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Abstract

The species of the genus Aequiyoldia Soot-Ryen, 1951, previously known as Yoldia, are common, soft-

substratum, sareptid bivalves. In the Southern Ocean, Aequiyoldia eightsii (Jay, 1839) was originally 

described from the Antarctic Peninsula and has also been reported in southern South America, whereas A. 

woodwardi (Hanley, 1960) was recorded for the Falkland/Malvinas Islands and Tierra del Fuego, 

southern South America. Aequiyoldia has received little attention across its distribution in the Southern 

Ocean, and although its taxonomy and systematics remain uncertain, all species of Aequiyoldia have been 

grouped under the same broadly distributed unit: A. eightsii. However, molecular studies have 

demonstrated a marked mtDNA genetic divergence (> 7%) between A. eightsii populations from South 

America and Antarctic Peninsula. In order to further understand the diversity and biogeography of 
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Aequiyoldia, we analyzed A. eightsii populations from different provinces of the Southern Ocean 

including South America (SA), the Falkland/Malvinas Islands (FI), Antarctic Peninsula (AP), and 

Kerguelen Islands (KI). Individuals were characterized according to typical diagnostic morphological 

measurements, and phylogenetic relationships were reconstructed based on mtDNA (Cytochrome c 

Oxidase Subunit I). Patterns of genetic divergence of nucDNA intergenic transcribed spacers (ITS1, 

ITS2) were also estimated. The statistical analysis of external diagnostic characteristics revealed two 

morphotypes: (1) individuals with the morphology recorded for the nominal FI species, A. woodwardi, 

and (2) individuals from SA, AP, and KI, with the morphology recorded for A. eightsii. However, 

phylogenetic reconstructions based on mtDNA and nucDNA suggest the presence of at least five lineages 

within A. eightsii including: one lineage in Kerguelen Island, two lineages in Antarctic Peninsula, one 

lineage in South America, and the last one restricted to the Falkland/Malvinas Islands. Despite their very 

similar morphologies, AP, SA, and KI populations of Aequiyoldia exhibited also marked levels of genetic 

divergence. Such results are evidence that the Antarctic Polar Front represents an historical biogeographic 

barrier for this group and that after the separation of these lineages, they followed independent 

evolutionary pathways in different provinces of the Southern Ocean. Estimates of divergence time 

suggest that KI separated from the other lineages close to the middle Miocene. Following this, the 

separation between the AP and SA lineages occurred at the end of the Miocene around 7.5 Ma. Finally, 

Aequiyoldia diversified during the Pliocene in Antarctic Peninsula (~4.5 Ma) and South America (~3.0 

Ma). Individuals from FI exhibited morphological differences, and 4% of divergence from South 

American individuals, suggesting that A. woordwardi could be revalidated. Similarly, the marked 

molecular divergence between the KI and the rest of the recorded lineages also support the validity of A. 

kerguelensis (Thiele, 1931).  
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1. Introduction

Southern-Ocean marine fauna has been traditionally associated with low diversity, mainly because of 

extreme environmental conditions and several groups including teleost fish, gastropods, bivalves, and 

some crustacean groups are scarcely represented in this region (Chown et al., 2015). Nevertheless, more 

than 8000 marine species are currently known and most of them have high levels of endemism (50% to 

97%) (De Broyer and Koubbi, 2014). In fact, the expected number of Antarctic species ranges between 

11,000 and 17,000 species. Accordingly, this continent seems to have intermediate species richness 

compared to other tropical, temperate or Arctic environments (Gutt et al., 2004). Therefore, the Antarctic 

marine biota is much more diverse than previously thought, and its distribution, composition, and 

abundance is the outcome of major tectonic, oceanographic, and climatic changes operating in the region 

since the Mesozoic (Crame, 1999; Zachos et al., 2001; Clarke et al., 2005; Linse et al., 2006; Aronson et 

al., 2007; Griffiths et al., 2009; Poulin et al., 2014).

The opening of major gateways in the region, the isolation of the Antarctic continent and the 

establishment of the Antarctic Circumpolar Current (ACC) are profoundly coupled to the origin and 

diversification of several Southern Ocean marine benthic groups (Clarke and Crame, 1989; Clarke et al., 

1992, 2005; Aronson et al., 2007; Griffiths and Waller, 2016). The ACC is the major current system on 

the planet and is delimited by two main fronts: 1) the sub-Antarctic Front (SAF) and 2) the Antarctic 

Polar Front (APF) that have major influence over the distribution of the marine benthic biota (Dell, 1972; 

Crame, 1999; Rintoul et al., 2001; Aronson et al., 2007; Knox, 2007; Griffiths et al., 2009; Pierrat et al., 

2013; Saucède et al., 2014; Griffiths and Waller 2016; González-Wevar et al., 2017). The APF might 

limit latitudinal movement of species enough to act as an effective barrier to connectivity between 

Antarctic and sub-Antarctic provinces. In fact, molecular analyses in several co-distributed Antarctic and 

South American invertebrates including the nemertean Parborlasia corrugatus (Thornhill et al., 2008), 

the brittle star Astrotoma agassizzii (Hunter and Halanych 2008), the pycnogonid Collossedeis megalonix 

(Krabbe et al., 2010), the bivalve Yoldia (González-Wevar et al., 2012; Poulin et al., 2014), and the red 

algae Gigartina skottsbergii (Billard et al., 2015) have revealed differences in evolutionary history with 

marked molecular divergence, showing that they have been isolated for several millions of years (Clarke 

et al., 2005; Barnes et al., 2006; Aronson et al., 2007; Wilson et al., 2009; González-Wevar et al., 2010, 

2017; Moon et al., 2017). Conversely, in the sub-Antarctic, the SAF can transport organisms between 

geographically distant provinces. This is especially true for species with high dispersive potential (Gérard 

et al., 2008; Díaz et al., 2011; Mortimer et al., 2011), kelps (Waters, 2007; Fraser et al., 2009; Macaya 

and Zuccarello, 2010), kelp-associated organisms (Fraser et al., 2011; Nikula et al., 2010; Cumming et al., 

2014; González-Wevar et al., 2018; for a review see Moon et al., 2017), and even non-buoyant 

macroalgae (Fraser et al., 2013).

Recent biogeographic analyses based on taxonomic lists recognized a highly endemic Southern-Ocean 

biota, the presence of a single Antarctic province, and a clear separation between Antarctica and other 
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sub-Antarctic provinces (Griffiths et al., 2009; Pierrat et al., 2013; Griffiths and Waller, 2016). During the 

last decade, the use of molecular tools for the taxonomic identification of organisms with conserved 

morphology greatly increased the number of taxa in the Southern Ocean through the recognition of 

cryptic species in several invertebrates groups such as crustaceans (Held and Wägele, 2005; Raupach and 

Wägele, 2006; Leese et al., 2008; Krabbe et al., 2010; Arango et al., 2011; Baird et al., 2011; Dietz et al., 

2015), mollusks (Strugnell et al., 2008, 2012; Wilson et al., 2009; González-Wevar et al., 2010; Allcock 

et al., 2011), echinoderms (Wilson et al., 2007; Heimeier et al., 2010; Janosik et al., 2011; Hemery et al., 

2012; Gubili et al., 2016), nematodes (Lee et al., 2017), and even macroalgae (Billard et al., 2015). In this 

context, the broadly distributed Southern Ocean bivalve Yoldia eightsii shows a similar pattern with the 

presence of different lineages at both sides of the Drake Passage (González-Wevar et al., 2012; Poulin et 

al., 2014).

The genus Yoldia includes ~ 20 species of saltwater bivalves broadly distributed around the globe. Until 

2013, the higher-latitude species, Yoldia eightsii, was recognized as broadly distributed in different 

provinces of the Southern Ocean including South America, Antarctic Peninsula, and the Kerguelen 

archipelago. Nevertheless, multi-locus molecular reconstructions identified Yoldia as paraphyletic with 

the Antarctic Y. eightsii completely separated from the rest of the species (Sharma et al., 2013). Following 

this, higher latitude Y. eightsii has been included in the genus Aequiyoldia Soot-Ryen, 1951. This genus 

of sareptid bivalves is currently distributed in Antarctic and sub-Antarctic soft-substratum ecosystems and 

includes only two nominal species: A. defossata, a Pliocene fossil from East Antarctica (Quilty et al., 

2016) and the broadly distributed A. eightsii (Jay, 1839). Several synonymous species have been grouped 

within A. eightsii, including Yoldia kerguelensis (Thiele, 1931) and Y. subaequilateralis (E.A. Smith, 

1875) from the Kerguelen archipelago, and Yoldia woodwardi (Hanley, 1860) from the 

Falkland/Malvinas Islands. 

The absence of clear diagnostic characters and the highly conserved morphology of protobranch bivalves 

impose major taxonomic uncertainties within this group (Bouchet and Huber, 2015; Sartori, 2016a, b). In 

fact, Antarctic Peninsula and South American populations of A. eightsii are morphologically identical, 

although Antarctic individuals are larger than those recorded off South America (Villarroel and Stuardo, 

1998). At the same time, morphological characteristics of the Kerguelen Islands species, A. kerguelensis 

and A. subaequilateralis, completely overlap those recorded for A. eightsii from Antarctic Peninsula and 

South America (Rabbarts & Whyborn 1979). Following this, A. eightsii is currently recognized in 

different Southern Ocean provinces including the Falkland/Malvinas Islands, Kerguelen Islands, 

Antarctic Peninsula, and South Shetland Islands (Linse, 2014). However, recent molecular analyses using 

the mitochondrial locus cytochrome c oxidase subunit I (COI) recognized more than 7% divergence 

between South American and Antarctic Peninsula populations of A. eightsii, which is far beyond the 

intraspecific level (Gonzalez-Wevar et al., 2012; Poulin et al., 2014).
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In this study, we performed phylogenetic reconstructions, divergence-time estimations and morphological 

comparisons of Aequiyoldia populations from different provinces of the Southern Ocean. We extended 

previous molecular and morphological analyses by including Aequiyoldia populations from the Kerguelen 

Islands and the Falkland/Malvinas Islands. We also included more populations from South America and 

from Antarctic Peninsula. Through this, we obtained a clear picture about the evolutionary relationships 

within Aequiyoldia, the taxonomic status of different populations across the distribution of the group, the 

number of evolutionary units, and their respective divergences based on mitochondrial (COI) gene 

sequences. We also compared A. eightsii populations using nucDNA sequences (ITS1, ITS2) to 

corroborate the biogeographic patterns recorded with the mitochondrial markers. Finally, shell 

morphometry was conducted by applying the criteria described by Rabarts and Whybrow (1979). 

2. Material and Methods

2.1 Sample collection

Aequiyoldia eightsii specimens were collected by SCUBA diving off the Kerguelen (KI) and Falkland 

Islands (FI), South America (SA) (Porvenir, San Juan River, Skyring Sound), and Antarctic Peninsula 

(AP) (Admiralty Bay, Fildes Bay, Deception Island, Rothera Station, Marguerite Bay, Adelaide Island) 

(Fig. 1 and 2, Table 1). All specimens were stored in 96° ethanol for future molecular analyses. For 

comparative purposes, we also included one individual of Portlandia isonota collected off the Kerguelen 

Islands.

2.2 DNA preparation and sequence edition

Genomic DNA was extracted from mantle and branchial tissues using the E.Z.N.A. Mollusc DNA Kit 

(Omega bio-tek). A 621-bp fragment of the cytochrome c oxidase subunit I (COI) was amplified using 

universal primers (Folmer et al., 1994). The PCR program consisted of 5 min at 95°C followed by 40 

cycles at 95°C for 40 s, 45°C for 40 s, 72°C for 1 min, and a final extension of 7 min at 72°C. Fragments 

of up to 1190 bp containing the internal transcribed spacers 1 and 2 (ITS1 and ITS2) were amplified using 

universal primers (Oliverio and Mariottini, 2001). The PCR program was 5 min at 95°C, then 40 cycles at 

95°C for 1 min, 54°C for 1 min, 72°C for 1 min, and a final extension of 7 min at 72°C. Amplified PCR 

products were purified using QIAquick Gel Extraction Kit (QIAGEN) and sequenced in both direction 

with an Automatic Sequencer ABI3730 x 1 at Macrogen Inc. (Seoul, South Korea). Chromatograms were 

inspected visually, and multiple alignments were obtained using MUSCLE (Edgar, 2004) implemented in 

CodonCode Aligner v7.1 (CodonCode Corporation). Base composition of nucleotide sequences was 

analysed with MEGA 6 (Tamura et al., 2013) and codon usage was determined using the effective 

number of codon value (ENC; Wright, 1990) with DnaSP 5.0 (Librado and Rozas, 2009). New 

Aequiyoldia sequences will be submitted to GenBank under accession numbers: XXXXX – XXXXXX.
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2.3 Phylogenetic reconstructions

Mitochondrial reconstructions included the different haplotypes of Aequiyoldia recorded in SA, AP, FI, 

and KI. For comparative purposes, we included other protobranch genera (Yoldiella, Yoldia, Tindaria, 

Neilonella) in the reconstructions following Sharma et al. (2013). Phylogenetic relationships were 

estimated using maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses (BA). MP 

analyses were performed using MEGA v.6.0 (Tamura et al., 2013) and the following assumptions: 

characters were treated as equally weighted using a heuristic search and tree bisection reconnection 

(TBR) with the branch swapping option. Non-parametric bootstrap (BS) values were used to infer nodal 

support for both the MP and ML with 1000 pseudo-replicates (Felsenstein, 1981). Nucleotide substitution 

models for ML and BA analyses were selected using the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC), with jmodeltest v.2.0 (Darriba et al., 2012), respectively. The GTR 

+ I + G (COI) substitution model was used for ML and BA analyses using the programs MEGA and 

MrBayes 3.1.2. (Huelsenbeck and Ronquist, 2001). Bayesian inference posterior probabilities were 

estimated using the Metropolis coupled Markov chain Monte Carlo algorithm (MCMC), running four 

chains for 50 × 106 generations with trees sampled every 1000 generations. Stationarity was inferred when 

the average standard deviation of split frequencies was less than 0.01 (Huelsenbeck and Ronquist, 2001). 

The initial 10% of the trees were discarded (burn-in), and posterior probabilities were estimated as the 

fraction of trees showing a particular node. Posterior probability density was summarized as a Maximum 

Clade Credibility Tree (MCCT) using TreeAnnotator v.1.6.1 (http://beast.bio.ed.ac.uk/TreeAnnotator) 

and visualized with FigTree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree). For comparative purposes, 

we also reconstructed mtDNA and nucDNA genealogical relationships within sub-Antarctic and Antarctic 

Aequiyoldia populations using maximum-likelihood networks in Hapview (Salzburger et al., 2011). This 

methodology allowed the reconstructions of phylogenies based on intra- and interspecific molecular data 

sets.

2.4 Divergence time estimations

Relaxed molecular clock analyses were used for mtDNA sequences with an uncorrelated lognormal (ucln) 

model of molecular evolutionary rate heterogeneity and the GTR + I + G substitution model implemented 

in BEAST v.1.6.2 (Drummond and Rambaut, 2007; Drummond et al., 2012). An age prior with a normal 

distribution was applied (mean, 44; SD 4.4) to the time of the oldest Antarctic Aequiyoldia fossil from La 

Meseta Formation during the Middle Eocene (Beu, 2009). At the same time, we included another prior 

within Aequiyoldia from Antarctica: A. defossatum (mean, 5, SD, 0.5), a Pliocene fossil from Vestfold 

Hills, East Antarctica (Quilty et al., 2016). A birth-death speciation prior was used for branching rates in 

the phylogeny; four chains were run twice for 50 x 106 generations, and trees were sampled every 1000 

generations. The convergence of model parameters was estimated by plotting marginal posterior 

probabilities versus the generation state in TRACER 1.5 (http://beast.bio.ed.ac.uk/Tracer). Effective 
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sample size values were estimated for each parameter to ensure adequate mixing of the MCMC (ESSs  

1000).

2.5 Morphological analysis

Shell morphology of Aequiyoldia eightsii populations from different provinces of the Southern Ocean 

(Fig. 2) was characterized following the criteria of Rabarts and Whybrow (1979). For the pallial sinus 

shape, callipers were used to determine three parameters for each individual shell: H = Height, L = 

Length, and W = Width. Discriminating scores (D) were obtained through the following formula D=6H-

(3L+2I). The matrix of D was then analyzed through non-metric, multidimensional scaling (NMDS) using 

Euclidean distances.

3. Results

3.1 DNA polymorphism

Phylogenetic reconstructions including populations of Aequiyoldia eightsii revealed clearly discriminated 

evolutionary lineages associated to different provinces of the Southern Ocean (Fig. 3-4, Table 2). For 

instance, A. eightsii populations from KI differed markedly (> 19%) from those collected in other the 

Southern Ocean provinces (AP, SA, FI). In fact, more than 27 amino acid substitutions separated KI from 

the rest of the analyzed populations (AP, SA, FI). No indels or stop codons were identified within A. 

eightsii populations from AP, SA, or FI. A total of eight amino-acid substitutions were recorded among 

individuals from these areas (see below). Mitochondrial DNA alignments (621 bp) included 79 variable 

positions (12.72%) of which 73 (92.4%) were parsimoniously informative. Nuclear ITSs (1190 bp) were 

more conserved with only 28 variable positions (2.35%), 19 of which (67.85%) were parsimoniously 

informative. Mitochondrial and nuclear sequences were not saturated at any position and no evidence for 

codon bias was detected for COI (ENC = 35.89).

3.2 Phylogenetic relationships

Phylogenetic reconstructions from mitochondrial data were consistent with previous analyses in 

protobranch bivalves (Sharma et al. 2013) that discriminated major taxonomic protobranch groupings 

with high bootstrap and posterior probabilities. For instance, the single individual of Portlandia isonota 

from KI fell within the diversity of Yoldiella from different regions (Fig. 3). At the same time, these 

analyses highlighted the presence of several evolutionary lineages within the nominal species, A. eightsii 

(Fig. 3). The monophyly of Aequiyoldia eightsii was highly supported by the different markers and 

reconstruction methods. Nevertheless, the high divergence level (> 19%) and phylogenetic position of A. 

eightsii individuals from KI (Fig. 3) allowed us to discriminate them as a different species. However, the 

exact systematic position of KI individuals remains uncertain. Although KI specimens may represent a 

basal branch of Aequiyoldia, considering the high level of genetic divergence, we tend to think that they 
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constitute a different Aequiyoldia species endemic to KI. We recognized the presence of at least two 

evolutionary lineages in AP that were sympatric at two sites (i.e., Rothera Station and Admiralty Bay) 

(Fig. 3). We also recognized the presence of a different lineage in SA and another endemic to the FI (Fig. 

3). Genetic divergence between Antarctic and South American A. eightsii populations ranged between 

6.3% and 7.5% (Table 2), whereas these levels were lower between SA and FI populations (4%) and 

among the different AP units (~3%).

3.3 Divergence time estimates

Divergence time estimates based on mtDNA sequences suggested that the A. eightsii populations from KI 

separated from the remaining lineages during the middle Miocene c. 16.5 Ma (22.5–12 Ma) (Fig. 4). 

Following this, the separation between Antarctic and South American lineages occurred at the end of the 

Miocene, c. 8.5 Ma (13–6.5 Ma) (Fig. 4). Finally, the diversification of Aequiyoldia in AP and SA 

occurred during the Pliocene, beginning with the separation between the AP lineages ~ 4.5 Ma (6.5–3.5 

Ma), followed by the separation between SA and FI ~ 3.0 Ma (5.5–2.5 Ma) (Fig. 4).

3.4 Morphological analysis

The nMDS analysis separated individuals of A. eightsii into two main groups (Fig. 5). The first included 

all individuals assigned to the broadly distributed nominal species A. eightsii collected at AP, SA, and KI, 

which exhibited a u-shaped pallial sinus. The second group included individuals from FI that represented 

a different morphological entity that exhibited a v-shaped pallial sinus.

4. Discussion

4.1 Cryptic speciation in the Southern Ocean

Recent molecular studies in broadly distributed Southern-Ocean organisms have demonstrated the 

presence of several cryptic species complexes. Examples include crustaceans of the genus Eusirus (Baird 

et al., 2011) and Serolis (Leese et al., 2008), the nudibranch Doris kerguelenensis (Wilson et al., 2009), 

octopuses of the genus Pareledone (Allcock et al., 2011), pycnogonids of the genus Nymphon (Arango et 

al., 2011), Pallenopsis (Weis et al., 2014; Harder et al., 2016), Colossendeis (Dietz et al., 2015), the 

brittle star Astrotoma (Heimeier et al., 2010) the ophiurid Promachochrinus (Hemery et al., 2012), the 

macroalgae genus Gigartina (Billard et al., 2015), and Durvillaea (Fraser et al., 2009). Given the high 

number of cryptic species complexes discovered in the Southern Ocean, the region's biodiversity has been 

severely underestimated. As recorded in Aequiyoldia, cryptic species complexes consist of closely related 

species with incomplete morphological differentiation as opposed to distantly related species that have 

acquired a misleading degree of morphological similarity through other evolutionary processes (i.e., 

convergent evolution) (Koubbi et al., 2014). Besides increasing diversity patterns and species counts, the 

discovery of cryptic species often results in a shift from a small number of broadly distributed, 
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morphologically variable species to a series of less variable species with smaller, often allopatric 

distributions. Notable exceptions of newly delimited species with larger distributions in the Southern 

Ocean do exist (Fraser et al., 2009; Nikula et al., 2010; Cumming et al., 2014; González-Wevar et al., 

2018). New molecular advances have started to change our understanding of circumpolar and 

cosmopolitan species, indicating the need for further, more detailed taxonomic and integrative 

biogeographic work on potential cryptic species (Grant et al., 2010). Biogeographic patterns may change 

with increased knowledge of diversity both at the genetic and species levels and how much these patterns 

are likely to change is still unclear. Nevertheless, it seems probable that the overall pattern of rich 

Antarctic fauna distinct from that of its neighbours will hold true and even strengthen (Koubbi et al., 

2014). Species numbers in the Southern Ocean are likely to increase with further sampling, taxonomic 

work, and molecular analyses, helping provide a better understanding of global diversity, distribution, and 

evolutionary history (Griffiths et al., 2011).

4.2 Cryptic speciation in Aequiyoldia

The highly conserved morphology and absence of genetic data led researchers to synonymize several 

nominal species of Aequiyoldia (i.e., A. kerguelensis, A. subaequilateralis, A. woodwardi) into a single, 

nominal, broadly distributed species: A. eightsii. Accordingly, A. eightsii has exhibited an extended 

distribution across the sub-Antarctic from South America to the Kerguelen Island as well as a circum-

Antarctic distribution (Linse, 2014). Herein, the monophyly of Aequiyoldia in the Southern Ocean was 

supported by mtDNA sequences and different reconstruction methods. Mitochondrial and nuclear 

diversity within Aequiyoldia across its distribution (AP, SA, FI, and KI) as well as its morphological 

characterization uncovered the presence of at least five cryptic species currently distributed in AP, SA, FI 

and KI. We found a clear distinction between sub-Antarctic and Antarctic lineages of A. eightsii, 

corroborating previous molecular studies in the group (González-Wevar et al., 2012, 2017; Poulin et al., 

2014). In Falkland/Malvinas Islands, we recorded the presence of an endemic lineage clearly separated 

from its closest continental South American relative. Finally, along the Antarctic Peninsula, we recorded 

at least two sympatric evolutionary units in Marguerite Bay (West Antarctic Peninsula) and Admiralty 

Bay (South Shetlands).

4.3 A highly divergent Aequiyoldia lineage in Kerguelen Islands

The A. eightsii population from KI was the most divergent and showed a basal position in the 

phylogenies. All COI haplotypes from KI clustered together in a monophyletic group separated from the 

remaining lineages from AP, SA, and FI by more than 19% divergence (Table 2). Such level of 

divergence could not be corroborated by nuclear data, since ITSs sequences from KI did not align 

properly with those from AP, FI, and SA. However, it may also reflect a long divergence history between 

KI lineage from the South American and Antarctic ones. Hence, the amount of molecular divergence 
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accumulated in KI was extreme, despite morphological similarities among the KI, AP, and SA 

populations. Because of its geographic isolation, Kerguelen Archipelago is indeed characterized by a high 

level of endemism in a variety of terrestrial and marine species (Briggs, 1966; McDowall, 1968; Poulin 

and Féral, 1995; Hennion and Walton, 1997; Brandt et al., 1999; Chapuis et al., 2000; Emerson, 2002; 

Ledoux et al., 2012; González-Wevar et al., 2017). Consequently, this sareptid bivalve endemic to KI 

should clearly be considered as a different Aequiyoldia species. Accordingly, and considering that an 

Aequiyoldia species has been previously described in Kerguelen, our study supports the re-validation of 

A. kerguelensis (Thiele, 1931).

4.4 Trans-Drake speciation: new Aequiyoldia species in South America

Phylogenetic reconstructions and molecular divergence within Aequiyoldia support previous Antarctic 

and South American population-based comparisons in the group (González-Wevar et al., 2012; Poulin et 

al., 2014) by recognizing the presence of different evolutionary lineages on both sides of the Drake 

Passage. Such conclusions are supported by the mtDNA (6.5% - 7.5%) and nucDNA (1.2%) molecular 

divergence recorded between Antarctic Peninsula and South American Aequiyoldia populations (Suppl. 

Fig. 1). Consequently, we suggest that South American A. eightsii deserves specific status and that 

integrative taxonomic revisions are required within Aequiyoldia.

4.5 Re-validating Aequiyoldia woodwardi (Hanley, 1860)

The morphological revision of Aequiyoldia shells confirmed the current presence of a broadly distributed 

morphotype in different provinces including AP, SA, and KI (Fig. 4). In a revision of the group, 

Villarroel and Stuardo (1998) concluded that the external anatomy of A. eightsii individuals from South 

America and Antarctic Peninsula is very similar but they differ in their respective sizes, being the 

Antarctic populations bigger than the South American ones. However, molecular data do not support the 

presence of a single genetic unit across the Southern Ocean. Rather, the data highlighted the presence of 

hidden cryptic diversity with at least five evolutionary lineages. Together with this broadly distributed 

morphotype, we also recorded another one currently restricted to FI. Mitochondrial (COI) and nuclear 

(ITSs) sequences of Aequiyoldia individuals from FI revealed the presence of a monophyletic group in 

these islands separated from its sister South-American lineage by 4% and 0.5% of divergence, 

respectively (Suppl. Fig. 1). Such molecular results corroborated previous morphological revision in the 

group (Rabarts and Whybrow, 1979) that recorded the presence of a different species off these islands: 

Yoldia woodwardi Hanley, 1860. Consequently, based on morphological and molecular evidence, we 

propose a revalidation of the specific status conferred to the Aequiyoldia from FI and propose Aequiyoldia 

woodwardi be used for this species. These results support recent population-based studies of several 

marine, near-shore, benthic invertebrates including isopods of the genus Serolis (Leese et al., 2008), the 

patellogastropods Nacella magellanica (González-Wevar et al., 2012) and Nacella mytilina (González-
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Wevar et al., 2016), and pulmonates of the genus Siphonaria (González-Wevar et al., 2018); all those 

studies recognized FI and SA populations as different genetic and sometimes as evolutionary units. As 

stated by Leese et al. (2008), whereas the biota of FI shared most of their faunal inventory with SA, 

molecular studies have demonstrated that shallow benthic species may, in fact, be strongly differentiated 

or even reproductively isolated. The genetic differentiation between SA and FI populations of 

Aequiyoldia may be a consequence of their distinct glaciological histories during the coldest glacial 

periods. The southern tip of South America was almost completely covered by ice during the last Glacial 

Maximum (LGM), and shallow marine habitats were largely absent. In contrast, little evidence of ice 

advances during the LGM existed in FI apart from small cirques and short glacially eroded valleys 

(Clapperton and Sugden, 1976; Clapperton, 1994; Hodgson et al., 2014), and no study shows evidence of 

LGM glaciers extending offshore (Wilson et al., 2002, 2008).

4.6 Divergent lineages in Aequiyoldia off the West Antarctic Peninsula

Phylogenetic reconstructions and levels of mtDNA divergence, as well as divergence time estimates 

indicated the presence of at least two different Aequiyoldia lineages off the Antarctic Peninsula. These 

lineages are separated by 5.78% of mtDNA divergence and are currently found in sympatry in Marguerite 

Bay and off the South Shetland Islands. These divergent Antarctic Aequiyoldia lineages could either be 

the consequence of sympatric cryptic species or persistent ancestral polymorphism with incomplete 

lineage sorting. To discriminate between these hypotheses, additional nuclear genetic data are required.

4.7 Biogeography in Aequiyoldia spp.

Molecular data suggest that the tmrca of Aequiyoldia spp., separating KI from the rest of the analyzed 

provinces of the Southern Ocean (AP, SA and FI), occurred c. 16.5 Ma (22.5–12 Ma), close to the middle 

Miocene transition (MMCT). This period represents an epoch of major oceanographic and climatic 

changes in the Southern Ocean that were probably associated with the intensification of the ACC and the 

re-establishment of a continental Antarctic Ice Sheet (Zachos et al., 2001; DeConto and Pollard, 2003; 

Mackensen, 2004; Verducci et al., 2009). Major oceanic circulation changes during this period were 

probably associated with the full development of a deep ACC, a process that was only achieved during 

the late Miocene around 12 Ma (Dalziel et al., 2013). As recorded for other Southern-Ocean invertebrates, 

fluctuations in latitudinal positioning and strengthening of the ACC during this period seemed to be 

important drivers in the separation of lineages over geographically distant Southern Ocean provinces 

(González-Wevar et al., 2017). Alternatively, the establishment of a strong and deep ACC may have 

generated an effective oceanographic barrier that can be invoked to explain the diversification of 

Aequiyoldia in different areas of the Southern Ocean. Following this, the separation between Antarctic 

and South American lineages of Aequiyoldia occurred at the end of the Miocene c. 8.5 Ma (13–6.5 Ma).
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In this context, late Miocene phases of Southern Ocean diversifications have been identified in different 

groups of marine invertebrates including some octopus clades (Strugnell et al., 2008), octocorals (Dueñas 

et al., 2016), patellogastropods (González-Wevar et al., 2017), muricid gastropods (Barco et al., 2012), 

and fishes (Near et al., 2012). For instance, the limpet genus Nacella shows a particular radiation at the 

end of the Miocene 8.5–7.0 Ma (González-Wevar et al., 2017), and the muricid gastropod of the 

subfamily Pagodulinae diversified in the Southern Ocean between the late Miocene and Pliocene (Barco 

et al., 2012). Following this, during the Pliocene, Aequiyoldia diversified both off South America and 

across the Antarctic Peninsula. In both Antarctic and South America, this diversification started around ~ 

4.5 Ma (6.5–3.5 Ma) and ~ 3.0 Ma (5.5–2.5 Ma), respectively. Diversification processes during the 

Pliocene have been reported for other Southern-Ocean marine benthic invertebrates including the 

Antarctic amphipods of the genus Epimeria (Verheye et al., 2017), deep-sea octopuses (Strugnell et al., 

2008), and deep-sea octocorals (Dueñas et al., 2016). Molecular population-based studies have provided 

strong evidence from a wide range of marine and terrestrial taxa that fragmentation of populations into 

refugia during glacial maxima and subsequent expansions during interglacial periods may represent an 

important mechanism enhancing cryptic speciation processes (Allcock and Strugnell, 2012; Fraser et al., 

2012; Poulin et al., 2014). Hence, the presence of isolated refugia during glacial maxima may have 

enhanced such process and the re-colonization of newly de-glaciated habitats could have favoured the 

recent radiation recorded in Aequiyoldia off South America and the Antarctic Peninsula.
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Figure Captions

Figure 1. A) Main Southern Ocean provinces included in the study. B) Sampling sites of Aequiyoldia 
eightsii off South America (SA), Falkland/Malvinas Islands (FI), and Antarctic Peninsula (AP). C) 
Distribution of Aequiyoldia eightsii in the Southern Ocean (Linse et al., 2014).

Figure 2. Aequiyoldia eightsii individuals from: a-c) Kerguelen Islands (KI = L1), d-f) Rothera Station 
(AP = L2), g-i) Admiralty Bay (AP = L3), j-l) South America (SA = L4), m-o), and the 
Falkland/Malvinas Islands (FI = L5).

Figure 3. Bayesian maximum clade credibility tree of Aequiyoldia relationships based on mtDNA (COI) 
sequences with special emphasis on Antarctic Peninsula and South American populations. Bootstrap 
support values (MP and ML) and BPP are shown above the nodes (in that order). Map and colors indicate 
major sampled areas. Round charts indicate the frequency of the recorded Aequiyoldia lineages across the 
sampling sites.

Figure 4. Bayesian maximum clade credibility tree based on mtDNA (COI) showing divergence time 
estimates within A) protobranch bivalves and B) Aequiyoldia. Posterior probabilities are shown above the 
clades. Grey boxed regions depict 95% Bayesian credible intervals (BCIs) for relative divergence times.

Figure 5. Non-metric, Multidimensional Scaling (NMDS) ordination of A. eightsii samples from the 
Kerguelen Islands (KI), Falkland/Malvinas Islands (FI), South America, and the Antarctic Peninsula 
using shell morphological data following Rabarts and Whybrow (1979).

Supplementary Figure 1. A) mtDNA (COI) maximum parsimony networks including Aequiyoldia 
individuals collected at different localities in the Southern Ocean. B) nucDNA (ITS1 and ITS2) maximum 
parsimony network including Aequiyoldia individuals from different localities in the Southern Ocean. A 
coloured circle represents each haplotype and indicate the main area where it was collected. The size of 
the circle is proportional to its frequency in the whole sampling effort.
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Table 1. Sampling sites of Aequiyoldia eightsii: Geographical coordinates, name of collector, n: 
number of analyzed individuals per locus.

Sites
Lat. Long. n (COI) n (ITS)

Port-aux-Français, Kerguelen Islands 49º21’S 70º13’W 11 9

Hooker's Point, Falkland/Malvinas Islands 51º42’S 57º46’W 20 7

San Juan River, Strait of Magellan 53º38’S 70º56’W 20 9

Porvenir, Tierra del Fuego 53º18’S 70º22’W 5 -

Skyring Sound, Strait of Magellan 52º34’S 70º56’W - 3

Admiralty Bay, South Shetland Islands 62º09’S 58º27’W 6 -

Fildes Bay, South Shetland Islands 62º12’S 58º57’W -

Deception Island, South Shetland Islands 62º56’S 60º36’W 20 8

Rothera Station, Antarctic Peninsula 67º34’S 68º07’W 20 - 
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Table 2. Uncorrected p-distances based on mtDNA COI sequences between the recorded lineages of 
Aequiyoldia from Kerguelen Island (KI), the Antarctic Peninsula (AP), South America (SA), and the 
Falkland/Malvinas Islands (FI).

KI AP1 AP2 SA FI

KI ****

AP1 19.96% ****

AP2 20.61% 5.79% ****

SA 20.45% 6.60% 8.53% ****

FI 19.80% 5.47% 6.92% 3.86% ****

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59




