the instan-
tiations. We measured that our method needs about 500Mb to compute one million
instantiated rules. We used YAP 6.2.2 Prolog interpreter [2] as a library for our driver
program written in C++.

5.1 Computing input and base

The input and base were successfully computed for the vast majority of the 240
game descriptions that did not already contain them, with the exception of two games
for the one step method (othello comp2007 and othellosuicide) and 13 games
for the iterative one. The two failures of the one step method were caused by a crash
in the Prolog interpreter, whereas the iterative one was halted after 30 minutes as it had
not yet converged. However, at least one method succeeded for each game description.

Figure 2 compares the two methods for the 225 games of the Dresden collection
successfully processed by both. The x-axis represents the time used by the one step
method and the y-axis the time used by the iterative one. The diagonal represents the
location where the two methods take the same amount of time. A game plotted above the
diagonal means that the one step method takes less time than the iterative one. Except
for the 10 games plotted below the diagonal, the one step method is always faster than
the iterative one. We also observed that the iterative method is only competitive when
the number of iterations remains low.

In figure 3 we plotted the percentage of games of which input and base fluents
have been computed in less than the time budget represented in the x-axis with a loga-
rithmic scale. It shows that a large majority of computations take less than one second.

With the one step method, 45% of the games had the fluents computed in less than
100ms, 84% in less than one second and 98% in less than one minute. With the iterative
method, none of the games had the fluents computed in less than 100ms, 75% in less
than one second and 90% in less than one minute.

2 The Dresden server is available at http://ggpserver.general-game-playing.de



Fig. 2. Comparison of the computation of the input and base predicates between the one step
and the iterative method.

Fig. 3. Percentage of game descriptions of which input and base can be computed within the
time budget on x-axis.



5.2 Instantiation of the rules

We tested the instantiation of the rules on all of the 246 games of the Dresden collection.
Six of them already contained the input and base predicates. For the remaining 240,
we added the fluents computed either by the one step or the iterative method. The
processing of three games (racer, ruledepthquadratic and laikLee hex)
was halted after 30 minutes of computation.

Fig. 4. Percentage of instantiated game descriptions that were grounded within the time budget in
the x-axis.

In figure 4 we plotted the time performance of our grounding method where the
time of the step computing input and base is not taken into account. We represented
the percentage of games that can be instantiated within the time budget represented in
the x-axis. 24% of the games were instantiated in less than 100ms, 72% in less than one
second and 94% in less than one minute.

The remaining 6% that were grounded in more than one minute are battlebrushes,
merrills, amazons, racer4, farmers, the two instances of battlesnakes,
and 8 of the 13 instances of vacuumcleaner. All of these game instantiated descrip-
tions contained more than 107 rules and facts.

Figure 5 demonstrates that the time to ground increases almost linearly with the
size of the grounded game description when it is greater than 104. We also observed
that a significant part of the time is used to translate the fluents from the Prolog internal
representation into the GDL representation in the shared data structure.

6 Comparison with other works

It is somewhat difficult to compare our method with existing grounders, given that their
measure of performance is usually mixed with the time used for building the Proposi-



Fig. 5. The number of generated rules as a function of instantiation time for the 243 successfully
instantiated games.

tional Net. We examine here the results available from [6] and the time we measured
with the GGPBase flattener.

6.1 The GGPBase flattener

The GGPBase flattener is a freely distributed GDL grounder3. We compared the time to
instantiate a few game descriptions that were of increasing difficulty for our grounder.
We used a different machine that was more convenient to run the GGPBase flattener.
The results are presented in table 6. The time needed by the flattener seems to increase
at least quadratically with the size of the grounded program whereas the time needed
by our method has been established to increasing linearly.

The GGPBase flattener has primarily an educational purpose and its performance is
not its main goal.

Table 6. Comparison of our method with GGPBase-flattener on an Intel Core 2 Duo 1.86GHz
with 2Gb RAM.

Time to instantiate (seconds)
Game GGPBase Our method
connectfour 0.844 0.560
CephalopodMicro 19.8 1.14
breakthrough 115 5.46
chinesecheckers4 Out of memory 14.9

3 The set of GGPBase Java libraries is distributed at
http://www.ggp.org/developers/players.html



6.2 The Kissmann and Edelkamp approach

Kissmann and Edelkamp presented two approaches of grounding in [6]. They were able
to instantiate 96 of 171 game descriptions in less than one minute with their Prolog-
based approach, and 90 of 171 with their method using dependency graphs which are
proportions that we attain in less than one second.

Their article lacks precise figures but similar results are presented in Kissmann PhD
thesis for the 124 game descriptions their method was able to successfully process [5].
Their experiments were carried out on an Intel i7-920 2.67GHz with 24Gb RAM with
a different Prolog interpreter (SWI-Prolog). They method also includes a computation
of mutually exclusive fluents.

The comparison of the percentage of game descriptions instantiated within a com-
putational budget is given in figure 6 for the best result of their two approaches and our
method applied to the same 124 game descriptions. We observe that our implementa-
tion needs a setup time of approximtely 0.2s. Our method appears to be of two orders
of magnitude faster when the instantiation time becomes significant.

Fig. 6. Comparison of the percentages of instantiated game descriptions that were grounded
within the time budget in the x-axis for the 124 game descriptions successfully processed in
[5, p. 129–130].

7 Conclusion

We have demonstrated that it is possible to ground almost all the game descriptions
found on the GGP servers in a time span compatible with the current GGP competition
time settings. This relies on the use of tabling in a Prolog interpreter.

This result should be considered in relation to the study of [1] and [13] in which
Prolog-based GDL reasoners greatly outperform other approaches: the Prolog inter-
preters benefit from decades of optimization from their maintainers.



We have also established that the new predicates input and base introduced in
the 2013 competition, probably with the aim of helping programs to ground game de-
scriptions and generate Propositional Nets, can be considered as superfluous. The few
game descriptions in which they can be useful have a grounded size that is so large that
building alternative representations such as Propositional Nets is problematic. Tweak-
ing the Game Description Language for specific tasks is somewhat dubious since the
description language should be as agnostic as possible in relation to methods that could
be used by players.

As a future work, we are interested in finding mutually exclusive terms and rules
in the game description that could lead to more concise instantiations and facilitate the
generation of Propositional Nets.

References

1. Björnsson, Y., Schiffel, S.: Comparison of GDL reasoners. In: Proceedings of the IJCAI-13
Workshop on General Game Playing (GIGA’13) (2013)

2. Costa, V.S., Rocha, R., Damas, L.: The YAP prolog system. Theory and Practice of Logic
Programming 12(1-2), 5–34 (2012)

3. Finnsson, H.: CADIA-Player: A General Game Playing Agent. Master’s thesis, Reykjavk
University - School of Computer Science (2007)

4. Genesereth, M., Thielscher, M.: General Game Playing (2013), available at
http://logic.stanford.edu/ggp/chapters/cover.html

5. Kissmann, P.: Symbolic search in planning and general game playing. Ph.D. thesis, Univer-
sität Bremen (2012)

6. Kissmann, P., Edelkamp, S.: Instantiating general games using prolog or dependency graphs.
In: Dillmann, R., Beyerer, J., Hanebeck, U., Schultz, T. (eds.) KI 2010: Advances in Artificial
Intelligence, Lecture Notes in Computer Science, vol. 6359, pp. 255–262. Springer Berlin
Heidelberg (2010)

7. Koehler, J., Hoffmann, J.: Handling of inertia in a planning system. Tech. rep. (1999)
8. Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing: Game

description language specification. Tech. rep. (2008), most recent version should be available
at http://games.stanford.edu/

9. Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient access mechanisms
for tabled logic programs. The Journal of Logic Programming 38(1), 31–54 (1999)

10. Rocha, R., Silva, F., Costa, V.S.: A tabling engine for the YAP prolog system. In: Proceedings
of the 2000 APPIA-GULP-PRODE Joint Conference on Declarative Programming (AGP
2000), La Habana, Cuba (December 2000) (2000)

11. Rocha, R., Silva, F., Costa, V.S.: Dynamic mixed-strategy evaluation of tabled logic pro-
grams. In: Logic Programming, pp. 250–264. Springer (2005)

12. Rocha, R., Silva, F., Santos Costa, V.: Yaptab: A tabling engine designed to support paral-
lelism. In: Conference on Tabulation in Parsing and Deduction. pp. 77–87 (2000)

13. Schiffel, S., Björnsson, Y.: Efficiency of gdl reasoners. Computational Intelligence and AI in
Games, IEEE Transactions on PP(99), 1–1 (2014)


