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INVITED STRATEGIC ARTICLE

Step back from the forest and step up to the Bonn
Challenge: how a broad ecological perspective can
promote successful landscape restoration

Vicky M. Temperton'>®, Nina Buchmann?, Elise Buisson*, Giselda Durigan>®,
Fukasz Kazmierczak’, Michael P. Perring®®, Michele de S4 Dechoum!'?,
Joseph W. Veldman'!!, Gerhard E. Overbeck'?

We currently face both an extinction and a biome crisis embedded in a changing climate. Many biodiverse ecosystems are
being lost at far higher rates than they are being protected or ecologically restored. At the same time, natural climate solutions
offer opportunities to restore biodiversity while mitigating climate change. The Bonn Challenge is a U.N. programme to restore
biodiversity and mitigate climate change through restoration of the world’s degraded landscapes. It provides an unprecedented
chance for ecological restoration to become a linchpin tool for addressing many environmental issues. Unfortunately, the Forest
and Landscape Restoration programme that underpins the Bonn Challenge, as its name suggests, remains focused on trees and
forests, despite rising evidence that many non-forest ecosystems also offer strong restoration potential for biodiversity and
climate mitigation. We see a need for restoration to step back to be more inclusive of different ecosystem types and to step up
to provide integrated scientific knowledge to inform large-scale restoration. Stepping back and up will require assessments
of where to restore what species, with recognition that in many landscapes multiple habitat types should be restored. In the
process, trade-offs in the delivery of different ecosystem services (e.g. carbon, biodiversity, water, albedo, livestock forage)
should be clearly addressed. We recommend that biodiversity safeguards be included in policy and implemented in practice, to
avoid undermining the biophysical relationships that provide ecosystem resilience to climate change. For ecological restoration
to contribute to international policy goals will require integrated large-scale science that works across biome boundaries.
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Implications for Practice

e In a global biome crisis, we need to take care that all
ecosystems and habitats receive attention for restoration:
Bonn Challenge in action should be called Landscape
Restoration, not Forest Landscape Restoration.

e Policymakers should recognize knowledge gaps and strive
to fill them using large-scale science programmes that
involve both natural and social scientific approaches.

e Restoration should, whenever possible, focus on maxi-
mizing biodiversity to promote ecosystem resilience, and
thus long-term adaptive capacity to provide ecosystem
services in the face of climate change.

e Fulfilling international commitments for ecological
restoration, in combination with halting the degradation
of natural habitat, will provide a major step towards
resolving pressing environmental problems.

Introduction

The Bonn Challenge is a policy-driven platform that has
catapulted the field of ecological restoration onto the global
science-policy stage. The framers of the Bonn Challenge
envisioned restoration as a climate mitigation tool, whereby
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biodiversity is restored to degraded landscapes, carbon (C) is
stored, and livelihoods of local populations can be improved.
Launched by the government of Germany and International
Union for Conservation of Nature in 2011, the Bonn Challenge
aims to restore 150 million hectares of the world’s deforested
and degraded land by 2020 and 350 million hectares by 2030;
it was later endorsed and extended by the New York Dec-
laration on Forests at the 2014 UN Climate Summit (http://
www.bonnchallenge.org/content/challenge). The Forest (and)
Landscape Restoration (FLR) approach forms the basis of the
Bonn Challenge, aiming to restore ecological integrity while
also improving human well-being through multifunctional
(forest) landscapes.

In the recently declared UN Decade of Ecosystem Restora-
tion (2021-2030), these ambitious aims form an unprecedented
opportunity for both the practice of ecological restoration as
well as the scientific field of restoration ecology. Ecologi-
cal restoration is still young as a discipline, and platforms
such as the Bonn Challenge provide major opportunities for
scaling up the benefits of ecological restoration to the global
scale, linking it to existing programmes that combat ecosys-
tem degradation such as REDD+. Within programmes of this
magnitude, including many projects at the local and regional
scale, restoration has the potential to become a linchpin tool
for restoring biodiversity and maintaining human livelihoods
through multifunctional landscapes. Importantly, the goals of
the Bonn Challenge increasingly enter into public debates, as
highlighted by a recent article in The Guardian. Carrington
(2017) describes seven global megatrends that provide hope in
the quest to curb climate change. Megatrend number seven is
entitled “Forests—seeing the wood” and describes the potential
to store carbon via massive planting of trees and reforestation
and afforestation. Examples like this place restoration in the
limelight, but also exemplify a common bias towards specific
biome and habitat types in the debate: forests are often assumed
to be the best ecosystems for mitigation of climate change, even
though other ecosystem types also could be excellent candidates
for natural climate solutions (Griscom et al. 2017).

Indeed, the very recent emergence of the inclusive term
“natural climate solutions” (Griscom et al. 2017) invites us to
consider the restoration of a whole range of different habitat
types as a means to address “the global environmental chal-
lenges humanity, and biodiversity, faces.” It is well-known
that the wording and focus people use reflects quite directly
on engagement, policy decisions, and also focus of scientific
research (Jacobs et al. 2005; McNie 2007; Seddon et al. 2019).
Indeed, Seddon et al. (2019), who advocate conservation solu-
tions based on sound biodiversity science, express their con-
cern on aspects of the (forest-focused) narrative that is currently
reaching policymakers: they “call on scientists studying biodi-
versity and ecosystem functions and services to fully engage
with and inform the process by which high-level pledges are
translated into on-the-ground actions.”

The unprecedented opportunity for scaling up ecological
restoration thus clearly also presents an array of challenges and
potential pitfalls. Such obstacles will be important to address
swiftly as the Bonn Challenge, with its ambitious aims, unfolds.

We argue that restoration ecologists need to step back to assess
the underlying assumptions and unconscious biases within FLR
policy. We also need to step up to develop and integrate the sci-
ence to bolster the Bonn Challenge. In addition to broadening
the biome narrative—currently focused mainly on forest and
tree planting—we also need to take into consideration whether
we are really doing ecological restoration, or whether we mis-
use the term for activities that are, in fact, reclamation or reha-
bilitation (Fig. 1; see also Suding et al. 2015), or, needless to
say much worse, conversion by afforestation of natural biodi-
verse ecosystems (Veldman et al. 2015a, 2015b). Given these
challenges, we have a need, but also a clear opportunity, for
large-scale integrated research to improve the scientific basis
for restoration. Only through restoration in all kinds of habi-
tats, while aiming for high biodiversity wherever possible, can
we actually gain the most out of such a huge potential for mit-
igating climate change, and provide strong multifunctionality
(sensu Suding et al. 2015).

Explicit consideration of the overall framing of the Bonn
Challenge and engaging in an open discussion of its implications
for restoration practice on the ground is particularly important
due to the predominance of tree-planting and forest restoration
in FLR (Chazdon & Laestadius 2016; Veldman et al. 2017). We
see a continued focus on trees as a blind spot to the true poten-
tial for restoring biodiversity, mitigating climate change, and
improving local livelihoods in a whole range of different habi-
tats and biomes (Seddon et al. 2019). Originally the programme
was called Forest Landscape Restoration with a focus on refor-
estation and afforestation of degraded land, but then, partly in
response to concern of scientists about the potential negative
effect of afforesting biodiverse natural grasslands or savannas
(Veldman et al. 2015a), was renamed Forest and Landscape
Restoration. Subsequently, Chazdon et al. (2017) proposed four
principles upon which FLR should be based, including avoiding
afforestation of grassy (tropical) biomes, promoting landscape
heterogeneity and biodiversity, distinguishing recent from resid-
ual carbon stocks, and diversifying local livelihoods.

Despite these modifications, the current programmes behind
the Bonn Challenge, FLR, seem, by definition, to treat the
restoration of other habitats as secondary (e.g. Chazdon &
Laestadius 2016; Chazdon et al. 2017; Mansourian et al. 2017).
While forests will certainly remain important to achieve the
aims of the Bonn Challenge in many regions around the world,
there is enormous potential to be inclusive and implement
restoration in a wide range of biomes and thus mitigate climate
change and reverse biodiversity loss in the best possible way for
each particular geographical region and landscape.

Although coastal and marine habitats are not in the focus
of this paper, coastal vegetation, including mangroves, sea-
grass communities, salt marshes and macroalgae harbour vast
amouonts of carbon in marine seditments and provide resilience
against extreme weather events by dissipating wave action and
rising sea level (McLeod et al. 2011; Duarte et al. 2013). A con-
tinued, narrow focus on forests will compromise global conser-
vation targets that call for consideration of all ecosystem types
(Griscom et al. 2017), as well as provisioning of ecosystem ser-
vices provide by all kinds of natural ecosystems, not only of
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Figure 1. Comparison of outcomes of true ecological restoration, rehabilitation, and reclamation of degraded ecosystems in terms of ecosystem structure and
function (adapted from Bradshaw 2004). Reclamation reinstates, often rapidly, a biologically productive ecosystem. Rehabilitation establishes some type of
vegetation cover and partially re-establishes ecosystem function. True ecological restoration leads to high ecosystem structure and biodiversity, as well as
high ecosystem functioning. Due to increasing climate and global change, however, the historical reference system usually is not feasible, but different
restoration options exist, where focus and aims may slightly differ. Hatched circles indicate that systems will be dynamic over time. Unintentional
degradation (not depicted) occurs when restoration activities inadvertently damage or destroy ecosystems of high conservation value (e.g. afforestation of

savannas; Veldman et al. 2015a).

forests. We suggest that FLR be rebranded as simply landscape
restoration, to be inclusive of the diversity of Earth’s biomes,
many of which co-occur at the landscape scale.

Stepping Back: Changing the Narrative
and Confronting the Global Biome Crisis

Important restoration initiatives with a focus on forests started
before the Bonn Challenge. One prominent example is Brazil’s
Atlantic Forest Pact, a network of more than 260 institutions
that aim to restore 15 million hectares until 2050 (Pinto et al.
2014). This initiative builds on the restoration experiences and
research in the Atlantic Forest, the Brazilian biome that suffered
the most severe habitat conversion in recent decades (Ribeiro
et al. 2009). While Brazil’s Atlantic Forest is indeed in dire
need of restoration, we are concerned that there are no sim-
ilar large-scale initiatives for Brazil’s other biomes (e.g. Cer-
rado) or for non-forest ecosystems. Grasslands, savannas, and
shrublands of Brazil are equally rich in biodiversity as forests
and provide critical ecosystem services (e.g. Brazil’s largest
cities depend on watersheds in the Cerrado, and yet restoration
research and application is lagging far behind [Overbeck et al.
2015]). We are concerned that as experiences, techniques, and
funding for large-scale forest restoration become available (e.g.
Alexander et al. 2011; Moreira da Silvaet al. 2017), trees will be
planted in possibly well-intended, but nonetheless ill-conceived,
restoration projects (i.e., afforestation— Veldman et al. 2015a
reclamation, or remediation; Fig. 1).

A further risk is that resources will be funnelled to only some
of the habitats that have restoration needs, namely those for

which techniques are available and where some economic inter-
ests or bureaucracies foster tree-planting activities (Fleischman
2014). Consequently and potentially increased by their sheer
spatial scale, these projects will receive more attention from
media and science, with the risk of forgetting other ecosystems
where restoration demands and/or benefits may be as great or
greater. Additionally, there is the risk that restoration knowledge
and experiences from forests will be expanded to ecosystems
where this kind of “restoration” is clearly not appropriate.
When it comes to conservation and restoration, the world’s
grassy biomes (including grasslands and savannas, and many
peatlands and wetlands) are not, as it seems, as attractive or
visible to the public, policymakers, and many scientists, com-
pared to forests (Bond & Parr 2010). This is somewhat surpris-
ing given that grassy biomes are ancient, diverse, and culturally
important landscapes that perform many ecosystem functions
and provide many ecosystem services (including food secu-
rity; Bengtsson et al. 2019). This applies to both tropical (Bond
2012; Veldman et al. 2015a; Pausas & Bond 2018) and temper-
ate systems (Habel et al. 2013; Dengler et al. 2014). This blind
spot for grassy biomes may have several causes, the first being
that high conservation value grasslands are often subsumed into
general land use categories such as “agricultural land” or “pas-
ture,” along with productive species-poor artificial grasslands,
and hence tend to disappear from people’s consciousness. A sec-
ond reason may be the fact that a large part of the world’s savan-
nas and grasslands experience frequent “disturbances” such as
fire and grazing by large, often domestic, animals (Bond 2012;
Veldman et al. 2015b; Pausas & Bond 2018). Although grassy
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biomes have similar global land cover to forests, there are fewer
publications and restoration projects in grassy biomes (although
this discrepancy is reducing over time). Peatlands cover a far
lower percentage of the globe, but store the largest amount of
C, such that focusing more on their restoration in temperate
latitudes will be important since they have a lower suscepti-
bility of C loss to warming than at higher latitudes (Crowther
etal. 2016). However, peatlands receive much less attention
than forests as target habitats for restoration (Fig. 2). As such,
we clearly undervalue many mega-diverse biomes and habi-
tats and easily transform them into cropland and urban areas
(e.g. Searchinger et al. 2015). The lack of public recognition of
the loss of non-forest ecosystems may stem from the percep-
tion that grassy landscapes are necessarily human-created, or
at best semi-natural, thus disregarding their conservation val-
ues in terms of biodiversity, structure, functioning, and ser-
vices. For example, we have lost around 50—-70% of species-rich
grasslands in central and northern Europe alone in the past
30 years, yet this is not known to the general public who are
well-informed about tropical forest loss (Habel et al. 2013).

Equally importantly, we are losing vast tracts of biodiverse
forests, savannas, grasslands, and peatlands at the same time as
elsewhere we are striving to restore and conserve biodiversity
and reach specific Aichi and Bonn Challenge targets (e.g. Tit-
tensor et al. 2014). Examples for this include the Brazilian Cer-
rado (Noojipady et al. 2017) or the South American Gran Chaco
(Baumann et al. 2017) that are massively affected by expansion
of agricultural land for commodity production. Globally, 3.2 bil-
lion people are directly affected by land degradation (IPBES
2018). Over the last two centuries, competition for produc-
tive land has led to the clearing or conversion to agriculture of
approximately 70% of the grassland, 50% of the savannah, 45%
of the temperate deciduous forest, and 27% of the tropical for-
est (UNCCD 2013). By 2030, the demand for food, energy, and
water is expected to increase by 50, 45, and 30%, respectively
(UNCCD 2013), which will increase pressure to convert natu-
ral lands. Clearly, continued destruction of natural vegetation
(including draining of wetlands and peatlands and concomitant
massive greenhouse gas emissions) is “the biggest megatrend
not pointing in the right direction” (Carrington 2017). Annual
tree losses have nearly doubled since 2000, even though we
know that destruction of forests for ranching, timber, and farm-
ing cause around 10% of the world’s greenhouse gas emissions
(Seddon et al. 2019).

Only about 2% of global climate finance (around $2.3 billion
since 2010) is committed to forests. Brazil and Indonesia’s
governments alone invested $276 billion in the same time
frame in just four key driver commodities: palm oil, soy, beef,
and timber (Wolosin et al. 2016). In contrast, in the Paris
Agreement, 42% of signatories include afforestation and/or
restoration of forests as components of their nationally deter-
mined contributions (NDCs), compared with only 19% for
coastal habitats (in countries with coastlines), and grasslands
in only 8% of NDCs (Seddon et al. 2019). Clearly restoration
investments are occurring based on the assumption that trees
equate with conservation rather that evenhanded assessments
of the restoration value of ecosystems based on antiquity,

biodiversity, ecosystem functions, and services (including C
storage), and not by whether they appear to be “natural” or
not. Indeed, many hyper-diverse forests, even in the tropics,
show strong traces of human influence (Levis etal. 2017).
The fact that temperate grasslands, savannahs, shrublands, and
Mediterranean woodlands and forests have higher conservation
risk index ratios compared to tropical, temperate, and boreal
forests, deserts, or tundra (Hoekstra et al. 2005; UNCCD 2013)
clearly shows that open, grassy and shrubby biomes are not
getting the protection or restoration they need. As a conse-
quence, there is a vast untapped potential to improve both their
conservation (via changes to their protection) and restoration
through more explicit inclusion in the Bonn Challenge and
other science-policy platforms (Seddon et al. 2019).

Where to Restore What Type of Habitat?

We suggest that the ambitious goals of the Bonn Challenge
can only be met with concrete restoration and rehabilitation
actions developed to include the diversity of Earth’s ecosystems.
We must protect biodiversity in all biomes and adjust land use
to reduce land degradation towards land degradation neutrality
(LDN; Cowie etal. 2018). To this end, we need to clearly
consider the where and what to restore, as well as define
the activities that we consider to be ecological restoration as
opposed to rehabilitation or reclamation (Fig. 1).

The Society for Ecological Restoration (SER) defines eco-
logical restoration as: “the process of assisting the recovery of
an ecosystem that has been degraded, damaged, or destroyed.”
What is often termed true restoration aims for high ecosystem
structure and biodiversity, as well as high ecosystem function-
ing, in contrast to rehabilitation of a degraded ecosystem that
mainly focuses on reinstating ground cover and some level of
ecosystem functioning or service. Reclamation, on the other
hand, involves replacing and stabilizing the degraded ecosystem
by biologically productive, often intensive systems (croplands,
improved pasture) that may provide one particularly desired
ecosystem service but lack biodiversity and all its manifold
effects on functioning and services (Bradshaw 2004; Yang et al.
2019). However, when striving for true restoration in times
of global change, there is a need to assess shifting baselines
for ecological restoration, including what our target commu-
nities are, as reaching historical reference ecosystems may no
longer be possible. This underlines the need to systemically
study to what extent we can send communities on trajectories
in the direction of historical targets (or with similar indicator
species) and what range of different of alternative species-rich
and well-functioning communities that are adapted to expected
future climate are also possible in different regions (see Fig. 1).
This is an area that urgently needs more research and regional
landscape-scale restoration projects to answer such crucial
questions.

We argue that wherever possible we should aim for ecologi-
cal restoration (see Fig. 1) since it usually promotes the greatest
biodiversity and ecosystem functioning (Benayas et al. 2009;
Isbell et al. 2011; Yang et al. 2019). Nonetheless, in light of cli-
mate change and eutrophication of many regions of the world,
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Figure 2. Cumulative contribution of ecological restoration publications and projects over time since 1980, as found in (A) Google Scholar and (B) Web of
Science, separated into major habitat types (PB—peatlands bogs and wetlands; GS—grasslands and savannas; FW —forests and woodlands). Note the
dashed lines show percentage of total global land cover for each category. Also note that C storage capacity is much higher for peatlands, followed by forests,
then grasslands; however, if C residence time is considered this ranking would change again (see text for details). Given that grasslands and savannas provide
as wide an array of ecosystem services as forests (Bengtsson et al. 2019), this suggests that we undervalue landscapes that are maintained by frequent
disturbances (e.g. fire and herbivory). The search in Web of Science indicated a large difference between number of peatland projects and publications that
was not found using Google Scholar. FW, forest and woodland; GW, grasslands and savannas; PB, peatland and wetland projects. Search terms were either
(restoration OR restored) AND (eco* OR ecol*) AND ( ... ), or (restoration OR restored) AND (eco* OR ecol*) AND (project*) AND ( ... ), where (...)
remained blank or was the name of the biome, i.e. (grassland* OR grassy OR savanna®), (peatland* OR bog* OR wetland*), or (wood* OR woodland* OR

forest*).

the call for flexible targets for ecological restoration is more
important than ever (Harris et al. 2006; Choi 2008; Suding 2011;
Aronson et al. 2018; Higgs et al. 2018). At the same time, at the
landscape scale we should aim to ensure that as many species
typical of different historical ecosystems are included in the
restoration projects to allow for natural assembly to filter out
those most adapted to the current and predicted future condi-
tions. Assisted migration, whereby species are translocated to
sites that are predicted to suit their ecological niche better in the
future (Hewitt et al. 2011), despite being controversial, will no
doubt gain in importance as many biomes gradually merge into
one another (e.g. tropical forests into savannas as predicted by
Intergovernmental Panel on Climate Change climate models).

To assess whether there is evidence for a bias towards for-
est restoration in the scientific literature and or in restoration
projects, we performed a literature search in Web of Science and
Google Scholar. Figure 2 shows ecological restoration projects
and scientific publications according to the three ecosystem cat-
egories “Forest and woodland,” “Peatlands and bogs,” “savan-
nas and grasslands”, and in relation to global land cover of each
category. It portrays the preponderance of forests and peatland
restoration projects in comparison to grassland and savannah
restoration. Interestingly the number of publications on grassy
habitats is similar to the number of restoration projects, whereas
projects far outnumber publications for the forest and less so
peatland habitats.

It is also important to be clear about our definition of what
constitutes a degraded habitat. Hobbs (2016) correctly focuses
on the key question of how exactly we decide and measure
whether a site is degraded (a decision which forms the basis
for all ecological restoration actions). He writes: “Decisions to
‘restore’ areas to alternative ecosystem types are often taken
on the basis of perceptions of what was there, or what ‘should
have been’ there, rather than a consideration of the relative
value of the existing system and the costs versus benefits of
the restoration.” We propose that focusing on biodiversity
(including species, functional and habitat diversity) and apply-
ing a conceptual approach in decision-making such as LDN
(Cowie et al. 2018) could help solve this issue. LDN aims to
stop overall net land degradation or even to reduce degradation
by addressing land use and changes in land use at whole land-
scape regional scales, while taking biodiversity into account
(O’Farrell & Anderson 2010).

Working at the landscape scale necessarily also means
considering the multifunctionality of landscapes. This is also
advocated within FLR (Chazdon et al. 2017), but their form of
multifunctionality seems to be restricted to tree-dominated and
forest restoration actions and misses the potential of widening
the suite of biomes and options leading to what we term strong
multifunctionality as it operates on several scales, both within
and between habitat and land use types. We define strong mul-
tifunctionality in the sense of strong sustainability (Ekins et al.
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Table 1. For the Bonn Challenge to create true win-win outcomes and be successful both as a means to restore biodiversity and to cool the climate (not just
to store more C) it requires concerted and inter- and transdisciplinary efforts, including strong restoration science, practice, and communication to develop an

inclusive strategy for ecological restoration and greenhouse gas drawdown from the atmosphere.

Practice Needs
Inclusion of habitat and biodiversity
safeguards into large-scale restoration

Science Needs

Clear definitions and criteria to identify
ecosystems as degraded to avoid erroneous
interpretation of non-forest systems as
degraded forest that may then be subject to
“reforestation”

Assessment of ecosystem capacity to
sequester as well as retain C, above- and
belowground, over a large range of
ecosystems, as well as assess other
processes that influence climate (albedo,
VOC, etc.)

Assessment and modelling of ecosystem
functions and services and their trade-offs
within large-scale restoration (C storage in
AGB X biodiversity, C storage in AGB x
water provisioning)

Development of useful indicators for Monitoring of collective benefits (biodiversity,
restoration success that can be easily climate mitigation, and livelihoods) of FLR

applied on the ground but deliver integrated ~ Projects
information Adaptive management of restoration projects

REDD+ or other mechanisms

Development of infrastructure for
seed/seedling production and of restoration
techniques for ecosystems previously
neglected in restoration

Assessment and modelling of ecosystem
functions and services and their trade-offs
in large-scale restoration (including
monitoring water yield at watershed level
over time, as well as C storage, mitigation
of warming, provisioning ecosystem
services)

projects, especially those with funding from

Communication Needs
Stepping back and opening up the overall

conversation to natural climate solutions
that include a range of different habitat

types

Communicating that policy frameworks such

as the Bonn Challenge are major
opportunities to address the biome crisis
and stem biodiversity loss, by giving due
attention to temperate and tropical
grasslands and savannas that have
experienced the largest loss of habitat over
the past 30 years (Hoekstra et al. 2005).

Showing that C storage is a diffuse ecosystem

service (local intervention for global
benefit), while water provisioning brings
local benefits (local intervention for local
benefit). Acknowledging that the trade-off
between them is problematic in seasonally
dry climates (zones under risk of
afforestation).

AGB, aboveground biomass

2003) to include socioeconomic sustainability that does not
compromise the biophysical (biodiversity-driven) relationships
on which livelihoods depend. This goal is possible with a mosaic
of different land uses including extensively—and sometimes
intensively—managed open landscapes next to more protected
habitats (see papers on sustainable multifunctional landscapes;
Fry 2001; Lovell & Johnston 2009; O’Farrell & Anderson
2010). Thus landscape-scale strong multifunctionality does
not occur at the overall expense of one habitat, species, or
functional richness but includes them. Strong multifunction-
ality will not always be a realistic goal, but wherever possible
the chances of it being reached should be adequately assessed
within science policy.

increasing resilience to extreme weather events, and fostering
strong multifunctionality. In other cases, this may not be pos-
sible, and we will need to decide which ecosystem services
we are mainly aiming for (including water yield, carbon, food
security, soil erosion control, wood or hay harvest; Fig. 3). To
reach a level where we differentiate between win-win scenar-
ios and trade-off situations requires concerted interdisciplinary
research. A possible best practice here could include larger scale
landscape planning, with a mosaic of different land uses and
habitats in an area (Tong et al. 2006; Jonson 2010; Chazdon &
Laestadius 2016), but with each land use having been assessed
for optimum ecosystem service outcomes. A science-based
approach could include a set of embedded experiments at land-
scape scale (Gellie et al. 2018). Here, we identify four key
areas that require interdisciplinary and partly transdisciplinary

Stepping Up to Create a Broad Scientific Basis

for Large-Scale Biodiversity Restoration and Climate
Mitigation

Enabling science and research to “catch up” with policy will Carbon Storage
involve a concerted effort on the part of scientists and fund-
ing agencies to make sure that the key issues brought up by the
policy drive are backed up by the best possible and broadest
scientific evidence (McNie 2007; Posner & Cvitanovic 2019).
This will need to include both an explicit integration of available
knowledge as well as addressing remaining knowledge gaps
with new research (see Table 1 for an overview of suggested
activities). At the same time, catching up will require a second,
equally important component of effective, open, and adaptive
communication and decision-making between the many stake-
holders involved, based on the best possible scientific evidence
(Suding et al. 2015; Fig. 3). In some cases this will lead to true
win-win outcomes, restoring biodiversity, mitigating warming,

research to step up to the plate.

Stepping Up Part 1: The Climate Cooling Story, More Than Just

Natural or nature-based climate solutions include a vari-
ety of different components: reducing climate warming (via
changes in radiative forcing), resilience adaptation to altered
disturbance regimes, as well as increasing longer term carbon
stocks (C already present in an ecosystem) and sequestration
(rate of new C removal from the atmosphere). Planting trees
and reforesting/afforesting sites have generally emerged as a
highly popular natural climate solution (Griscom et al. 2017;
Popkin 2019; Seddon et al. 2019). This makes intuitive sense,
since trees, being woody, store vast amounts of carbon as lignin
in their trunks and hence are seen as the preferred fast track to
store carbon above- and belowground in vast quantities, par-
ticularly in tropical and subtropical regions where the climate
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Available
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Ensure biodiversity
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mitigation
Biodiversity and
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Long-term resilience
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Figure 3. Restoration of ecosystems at a landscape scale should maximize three objectives: biodiversity, natural climate solutions, and livelihoods and
ecosystem services. Stepping back involves consideration all types of biomes and habitats. Stepping up requires improved scientific study of ecological
restoration on a landscape scale (Perring et al. 2018). Key areas for research include assessment of which restoration actions best deliver bundles of
ecosystem services without compromising the biophysical relationships that regulate these services. In particular the relative benefits of restoration with
native versus non-native species requires concerted and integrative research and practice efforts.

allows for very fast growth. National estimates of C loss and
gains, using field plots and satellite data, conclude that forests
are globally a large C sink, removing more C out of the atmo-
sphere than they release through respiration and decomposition
(Pan et al. 2011). Recent research urges caution that “forests
have many more complex and uncertain climate impacts than
policymakers, environmentalists, and even some scientists
acknowledge” (Popkin 2019). In particular it is as yet uncertain
whether volatile organic compounds (VOCs) such as terpenes
(e.g. in boreal forests) and isoprenes (in temperate and tropical
forests) emitted from forests contribute to cooling or warming
the planet—and this may depend on the geographical location
and type of forest (Unger 2014; Scott et al. 2018). Clearing
forests releases C stored in trees but it increases the Earth’s
albedo (reflection of solar radiation back into space) such that
we now need scientific assessments of whether this leads to net
cooling or warming. Luyssaert et al. (2018) assessed trade-offs
in using European forests to meet climate objectives, and
found that improved C sequestration may be offset by changes
in surface albedo, land surface roughness, VOC emissions,
transpiration, and sensible heat flux induced by different forest
management. Understanding the extent to which C sequestra-
tion through restoration within FLR can cool the planet will
therefore depend on the net interplay of carbon uptake and
VOC emissions, as well as albedo and transpiration differences
between forest types and between different biomes. Clearly,
there are urgent research needs to develop these overall balances
for different regions where currently FLR is of high relevance.

If one considers the longer term, and more detailed facets of
carbon sequestration such as carbon turnover times, long-term
belowground carbon or albedo effects, then other biomes
can sometimes deliver equally or better climate benefits than
forests. High-latitude afforestation, e.g. will accelerate rather
than mitigate climate change via reduced albedo (Bala et al.

2007). Thus we need to assess whether and which type of refor-
estation makes the most sense in which regions, and where other
ecosystems (e.g. savannas) are better climate coolers. Under a
changing climate that is expected to bring about changes in fire
and precipitation regimes, grasslands may actually prove to be
more secure carbon sinks than forest, as has been demonstrated
in semi-arid California (Dass et al. 2018).

If we are serious about storing more C we need to consider
C turnover, or mean residence time of C in different habitat
types, that is, how long the C stays in the system (in the
soils and the vegetation). Carvalhais et al. (2014) analysed C
turnover times at the global level and across biome types and
found that the average global C turnover time is 23 years, with
large variation at different latitudes (15 years near the equator
vs. 255 years beyond 75° north), driven by precipitation and
temperature differences. Boreal forests and tundra store the
most for the longest time, whereas tropical forests and savannas
store C for the shortest time. Although tropical and boreal
forests store by far the most C overall (C stocks), temperate
shrubland and grasslands, boreal forests, tundra, and deserts
had the longest C turnover times (between 40—60 years versus
less than 20 years for tropical and temperate forests; Carvalhais
et al. 2014). Again, albedo complicates matters, since in boreal
forests cooling from C storage is more than offset by warming
from reduced albedo; for this reason Griscom etal. (2017)
did not consider restoration of boreal forests as an option for
nature-based solutions.

We also need to consider the role of altered disturbance
regimes on C turnover times. Recent major forest fires suggest
that, in California, increased fire frequency and intensity as well
as higher tree mortality could wipe out any forest restoration
gains very quickly (Dass et al. 2018). Using more prescribed
fire may help: Wiedinmeyer and Hurteau (2010) found that
prescribed fire maintained C below potential on any given
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site but that residual C was more secure and less susceptible
to loss in wildfires. Warming itself will influence the global
C cycle, with scenarios that predict a net release of C into
the atmosphere, particularly in high latitudes (in the form of
methane) that will further accelerate climate change (Crowther
et al. 2016; Matthews et al. 2018). Charcoal produced by fires,
and either incorporated into soil or transported off-site, is highly
resistant to oxidation and methanogenesis, and represents a
critical long-term carbon storage pool (Reisser et al. 2016).

When focusing on C sequestration, we highlight the need
for a concerted and (where possible) standardized scientific
assessment of C storage and fluxes within and between different
habitat types, based on a large already available reservoir of
datasets. Large-scale C cycling projects such as the integrated
carbon observation system Research Infrastructure (Franz
etal. 2018) or the National Ecological Observatory Network
(Loescher et al. 2017) have a wealth of data on net ecosystem
productivity, partitioned gross primary productivity, and total
ecosystem respiration, as well as net biome productivity that
includes lateral losses from ecosystems due to fire and leaching.
Although there is a plethora of research on carbon storage in
different biomes and habitats, there are as yet few meta-analyses
that explicitly compare the aboveground and belowground car-
bon storage capacities of different habitat types, including
mean residence times of carbon that would allow for a bet-
ter discussion of trade-offs e.g. between biodiversity, carbon
storage, water provisioning, and other ecosystem services in
conservation and restoration decisions. Overall, there is now the
need to assess the multifaceted components of climate warming
or cooling by explicitly researching and including resilience
adaptation (including considering increased tree mortality and
fire disturbance), C residence times, and effects of VOCs and
albedo as well as C storage.

Stepping Up Part 2: The Need for Biodiversity and Habitat
Safeguards

All aspects of human development, including economic welfare
and social equity, ultimately rely on basic processes of the Earth
system. True sustainability is based on the understanding that we
only have one Earth and that the different planetary boundaries
are interdependent (Steffen et al. 2015). While multiple goals,
including those more related to social and economic aspects,
are essential to ecological restoration (Ekins et al. 2003; Aron-
son et al. 2018; Higgs et al. 2018), it is the biophysical quality
of the (restored) environment, with its many aspects, includ-
ing biodiversity, that guarantees long-term restoration success as
well as the provision of benefits for humans (Dfaz et al. 2018)
where ecosystem services are renamed nature’s contributions
to people. In a recent debate about biodiversity safeguards and
how open and flexible ecological restoration needs to be, Higgs
et al. (2018) and Aronson et al. (2018) seem to essentially agree
about the need for having biodiversity safeguards. “Restora-
tion is positioned to become a go-to approach for addressing
future environmental challenges [...] and this must bring with it
a signature commitment to ecosystem integrity” (e.g. biodiver-
sity safeguards; Higgs et al. 2018). Aronson et al. (2018) advo-
cate restoration as the means to “reinstate biological integrity.”

Where they disagree, it seems, is on whether the target commu-
nities for restoration should be based on pre-existing communi-
ties or a combination of the past and the future. No matter what
our restoration targets are, we suggest that scientists must more
clearly elucidate the biophysical basis for resilience (including
the key role of biodiversity) in the face of a globally changing
world. Policy and management decisions that affect the provi-
sioning of livelihoods and sociocultural services must be based
on biophysical realities (Diaz et al. 2018).

Thus we need to agree at a minimum on clear biodiversity
safeguards as a basis, not as a an equal or disposable bargaining
chip in the process of setting goals for sustainability including
for restoration and climate mitigation programmes such as the
Bonn Challenge. Research on interactive effects of different
global change drivers (nutrient excess, biological invasions,
extreme weather events) on biodiversity and ecosystem func-
tioning shows that the outcome can be additive, antagonistic,
or synergistic (Zavaleta et al. 2003; Meyer-Griinefeldt et al.
2015). Clearly more research is needed on not just one global
change driver but on several at once. In light of this complexity,
and as science catches up with restoration policy, a conserva-
tive approach to biodiversity safeguards would involve future
focused restoration guided by certain aspects of historical
communities but considering climate model predictions (Choi
2008).

The question of which species to restore where is also
central if one aims to mitigate climate change and restore
biodiversity and livelihoods. Pioneer and sometimes invasive
non-native trees are commonly used in “restoration” projects
where species-rich grasslands were afforested, causing impacts
on biodiversity and ecosystem services. For instance, from 1999
to 2010, as part of the Grain for Green Project developed to pre-
vent soil erosion in China, 79.3 million hectares of grassland
and cropland were planted with non-native trees, accounting for
46% of the 2010 target (Uchida et al. 2015). Afforestation using
non-native trees such as Robinia pseudoacacia and Prunus
armeniaca in arid and semi-arid grasslands resulted in ecologi-
cal degradation due to decreased soil moisture and the removal
of natural herbaceous vegetation (i.e. grasses, forbs, herbs)
to promote tree growth. The number of plant species at the
afforestation site decreased by an average of 52% by the seventh
year after planting (Cao et al. 2010, 2011). Grassy biomes can
represent “an inconvenient reality” for large-scale tree-planting
efforts, since afforestation leads to biodiversity loss (Veldman
et al. 2017) as well as reduction in albedo. Thus, it is imperative
that we include the biodiversity of habitats when considering
natural climate solutions, including taking into account what
the predominant surrounding land use has been in the recent
past. This will enable us to tackle the biome crisis (see Box 1)
while creating sound climate solutions. The extent to which
restoration reinstates species interactions is currently an emerg-
ing field, especially for plant-pollinator interaction webs (Forup
et al. 2008; Dixon 2009). Future research should focus on the
relative ability (and availability, see Table 1 Practice Needs
column) of native versus non-native as well as invasive plant
species (whether native or not) to reinstate complex webs of
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interactions. There is a need for larger scale integrative restora-
tion research (Perring et al. 2015, 2018) to address these key

issues at the nexus between biodiversity and climate change.

Box 1. Glossary of important concepts and
definitions.

Aboveground carbon storage: Total aboveground dry matter
biomass of live and dead vegetation.

Belowground carbon storage: Soil organic matter plus dry
matter biomass of underground plant organs (e.g. roots).

Aboveground/belowground carbon sequestration: Rate of
new carbon stored minus carbon lost (e.g. annual net pri-
mary productivity).

Biodiversity safeguards: Cautionary requirements to ensure
that ecological restoration does not harm biodiversity
(Phelps et al. 2012). Harm can occur if “restoration action”
replaces species-rich native vegetation with monocultures
or invasive species of low conservation value.

Biome crisis: The rapid loss of natural ecosystems due to
conversion to intensive human land uses or urban develop-
ment. Whereas some biomes are relatively well protected,
others are experiencing widespread conversion. A habitat
conversion risk index (Hoekstra et al. 2005) highlights large
discrepancy in our valuing of different biomes, which has
also contributed to the biome crisis. Habitats with a large
risk of habitat conversion and with limited habitat protection
(e.g. species-rich grasslands and savannas, Mediterranean
biomes) are often undervalued for the ecosystem services
they provide (Bengtsson et al. 2019).

Ecological restoration: “Ecological restoration is the pro-
cess of assisting the recovery of an ecosystem that has been
degraded, damaged, or destroyed” (Clewell et al. 2004). A
similar definition was adopted by the El Salvador Initiative
that was the basis for the Declaration of the UN Decade of
Ecosystem Restoration 2021-2030: “Ecosystem restoration
is understood as assisting the recovery of degraded, dam-
aged and destroyed ecosystems to regain ecological func-
tionality and provide the goods and services that people
value.” Note the omission of the word biodiversity and the
wording “services that people value” here. This definition is
problematic as it is not inclusive of biodiversity safeguards
(see Figs. 1 & 3). In addition, since nature provides many
services, of which many people are not aware, we propose
writing instead “and provide goods and services of value to
people.” Within a sustainability and climate change fram-
ing, it will become increasingly important to include the idea
of future value as a form of resilience and justice between
generations (Griggs et al. 2013).

Forest and Landscape Restoration (FLR): The main
programme behind the Bonn Challenge, which has evolved
from being called Forest Landscape Restoration to Forest

and Landscape Restoration. The landscape component of
the title begets the question of whether all other habitat types
are included here next to the forests, or whether the word
landscape applies to a larger systems approach that includes
different components of the landscape. Even if it were the
latter, the question why one would mainly focus on forests
and trees arises, given that open habitats can also store car-
bon for long periods of time and provide high albedo. The
current focus seems to assume that forest restoration will
be more efficient in reaching multiple restoration goals than
restoration of other types of habitat, e.g. steppe or savanna
landscapes (that may also contain forest elements). This
assumption has not yet been scientifically demonstrated and
requires concerted research programmes at national and
international level.

Multifunctionality: Taking a wide array of functions into
consideration when studying the relationship between bio-
diversity and ecosystem functions and services. In partic-
ular, not merely focusing on provisioning but also regu-
lating and cultural services, is a natural consequence of
using a multifunctionality framing. A multifunctional per-
spective is essential for ecological restoration that seeks to
promote biodiversity conservation, climate change mitiga-
tion, ecosystem services, and human livelihoods. Restoring
multifunctionality requires an interdisciplinary assessment
of the different functions in a landscapes and their trade-offs
(see e.g. Bolliger et al. 2011).

Natural climate solution: “Conservation, restoration, and
improved land management actions that increase carbon
storage and/or avoid greenhouse gas emissions across
global forests, wetlands, grasslands, and agricultural lands”
(Griscom et al. 2017). Which habitats will form the best
natural climate solutions will depend on carbon storage as
well as a better understanding of which vegetation types
actually contribute to cooling the climate, taking albedo and
VOC emissions into account.

Landscape restoration: Landscape restoration values all
types of biomes and habitats in need of restoration. It
is important to recognize that most landscapes consist of
mosaics of different habitat types. In order to guarantee
restoration of biodiversity in complex landscapes, multiple
co-occurring ecosystems need to be considered as a whole.

Stepping Up Part 3: The More, the Merrier, Biodiversity Begets
Functioning and Often Also Services

In the midst of the sixth mass extinction, ecologists have increas-
ingly focused their attention on the question of the consequence
of biodiversity loss for ecosystem functioning. A plethora
of smaller scale and an increasing number of large-scale,
long-term experiments have been set up to test the effects
of plant biodiversity on ecosystem functions, so-called Bio-
diversity Ecosystem Functioning (BEF) experiments (Roscher
et al. 2004; Bruelheide et al. 2014; Weisser et al. 2017). The
main outcome of these experiments is that higher species and
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functional diversity of plant species leads to improved ecosys-
tem functions such as productivity, nutrient cycling, microbial
biodiversity, and carbon storage (Lange et al. 2015; Thakur et al.
2015), pollination and other functions. Rather unsurprisingly,
with increasing plant biodiversity the diversity of other trophic
levels also rises, and this holds true for aboveground as well
as belowground taxa (Scherber et al. 2010). Such research out-
comes hold much promise for application in conservation and
restoration, since planting higher species and functional diver-
sity could have many ramifying multifunctional effects (Mon-
toya et al. 2012).

Positive biodiversity effects in grasslands differ in speed
between the aboveground and belowground, where e.g. higher
plant species richness and functional diversity lead to more root
biomass, but only after an initial time lag of 4 years (Ravenek
etal. 2014). The time lag suggests that belowground interac-
tions and reaction speeds are more buffered here than for the
aboveground, which could have an effect on potential speed of
belowground C sequestration during grassland restoration (but
see Yang et al. 2019 for the impressive potential for this). The
positive biodiversity effect in grasslands sets in aboveground in
the first year and becomes magnified over time as nutrients are
removed from the system with mowing (Marquard et al. 2009;
Meyer et al. 2018), thus fostering facilitative interactions in rela-
tion to nitrogen (Roscher et al. 2011). One of the mechanisms
is that biodiversity effects increase in diverse species mixtures
compared with poorer performance over time in monocultures
due to negative density-dependent plant soils feedback (Cortois
et al. 2016; Meyer et al. 2016).

Importantly, analyses of a wide range of BEF experiments
in grasslands have shown that many species are needed to
allow for multifunctionality over longer periods of time (Isbell
etal. 2011) and that more diverse systems are more resistant
to increasing climate change perturbations (Isbell et al. 2015).
Additionally, while dominant species often disproportionately
drive the ecosystem functioning in 1 year, there is often high
turnover between years, that is different species will drive
functioning each year (Allan et al. 2011). This is very differ-
ent to comparisons between a monoculture eucalypt planta-
tion and species-rich forests, where trees cannot quickly change
their dominance within a community as quickly as herbaceous
species, but also where secondary compounds within eucalypt
trees may be cancelling out negative plant soils feedback effects
of growing on the same site for longer periods.

Recent BEF experiments in forests, however, are confirming
that biodiversity matters for functioning in tree-dominated sys-
tems too (Potvin & Gotelli 2008; Fichtner et al. 2018; Huang
etal. 2018). Potvin and Gotelli (2008) found that higher tree
diversity in a tree plantation in Panama led to higher produc-
tivity but did not affect survival of the trees. In the BEF China
project, Huang et al. (2018) found that species richness strongly
increased stand-level productivity and after 8 years in 16-species
mixtures. In terms of C, 16-species mixtures had accumulated
over twice the amount of carbon found in average monocultures
and similar amounts to those of two commonly used two com-
mercial monocultures. Very few studies so far have attempted

to compare the effect sizes of biodiversity effects across dif-
ferent habitat types (grassland, forest, wetland), possibly since
the number of studies in wetlands is still limited compared to
grasslands, and the tree experiments are still generally in their
infancy. Such an analysis of overall effect sizes as well as coor-
dinated experiments and/or meta-analyses involving different
biome types would be a major gain in the future.

Overall, the evidence strongly suggests that if we want to have
well-functioning ecosystems that can be resistant or resilient
especially in the face of climate change (Jaeschke et al. 2014),
we need to strive to have as many species with as many traits
that differ from each other as possible in an ecosystem. Exper-
iments that test the relevance of BEF outcomes for restoration
have found that sowing more diverse seed mixtures (Bullock
et al. 2001, 2007) or altering the order of arrival of plant func-
tional groups (Weidlich et al. 2017a, 2017b) can lead to more
productive but also diverse plant communities. This is an asset
within extensively managed grasslands, since higher biodiver-
sity is usually mutually exclusive to provisioning of crops and
commodities in intensive agriculture (Cord et al. 2017). Overall,
BEF research as well as assessments in natural systems indi-
cate that having more species with a wide range of different
traits in an ecosystem is advantageous for ecosystem function-
ing and services (except perhaps for provisioning services). This
relationship holds particularly well in times of highly variable
abiotic conditions, such as we are experiencing under climate
change. Further research needs to integrate BEF research across
different habitats and biomes, and test the extent to which pos-
itive biodiversity effects act in the real world (Poorter et al.
2015; Buchmann et al. 2018; Schulze et al. 2018). In addition,
the extent to which non-native species can deliver positive bio-
diversity effects across trophic levels needs concerted research
attention.

Stepping Up Part 4: Watch Out for the Trade-Offs

A key issue that needs to be adequately addressed within
the Bonn Challenge is how best to deal with the multiple goals
of FLR projects, their inherent multifunctionality, and how they
deliver different ecosystem services. Systematic and integrated
assessment of the collective benefits of FLR in terms of bio-
diversity, livelihood, and climate mitigation outcomes (Chaz-
don & Laestadius 2016; Mansourian 2017) will provide a better
basis from which to adaptively manage action on the ground.
Holistically assessing performance outcomes is an area that
therefore urgently needs concerted attention and investment of
resources (Suding 2011; Perring et al. 2015, 2018; Chazdon
et al. 2017). Only once we have enough data on this topic can
we adaptively adjust our actions and start effectively prioritiz-
ing where and which processes and actions are most important
(Suding 2011; Perring et al. 2015) for different desired biodi-
versity, ecosystem functioning, and service scenarios. Scientific
research will play an essential role in focusing and delivering
evidence-based knowledge to back up this larger process (as
seen by recent publications cautioning that storage carbon alone
does not necessarily stop climate warming; e.g. Unger 2014;
Luyssaert et al. 2018).

714

Restoration Ecology July 2019



Stepping up science for the Bonn Challenge

Our approach is in line with much of that proposed by Chaz-
don and colleagues (Chazdon & Laestadius 2016; Chazdon
et al. 2017) as necessary for successful FLR, with some essential
differences: it is framed with the need for aiming for ecological
restoration wherever possible (see Fig. 1), as opposed to reha-
bilitation or reclamation. In addition, we advocate action in as
many habitat types as possible, that include biodiversity safe-
guards, such that biodiversity restoration is one of the main goals
of a project.

There are often clear trade-offs between provisioning versus
regulatory and cultural ecosystem services (Deng et al. 2016;
Cord et al. 2017). This is illustrated by the relationship between
carbon storage and water yield. While biodiversity and carbon
today often dominate the restoration debate, the additional ben-
efits of forest and forest restoration for hydrological cycles and
for water discharges for human use are often also emphasized.
Many forest ecosystems are indeed a critical component in
regional moisture recycling processes, such as the Amazon for-
est that influences rainfall patterns in southeastern South Amer-
ica (Zemp et al. 2014). However, the much-cited contribution
of forest restoration to water provisioning (i.e. increase in water
run-off in rivers) requires critical evaluation. A number of stud-
ies are finding that in the majority of cases we may have to make
hard choices between the ecosystem services carbon storage and
water provisioning when restoring forests (Jobbagy & Jackson
2000; Filoso et al. 2017). Honda and Durigan (2016) showed,
for a Cerrado savanna in southwestern Sao Paulo State, Brazil,
that in seasonally dry regions increased woody species cover
reduces water available for uptake by plants and for recharge of
rivers and groundwater reserves. In semiarid and arid regions in
China where large-scale restoration projects with tree plantings
have been carried out, soil resources and vegetation cover dete-
riorated and the groundwater level was actually decreased by
tree plantings (Cao et al. 2011; Li et al. 2017). On the basis of
classic hydrological studies on paired catchments (reviewed in
Brown et al. 2005) changing forest cover in more than 20% of
the area of a watershed will cause significant changes in water
yield. Clearly, the claim that tree plantings or forest restoration
increase water provisioning is rarely true and demands our con-
certed attention both in terms of more science and more inclu-
sion of the outcomes in policy decisions.

“Trading water for carbon” (Jackson et al. 2005) through
increased tree biomass is but one of the trade-offs to be con-
sidered. It is important to realize that tree planting and for-
est restoration are not always beneficial for biodiversity. For
instance, in the Brazilian savanna, long-term fire suppression
leading to woody species and forest encroachment, caused the
species richness of both plants and ants to decline to the order
of 30% (Abreu et al. 2017), and the richness of savanna spe-
cialists was affected even more strongly. This shows that the
tree-focused approach of FLR is not an adequate restoration
strategy in non-forest systems, if we aim at ecological restora-
tion in the strict sense (Fig. 1) that aims at recovery of the
ecosystem structure as well as the functioning of the ecosys-
tem. In particular, species adapted to specific habitats (need-
ing particular abiotic conditions, e.g. light availability) form a
high proportion of biodiversity worldwide. FLR emphasizes the

multifunctionality of its approach by claiming that “a combina-
tion of forest and non-forest ecosystems, land uses, and restora-
tion approaches can be accommodated within a landscape to
achieve sustainable food production, ecosystem service provi-
sioning, and biodiversity conservation” (Chazdon et al. 2017).
We suggest that, in many landscapes, non-forest ecosystems be
given as much or higher priority than forests. Otherwise we risk
supporting “restoration” that neither safeguards biodiversity nor
mitigates climate change.

Assessment of multifunctionality and trade-offs in the provi-
sioning of different ecosystem functions and services is of criti-
cal importance in landscape-scale restoration programmes. This
will require inter- and transdisciplinary approaches to address
and to maximize multifunctionality at the landscape scale. Patch
mosaics, where certain land uses or restoration activities will
promote certain services more than others, are a possible solu-
tion to an otherwise intractable problem, as long as biodiversity
safeguards are considered across the whole landscape.

Conclusions: The Framing and Science Now
Necessary to Back Up and Inform the Bonn
Challenge

In order to ensure that the outcomes of restoration actions
performed within the framework of the Bonn Challenge lead
to true win-win outcomes in terms of biodiversity restoration
and climate mitigation, we need to step back in our framing
and to step up in our science. With biodiversity as the basis
of a well-functioning system over time (as outlined above), a
safeguard for biodiversity, at both the species and ecosystem
levels, seems especially important. This would also allow us
to address the biome crisis while also mitigating climate change.

In the vein of the SER Standards (Mcdonald et al. 2016)
native recovery star system, one could imagine setting up cri-
teria for assessing the relative merits of different restoration
projects within a larger programme. The system should strive to
be inclusive of a range of different ecosystem services and aim
for multifunctionality wherever possible, considering nature’s
benefits to people in an integrative way (Diaz et al. 2018). In a
landscape context it would make sense that a certain percentage
of projects strive for the highest biodiversity ratings, whereas
others may have other ecosystem services as their main focus.
This could include extensive, intensive, and protected land uses
and could also be developed based on the relative proportion
of different types of habitat in the landscape that need restora-
tion, that is include a habitat safeguard. Receiving full funding
could then depend on the biodiversity and ecosystem service
outcomes and their relative proportions. If the biophysical basis
for sustainability were not maintained or restored, the economic
or social goals may swamp the biodiversity goals, which may
endanger the effective functioning of the ecosystem, such that
we may lose out on synergies to be gained from increasing bio-
diversity for resilience, livelihood, and climate mitigation out-
comes.

On the other hand, it is clear that we have immense knowl-
edge gaps regarding the best way to reach multiple restoration
goals, especially regarding the best ways for climate change
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mitigation which, as discussed earlier, depends on a diversity of
interactions among different processes whose relevant role will
differ greatly in different biomes and habitats. Despite recent
advances in the science that underpins ecological restoration
(Temperton et al. 2004; Bullock et al. 2006; Walker et al. 2007,
Roberts et al. 2009), having ecological restoration move this
swiftly onto the global stage will require considerably larger
efforts and assessment of what works best where, and to whom
benefits accrue (Suding 2011). Large-scale science programmes
that systematically assess the trade-offs associated with reha-
bilitation versus restoration and among the different restoration
objectives in the long term (allowing for natural dynamics of
ecological communities) are important next steps. These will
provide a sound scientific basic for restoration at the landscape
level such that we can optimize the diversity of habitats, liveli-
hood options, and natural climate solutions (see Table 1 and
Fig. 3). Strong research integration as well as bringing together
multiple stakeholders as a means to optimize sustainable mul-
tifunctionality will be necessary (O’Farrell & Anderson 2010;
Fig. 3). However, despite the need to also gather long-term data,
there is a clear urgency to act now in reaching the multiple
goals aimed at in the Bonn Challenge and in global commit-
ments formulated, e.g. in the Paris agreement, the convention
on biological diversity, and the sustainable development goals
(SDGs). Restoration actions should be undertaken based on the
best available scientific basis, and then monitored and adapted
to ensure best possible outcomes.

The Bonn Challenge and the UN Decade on Ecosystem
Restoration need concerted action if they are to meet the goals of
the Paris Agreement, Aichi biodiversity targets, and the SDGs.
We strongly advocate an inclusive perspective that will advance
the restoration of many ecosystem types (not just forests and
trees), conserve existing natural habitats, allow us to address the
biome crisis, which is the primary driver of biodiversity loss, and
offer hope of resilient ecosystems for human livelihoods.
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