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INTRODUCTION

39

The respiratory chain complex III (or bc 1 complex) with its two quinol binding sites, termed 40 the Q o -and Q i -sites, is a proven target for anti-microbial compounds. The first generation of 41 antimicrobial drugs targeted the Q o -site: the antimalarial atovaquone and a large series of 42 fungicides used against plant pathogen fungi, such as azoxystrobin. [START_REF] Bartlett | The 331 strobilurin fungicides[END_REF] Target site resistance 43 mutations have often been reported, for instance Y279C/S in Plasmodium falciparum (see for 44 example [START_REF] Cottrell | Emergence of resistance to 333 atovaquone-proguanil in malaria parasites: insights from computational modeling and 334 clinical case reports[END_REF][START_REF] Musset | Clinical atovaquone-336 proguanil resistance of Plasmodium falciparum associated with cytochrome b codon 337 268 mutations[END_REF] ) or G143A in many species of plant pathogen fungi that confers cross-resistance 45 to all the >20 Q o -site targeting fungicides (termed QoIs) on the market (see FRAC web site).

46

The structural basis of the resistance has been well studied. [START_REF] Birth | Structural analysis of atovaquone-inhibited 339 cytochrome bc 1 complex reveals the molecular basis of antimalarial drug action[END_REF][START_REF] Esser | Crystallographic studies 342 of quinol oxidation site inhibitors: a modified classification of inhibitors for the 343 cytochrome bc 1 complex[END_REF] 47 New generation of inhibitors, still in development, target the Q i -site, such as the anti-48 malarial ELQs [START_REF] Stickles | 345 Subtle changes in endochin-like quinolone structure alter the site of inhibition within 346 Page 14 of 31[END_REF] and the agrochemical fungicide fenpicoxamid. [START_REF] Young | Characterization of the 349 mechanism of action of the fungicide fenpicoxamid and its metabolite UK-2A[END_REF] The only Q i -site inhibitors 

133

The residues N31, G37, L198 and K228, might have a key role for the binding of 134 inhibitors and accommodate substitutions without a severe loss of complex III activity. In 135 yeast, the decrease in complex III activity resulting from the substitution L198F was only of 136 10% 20 , and of around 50%, for G37S, K228M and N31S 12,21 , with no or mild effect on 137 respiratory growth competence. G37 and K228 are very highly conserved residues, although 138 N31 is often replaced by glycine in plants and isoleucine in prokaryotic cytochrome b 139 sequence data. N31 does not show binding interactions with bound quinone in the atomic 140 structure of yeast complex III while L198 forms a stabilizing hydrophobic interaction with the 141 benzoquinone headgroup of bound quinone (PDB 1EZV), and presumably a similar class of 142 interaction is maintained in the L198F substituent. The sidechain amino group of K228 has 143 been suggested to be involved in proton transfer to bound quinone during redox chemistry at 144 the Q i -site. 22 As the mutation of this residue to methionine is well tolerated by yeast, it is 145 likely that nearby protonatable residues H202 and D229 can rescue.

146

Inhibitor resistant mutants harbouring mutations at position N31, G37, L198 and K228 147 have been selected (and maintained) in laboratory conditions. In the field, a moderate loss of 148 complex III activity, such as observed with the yeast G37S, K228M and N31S mutants, may 23 The Q i -site region between the conserved residues H202 and S206 differs 163 between species (Fig. 2). However, structures of the enzyme with quinone bound at the Q i -site 164 showed that the conserved residues H202 and S206 act as hydrogen bond donors to the 165 benzoquinone headgroup, orientating the quinone correctly. Mutations H202F,N and S206L 166 resulted in growth defect (unpublished data and 24 ). Therefore it would not be unexpected that 167 a major modification of that short region between H202 and S206 could have a deleterious 168 effect the on respiratory competence.

169

In order to test such effect, we replaced, in yeast cytochrome b, the sequence I203-170 H204 by the sequence E-D-E-V (Fig. 2). We observed that the mutation had no effect on respiratory growth, measured as the cell density reached after three day cultures in YPEth (not 172 shown), which indicated that the region could accommodate such modifications without a 173 severe loss of function. Unfortunately, as yeast complex III is insensitive to cyazofamid, the effect of the mutation on the fungicide sensitivity could not be analysed in our model. A 175 cyazofamid binding model has been reported. 25 It can be hypothesized that the mutation 176 E203-DE-V204 (Fig. 2) found in P.viticola would affect the compound binding or access into 177 the Q i -site. The insertion is in the linker region between helices D and E (Fig. 1), which is 178 proximal to the benzoquinone headgroup of Q i -site bound quinone (PDB 1EZV), at 179 approximately 7 Å separation at the closest approach. This is likely to perturb the local fold 180 around this region, and/or interfere directly with cyazofamid binding.

181

In order to pursue the study of the effect of that mutation on complex III activity and 

The ametoctradin resistance mutation, S34L

188 Ametoctradin, first listed as a QoSI, was shown to be a dual Q o -and Q i -site binding 189 compound based on spectroscopic analysis. 10 The approach, however, could not determine 190 whether the compound would bind at the Q o -and Q i -sites with similar affinity. If 191 ametoctradin affinity for one of the sites is much higher that its affinity for the other, resistant 192 isolates harbouring target site mutation could be selected. Indeed a mutation in the Q i -site, 193 S34L, has been reported in P. viticola after treatment 13 , suggesting that ametoctradin have in 194 vivo a higher affinity for the Q i -site. In order to confirm the effect of S34L on ametoctradin 195 resistance, we studied the mutation in the yeast model. PFQi1 and PFQi2 (PFQi2 was already described in 26 ). These mutants, and three other mutant 208 strains described below, namely PFQi8, PFQi9 and PFQi10, combined several modifications 209 at the Q i -site (Table 2).

210

First we tested the ametoctradin sensitivity and resistance of the respiratory growth of 211 the PFQi1,2 and 3. To that end, cell suspensions were spotted on respiratory medium 212 containing increasing concentrations of ametoctradin and the plates were incubated for three 213 to four days (Fig. 3). PFQi3 was highly sensitive to ametoctradin as the respiratory growth was 2). L198F has been reported as resistance mutation (Table 1). We considered 219 whether that change could be responsible for the increased sensitivity of PFQi3. Therefore 

263

The deleterious effect of S34L was also clearly observed in the enzymatic assays. mitochondrially encoded, and it is apparent that mitochondrial genes seem to accumulate 304 mutations at a higher frequency than nuclear genes. Target site resistance mutations are hence 305 expected to arise under selective pressure. Dual Q o -and Q i -site inhibitors would be effective 306 as mutation of both quinone binding sites would be expected to be a very infrequent event 307 whilst still maintaining organismal fitness. However such dual acting inhibitors are rare 26 

  49

5

 5 In silico model of P.viticola Q i -site was built by comparative modelling using MODELLER 100 9v7 17 , with the yeast structure (PDB 3CX5) as template. Three-dimensional structure of and GNF7686 in Trypanosoma cruzi the causative agent of Chagas 125 disease. K228M confers resistance to antimycin in S.cerevisiae and K.lactis. Replacement of 126 the threonine by a proline at the equivalent position in Toxoplasma gondii causes resistance to 127 antimycin and ELQ-316. The most striking are mutations of residue G37. Five substitutions 128 have been reported: G37A,C,D,S,V. Acquired resistance mutations at that position have been 129 found in fungi S.cerevisiae, Schizosaccharomyces pombe and Zymoseptoria tritici, in the 130 human malaria parasite P.falciparum and in mouse cells in culture. They confer resistance to 131 antimycin and fenpicoxamid, diuron or the macrocyclic compound ML238 and its derivative, 132 BRD6323.
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 32321 organismal fitness, which could be protective against resistance evolution 150 or at least delay resistance evolution. Nevertheless the observed cross-resistance to unrelated 151 compounds caused by mutations of those residues calls for a close monitoring when anti-152 microbial Q i -site targeting compounds will be on the market. On the other hand, monitoring 153 of resistance might -and likely will-detect other possible resistance mutations. Studies with 154 model organisms and laboratory strains would come useful, as illustrated above especially for 155 the ametoctradin resistance mutation, S34L. 156 157 Anti-oomycetes resistance mutations found in the fields and the study in the yeast 158 model 159 Cyazofamid resistance mutations 160 The cyazofamid resistance mutation, observed in field isolates of P. viticola is intriguing. It is 161 a short sequence duplication of six nucleotides resulting in the insertion of two residues E203-162 DE-V204.

  182 reactivity to cyazofamid, a yeast mutant sensitive to the compound needs to be found. It might 183 be possible to generate such mutant by genetically replacing the yeast residues of and around 184 the Q i -site by the oomycetes equivalents, providing the multiple changes would not cause a 185 too severe loss of function.186 187

196

  Yeast complex III is naturally highly resistant to ametoctradin (and to the two other 197 anti-oomycetes compounds amisulbrom and cyazofamid). As we have previously shown10 , 198 the respiratory growth of the WT strain can be inhibited by a high dose (300 µM) of 199 at the Q o -site, and not at the Q i -site, as Q o -site mutations I147V and 200 L275F increased the resistance. Thus, as expected, the introduction of S34L in yeast Q i -site 201 had no effect on the ametoctradin sensitivity (not shown).202However a mutant highly sensitive to ametoctradin, namely PFQi3, was identified in a 203 collection of yeast mutants carrying point and multiple mutations in the Q i -site. PFQi3 204 complex III was inhibited by ametoctradin in the low µM range and behaved in a similar 205 manner to the oomycete enzyme in inhibitor binding assays. 10 PFQi3 seemed thus a pertinent 206 model to study the effect of S34L. In addition of PFQi3, we tested here two other mutants, 207

214 fully inhibited at 1

 1 µM while the growth of PFQi2 and PFQi1 was blocked at 10 µM and 100 215 µM, respectively. 216 PFQi1 harbours six mutations in the Q i -site; PFQi2 has two additional changes and 217 PFQi3 has two more changes and the substitution L198F instead of L198I present in PFQi1 218 and 2 (Table

220mutant1011

  Fig.5A. PFQi9 presented a moderate defect as compared to PFQi1 (that reached the same cell

300

  effect of S34L introduced in unmodified Q i -site on complex III activity. The 273 same assay was performed. We observed 25% loss of activity (not shown).274To summarize, the assays performed here showed that S34L conferred a high level of 275 ametoctradin resistance when introduced in the most sensitive surrogate model, PFQi3. The 276 resistance was associated with a severe loss of complex III activity and respiratory growth 277 competence. Introduction of S34L in the unmodified (and naturally highly resistant) complex 278 III resulted in a mild decrease in activity. S34L introduced in PFQi1 that presented a moderate 279 ametoctradin sensitivity caused a moderate loss of respiratory competence. 280 281Finally, in silico docking of ametoctradin into a homology model of the Q i -site of 282 P.viticola cytochrome b was performed (Fig.7). The analysis of the docking results suggests a 283 binding mode similar to that of native quinone in the atomic structure of yeast complex III 284 (PDB 1EZV). The aliphatic octyl-and ethyl substituents of ametoctradin are predicted to form 285 stabilizing hydrophobic interactions with the sidechains of I17 (helix A, which is L17 in 286 P.viticola), V194 and L198 (C-terminal region of helix D). Accordingly, we note that the 287 L198F substitution in PFQi3 and PFQi8 may further strengthen the interaction with 288 ametoctradin, explaining the increased sensitivity of these mutants to this inhibitor. In 289 contrast, the interactions between the amino-substituted triazolo-pyrimidinyl headroup of 290 ametoctradin and the Q i -site are predicted to be more hydrophilic in nature, with a putative H-291 bonding interaction (2.5 Å separation) between the amino group of the headgroup and the 292 carboxylate sidechain of D229. This may take the form of a salt bridge, depending upon the 293 local dielectric microenvironment. Significantly, we also predict a weaker H-bonding 294 interaction between this amino moiety of ametoctradin and the serinyl sidechain of S34 (3.1 Å 295 separation), which may explain the resistance conferred by the S34L mutation. In any case, bulky leucyl sidechain at this position may be expected to be sterically 297 destabilizing with respect to ametoctradin binding. The brief overview of the reported Q i -site resistance mutations found in laboratory models or 301 field isolates demonstrates the mutational plasticity of cytochrome b in the presence of QiIs, 302 single site competitive inhibitors that function as Q i -site antagonists. Cytochrome b is 303
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