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ABSTRACT
Modern web applications often use JavaScript libraries, such
as JQuey or Google Analytics for example, that make the de-
velopment easier, cheaper and with a better quality. Choos-
ing the right library to use is however very difficult as there
are many competing libraries with many different versions.
To help developers in this difficult choice, popularity indica-
tors that pinpoint which applications use which libraries are
very useful. Building such indicators is however challenging
as popular web applications usually don’t make their source
code available. In this paper, we address this challenge with
an approach that automatically browses web applications to
retrieve the client-side JavaScript libraries they use. By ap-
plying this approach on the most famous websites, we then
present the trends we observed, and the recommendations
that can be provided.

CCS Concepts
•Information systems → Web applications;

Keywords
Library migration; JavaScript; Web Application

1. INTRODUCTION
Software projects often use third party libraries. With Java 
projects for example, 70% of the projects use at least 4 third 
party libraries, and 10% use more than 10 libraries [1]. For 
web applications, the growing interest for library manage-
ment systems, such as NPM with NodeJS, shows the impor-

http://dx.doi.org/10.1145/3019612.3019845

tance of this topic[2]. Further, it is well known that third
party libraries such as jQuery are almost used by all web
applications [3].

Using a third party library provides many benefits as reusing
high quality code prevents errors and speeds up productiv-
ity[4]. However, it comes with the main problem of the
choice of the best library from a software development per-
spective [5]. Indeed, there are so many libraries with so
many versions that it becomes too complex for a developer
to choose which one to include in a software project. This
is even more difficult for JavaScript client-side libraries, be-
cause of the popularity of JavaScript,1, the outstanding pace
of JavaScript libraries production, and the fact that web ap-
plications are doomed to evolve at the Internet speed to be
used and not to become deprecated[6].

As an example, let us consider that a developer wants to
include the famous jQuery library within its project. By
browsing the web, he will then notice that there are two
major versions for jQuery (1.x.x and 2.x.x) and several mi-
nor versions. If he now tries to understand which is the
best version, he will end up into StackOverflow with several
different and sometime opposite answers2. As another ex-
ample, if a developer wants to use a MVC framework such
as AngularJS, Backbone or Polymer, and asks to the web
for the best one, he will then get many different answers,
each saying that one of these framework is the best. As a
consequence, he won’t be able to decide the one to choose.

To help developers to chose the right library to include,
many existing research approaches aim to provide popu-
larity indicators on libraries[7, 8, 5, 9, 10, 11]. These ap-
proaches observe large sets of applications with the objec-
tive to detect the most popular libraries. However, all these
approaches are based on the analysis of the development
artifacts (source code files or deployment descriptors), and
therefore rely on the observation of open source projects that

1http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html
2Here is the answer at the time of the 20th of Au-
gust 2015, http://stackoverflow.com/questions/22289583/
what-version-of-jquery-should-i-act ually-use
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make such artifacts available. This is however not possible
with web applications as most of the famous web applica-
tions are closed-source applications, and their development
artifacts are not available at all. The development artifacts
of a commercial web application are only available on-line
by browsing it through its root url.

In this paper, we overcome this difficulty and exhibit which
are the popular client-side JavaScript libraries. Our pro-
posal performs an online observation of popular web appli-
cations with the underlying assumption that the libraries
they use are most probably the ones that should be used.
The main difficulty is therefore to identify which are the li-
braries they use just by browsing them. To get significant
results we decide to observe the Alexa global top 100 web-
sites3. Our approach then browses these web applications
and recognizes the client-side JavaScript libraries they use.
Based on such observations we can then output trends and
give recommendations.

We make the following contributions:

• We provide an automatic and efficient approach that
browses web applications and detects their used client-
side JavaScript libraries (see Section 2). Our approach
uses both syntactical and dynamical analysis of the
online resources of the web applications and returns
high precision results (see Section 3 and Section 4).

• By applying our approach on the 100 most popular
websites, we provide statistics of the use of JavaScript
libraries. Such statistics confirm the fact that libraries
are largely used in web applications (see Section 5).

• We then present how our observations can be used to
provide trends and recommendations. As an illustra-
tion, we present our observation by focusing on jQuery
and AngularJS, Backbone and related libraries (Sec-
tion 5).

2. METHODOLOGY
This section first provides definitions for web applications
and client-side libraries. It then presents three strategies
that can be used to detect the client-side libraries used by a
web application. Then it presents our global approach that
uses these three strategies.

2.1 Definitions
First, we consider that a web application is a pair (w,url)
where w is the name of the web application and url is its
root url. For instance, (DropBox,www.dropbox.com) is a
web application. Second, we consider that a JavaScript (JS)
library is a pair (l, Vl) where l is the name of the library and
Vl its corresponding ordered set of versions. For instance
(JQuery, {1.1, 1.2, 1.3}) is a library.

As we briefly presented in Section 1, our objective is to au-
tomatically identify the client-side JS libraries used by web
applications. Table 1 shows a tiny example of the result we
want to obtain, called the library usage matrix. The library
usage matrix contains a set of web application names as

3http://www.alexa.com/topsites

Table 1: Library usage matrix.

JavaScript Libraries

Web applications jQuery AngularJS

Alipay ⊥ ?
Dropbox 1.3.1 ⊥
Pixnet ⊥ ⊥

rows, and a set of JS library names as columns. The goal of
this table is to indicate which library is used by which web
application, and to give the corresponding version. There-
fore the value of a cell corresponding to an application w and
a library l belongs to the set Vl ∪ {?,⊥}, where Vl is the set
of all versions of library l, as previously defined, and where
the symbol ? means that w is using an unknown version of
l, and where ⊥ means that the application is not using the
library. Table 1 states for instance that DropBox uses only
the version 1.3.1 of jQuery, Alipay uses an unknown version
of AngularJS and Pixnet does not use any library. We will
use the library usage matrix to compute which libraries are
popular, and which particular versions of the libraries are
popular, with the main objective to exhibit trends and to
give some recommendations.

2.2 Recognition Strategies
Filling the library usage matrix requires to browse web appli-
cations and to recognize which libraries they use. It is done
by using several recognition strategies that are programs that
take as an input a given web application, and produce as an
output a row of the library usage matrix. The remainder of
this section presents the three different recognition strate-
gies we propose that, when combined, provide good results
(see Section 4).

2.2.1 Comment Strategy
The idea behind the Comment Strategy is to search for
names of libraries in the header comment of the JS files used
by a web application. This strategy is quite efficient since
library files often contain this information. For instance,
Figure 1 shows the three first lines of a Modernizr JS li-
brary file. We clearly see in this header that this file cites
the name of the library (Modernizr) and its version (2.8.3).

To fetch this information, the comment strategy begins by
browsing the root URL of the web application. Browsing
this URL returns all the webpage content, including a set of
linked resources. We retain from this set of resources only
the ones that correspond to JS files, by using the content-
type information. We then use several regular expressions
to extract the library name and version from the comments,
as shown in Figure 2. More precisely, one regular expression
is generated for each sought library by substituting the vari-
able name by the name of the sought library. These regular
expressions are then all checked, in global mode, against a
JS file until one matches, ignoring the case. This regular ex-

/*!
* Modernizr v2.8.3
* www.modernizr.com

Figure 1: The header of a Modernizr JS library file.

http://www.alexa.com/topsites


pression is robust enough to match comments such as jQuery
JavaScript Library v1.11.3 or Modernizr v2.8.3.

The comment strategy has the main advantage to be very
efficient since executing a regular expression is quite fast.
Furthermore, this strategy can be easily extended to support
the search of new libraries just by adding new library names.
Unfortunately, several web applications remove all the origin
comments of a library file, which prevent this strategy from
working. The detailed performance results are presented in
the Section 4.

2.2.2 File Matching Strategy
The intuition behind the File Matching Strategy is to check
if a JS file used by the web application is similar to a file that
is known to be a JS library. Similarly to the first strategy,
this strategy starts by retrieving all the JS files used by
the web application. It also uses a so-called knowledge base
which contains the files of all versions of all JS libraries. This
knowledge base is large: it contains more than 2000 files in
our current implementation.

Asking for an extensive comparison with all the files of the
knowledge base would take too long. To perform such a com-
parison in a reasonable time, we use a two-step processIn
the first step, we use simhashes, which are short hashcodes
computed on a large text, and that can be used for quick
comparisons [12]: the more similar the two texts, the more
similar their simhash. Therefore, prior to any comparison,
we compute a simhash for all the files of the knowledge base.
When analyzing a JS file that is used by a given web appli-
cation, we then generate its simhash and compare it, using
the Hamming distance [13] to all simhashes of the knowl-
edge base. We retain only the files from the knowledge base
that have a Hamming distance d ≤ 3. The thresholds of our
strategy will be discussed in Section 4.

Since the multiple versions of a same library are usually
very close, this process generally retains several files from
the knowledge base. To retain only one result, we perform
a more detailed comparison in the second step. We then
compute the Dice coefficient for each candidate file on the
bigrams they contain[14]. We retain only the files having a
Dice coefficient c ≥ 0.8, and among these files we retain only
the file with the greatest coefficient. If there are several files
with a same maximum coefficient, we distinguish two cases:
1) if the files do not come from the same library, we return
no library and 2) if the files come from the same library, we
return the file associated to the greatest version.

The file matching strategy has the main advantage to be ro-
bust to small modifications of the library, as it is sometimes
done by web developers. It is quite easy to extend as it
only requires the set of library files. Its first drawback is its
cost in time. However, thanks to our optimization, the total
comparison cost time is reasonable as we will measure it in
Section 4. Its second drawback is that some web applica-
tions modify the source code of the library or merge several

name\s(.*\s)?v?([0-9]+)(\.[0-9]+)*

Figure 2: The regular expression used to extract library
names and version from comments.

Table 2: Key URLs and objects for several libraries.

Element

JavaScript library Key URLs Key objects

jQuery
window.jQuery,

jquery.com window.$,
window.$jq

Modernizr window.Modernizr
Facebook SDK connect.facebook.net window.FB
Twitter Platform platform.twitter.com window.twttr

libraries into one JS file. In this situation this strategy fails.

2.2.3 Sensor Strategy
The Sensor Strategy aims at inserting at runtime a sensor
in the web application with the objective to dynamically
detect which JS libraries are deployed. Such a sensor is
a JS plug-in that is executed by the browser. To detect
a library, the sensor uses two elements. First it monitors
the requests made by the browser in order to detect URLs
(called key URLs) associated to a known library. Then it
checks for the existence of JS objects (called key objects)
that are associated to a known library.

For instance, if the sensor detects that the web application
is requesting the connect.facebook.net URL, it means that it
is using the Facebook SDK library. Similarly, if the sensor
detects that a window.$ object exists, it means that the
application is using jQuery. Table 2 shows key URLs and
objects for several well known libraries.

When a library is detected thanks to a key URL or object,
our sensor then calls a specific function that aims to detect
the version of the library. Such a function uses the internal
knowledge of the library to recognize the version, i.e. objects
specific to a particular version or functions that return the
version. Further, the function returns ? when no version
can be detected.

The sensor strategy has the advantage to be quite efficient.
Its main drawback is that it requires a lot of configuration
that has to be provided by an expert that knows the internal
of a library. Therefore adding a new library in the knowledge
base is expensive. Moreover, sometimes the libraries do not
provide a mean to distinguish between its different versions
(for instance same URLs are requested, and the same objects
are defined whatever the versions). Further, as it relies on
executing JS code coming from the web applications and the
plugins, it sometimes fails due to some unexpected runtime
error.

2.3 ARJL Combined Strategy
The three strategies we presented above give different results
according to the input web application and to the sought li-
brary. For instance, Table 3 shows the results obtained by
these three strategies on several couple of applications and
libraries. In this table, we see that the library jQuery is
detected with the same version by the three strategies for
the Microsoft website. However, in the 360 website, jQuery
is detected only by the two first strategies. Also in the Mi-
crosoft website, Sizzle is not detected by the sensor strategy,
and detected in two different versions by the comment and



Table 3: Comparison of three recognition strategies.

Strategy

Web application / JavaScript library Comment File Matching Sensor

Microsoft / jQuery 1.7.2 1.7.2 1.7.2
360 / jQuery ⊥ 1.7.1 1.7.1
DropBox / Modernizr 2.8.3 ⊥ 2.8.3
DropBox / Underscore.js 1.8.3 1.8.3 ⊥
Microsoft / Sizzle 1.9.4 1.9.2 ⊥

file matching strategies.

Ssection 4 gives much more information regarding the pre-
cision of each of the strategy. However, we clearly see that
there is no silver bullet: no strategy always return a correct
result.

We can see that the results obtained by the three strategies
should be merged. We therefore introduce ARJL (Auto-
matic Recognizer of JS Libraries) that integrates the three
strategies mentioned above, as follows. First the comment,
file matching and sensor strategies are applied separately on
a given web application. For each library l, we therefore get
three results in the set Vl∪{?,⊥}. Recall that Vl is a totally
ordered set, i.e. 1.0 < 1.1 < 1.2. We extend the total order
of Vl by considering ⊥ as the smallest element, and ? the
second smallest, i.e. ⊥ <? < 1.0 < 1.1 < 1.1. Using this
total order, for a library and a given web application, the
ARJL strategy returns the greatest element in Vl ∪ {?,⊥}
that has been computed by the strategies. For instance, in
Table 3, for the Microsoft application and Sizzle strategy,
we have ⊥ < 1.9.2 < 1.9.4 therefore 1.9.4 is returned.

3. IMPLEMENTATION
Our approach has been implemented using the JavaScript
(JS) language on top of the SlimmerJS4 scriptable and head-
less (without GUI) web browser. SlimmerJS is in charge of
applying the three strategies. In particular, we use it to
retrieve the JS files from the web applications (for the com-
ments and file matching strategies), and also to look for the
key URLs and objects (for the sensor strategy). Then, we
apply the ARJL strategy on top of the obtained results.

Since SlimmerJS can experience a heavy network traffic when
crawling a web application, or even crash when executing the
remote JS code, we analyze each web application in a sep-
arate thread. A monitor watches all the threads and when
one is running for too many time (we have a configurable
threshold set by default to five minutes), it kills and re-
launches it. Fortunately, we always succeed in analyzing all
the web applications we wanted to analyze as the crashes
rarely happen.

Since there exists a huge amount of JS libraries to detect,
we had to choose a reasonable subset of them to test our
approach. We therefore chose to select a limited set of fa-
mous JS libraries from two well-known sources. First, we
chose to include the 14 JS libraries stored by the Google
CDN5. Second, as Wikipedia6 provides a list of notable JS
libraries, we choose this list but remove the libraries without

4https://slimerjs.org/
5https://developers.google.com/speed/libraries
6https://en.wikipedia.org/wiki/List of JavaScript libraries

any update in the last five years or the ones that are totally
abandoned. By merging these two lists, we obtain a list of
52 JS libraries, with an average of 43 versions per library.

To build the knowledge base of all files of all versions of these
libraries, we use the CDNJS7 library hosting website. To
elaborate the key objects and URLs for the sensor strategy,
we reused the source code of Library Detector8, a Chromium
plugin that detects the libraries used by a web application.
We then have extended it to handle our sensor strategy.

For the list of web applications, we use the Alexa website
that ranks websites according to their popularity. Alexa con-
tains websites that are available on several domains (such as
google.com, google.co.in, google.co.jp). We therefore remove
the domain information from the URL, and select the 100
most popular ones.

To allow researchers and developers to replicate our results,
the source code of our approach is available on GitHub9.

4. EVALUATION
In this section we evaluate the strategies described in Section
2. Firstly, we describe how we set up the two thresholds of
the file matching strategy. Then, we analyze the precision of
our approach. We also compare the results of the different
strategies. Finally, we measure the time performances of the
strategies.

4.1 Thresholds of the File Matching Strategy
As described in the previous section, the file matching strat-
egy uses two thresholds: the maximum Hamming distance
d between simhashes, and the minimum Dice similarity s
between the text of the files. To compute these thresholds
our objectives was that the strategy should avoid at all costs
false positives, and should return the largest set of identified
libraries. In other words, the precision should be 100%, and
the recall should be as big as possible (close to 1).

We then used a manual process that started with the stronger
threshold (where d = 0 and s = 1), and aimed to release the
thresholds to get more identified libraries without having
any false positive. In other words, we tried to get the two
thresholds with a precision of 100% and with the biggest
recall. We ran that process on a set of 10 applications ran-
domly chosen from the 100 most popular application from
Alexa. Further one author of the paper manually inspected
the detected libraries and classified each of them as either a
true or a false positive. The Table 4 shows the results of our
process where the candidate values for d are {0, 1, 2, 3, 4},
and {1, 0.9, 0.8, 0.7, 0.6} for s. For each couple of thresh-
olds (c, s) in the Table, there is an associated couple (t, f),
where t (resp. f) is the number of true (resp. false) posi-
tives. According to our considerations, we therefore selected
the thresholds d = 3 and s = 0.8 as it returned the more
libraries (12) without any false positive (0).

4.2 Precision of the Strategies
7https://cdnjs.com/
8https://github.com/johnmichel/
Library-Detector-for-Chrome
9https://github.com/kenmick/WebCrawler
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Table 4: Hamming distance and Dice similarity thresholds,
with the associated true and false positives.

Dice coefficient

Hamming distance 1 0.9 0.8 0.7 0.6

0 (4,0) (9,0) (9,0) (9,0) (9,0)
1 (4,0) (10,0) (10,0) (10,0) (10,0)
2 (4,0) (10,0) (10,0) (10,1) (10,2)
3 (4,0) (10,0) (12,0) (12,2) (12,4)
4 (4,0) (10,0) (12,1) (12,5) (12,7)

We consider two kinds of precision, called the library-level
and the version-level precisions. The library-level precision
focuses on library name, and ignores the versions. In such a
level, a true positive is when a strategy returns a library that
is truly used by the web application, whatever the version
returned by the strategy and the one that is truly used by
the application. A false positive is when a strategy returns a
library that is not used by the web application. The version-
level precision focuses on versions. In such a level, a true
positive is when a strategy returns the version of a library
that is truly used by the web application. A false positive is
when a strategy returns a version that is not used by the web
application. When the strategy does not return the version
(unknown version), we don’t consider that as a result, so it
is not a true nor a false positive.

To evaluate these two precisions, we drew at random 20 web
applications from the top 90 applications of Alexa (we ex-
cluded the ones used in the threshold experiment). We then
ran our strategies on these applications and collected the
results. One of the authors then checked if the results were
true or false positives. To perform this check, the author
just used all the development tools of Mozilla Firefox with
the intent to check whether the return library is really used
by the web application.

Table 5 shows the precision of our strategies. Regarding the
library-level, both the comment and the file matching strate-
gies have a 100% precision. The sensor strategy has a 93.5%
precision mainly because few web applications use objects
that have the same name than key objects. Regarding the
version-level, the precision of all the strategies is very close
to 90%. All together, the precision of our approach is 94.4%
for the library-level, and 92.6% for the version-level, which
is quite good.

4.3 Comparison of the Strategies
In this section, we perform a comparison of the results ob-
tained using the different strategies. For this purpose, we
ran the comment, file matching and sensor strategies on the
100 most popular applications of Alexa. In this experiment,
we removed the version information retrieved by the strate-
gies, so if a strategy returns {(jQuery, 1.2)}, it is trans-

Table 5: Precision of the strategies.

Strategies

Precision Comment File Matching Sensor ARJL

Library-level 100% 100% 93.5% 94.4%
Version-level 88.9% 94.4% 90.9% 92.6%
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formed as {(jQuery, ?)}. Using this transformed data, we
construct the Venn diagram of Figure 3 that shows the in-
tersections of the results of the strategies. This diagram
clearly shows that each strategy is useful because it identifies
libraries that are not detected by the other strategies. The
sensor strategy seems to outperform the comment strategy
that in turns seems to outperform the file matching strategy
as they find respectively 78%, 40% and 22% of all libraries.
The set of uniquely detected libraries represent 53% of all
libraries for the sensor strategy, 13% for the comment strat-
egy, and 8% for the file matching strategy.

Finally Figure 4 shows the comparison of ‘?’ and accurate
version for each strategy. It shows the number of accu-
rate and unknown versions returned by a strategy. This
figure confirms that the comment and file matching strate-
gies never return unknown version, as expected. Only the
sensor strategy returns unknown versions. This Figure also
shows that the sensor strategy return more versions than
the other ones, which also explain the Venn diagram of the
Figure 3.

4.4 Efficiency
In this section, we assess the time performances of our strate-
gies. First, SlimmerJS require 3 hours to browse all the web
applications from top 100 applications of Alexa. Then, we
measure the total time taken by each strategy to analyze
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all these applications. This time has been measured using a
Intel Core i7-4770 CPU @3.40GHz×8, 16GB of RAM, and
Ubuntu 14.04.2 LTS x86 64. We did not measure the time
taken to compute the ARJL strategy because it only com-
bines the results of the others in a few milliseconds. The
fastest strategy is the comment one (0.1 hours). The sensor
strategy is the longest one, since it takes two hours and a
half to process all sources (2.5 hours). This is because run-
time errors that can be experienced when running JS code.
Finally, the file matching strategy takes 1 hour. In conclu-
sion, the top 100 websites can be processed in less than 7
hours.

5. OBSERVATIONS AND SUGGESTIONS
This section presents our observations and provides some
suggestions regarding the use of JavaScript (JS) client-side
libraries in the context of web development. We first present
some statistics on how famous web applications are using
libraries. Then, we present the suggestions that can be pro-
vided looking at a recent snapshot of the library usage of
the most famous web applications. Finally, we present our
observations on the library usage during a long period of
time. Such observations yield interesting insights regarding
the pace of library evolution.

5.1 Statistics
Figure 5 presents the global usage of JS client-side libraries
by the Alexa top 100 web applications. It shows that most
of these web applications use several JS libraries: 82% of
them use at least 1 library, 66% use at least 2 libraries, and
8% use at least 8 libraries (see the points A, B and C).

By looking into these web applications, we observed that
top ranked web applications use few libraries, even if their
company develops and maintains several famous ones. For
example, the Google web application ranks first but does
not use any library, even if the Google company provides
widely used libraries such as GoogleAnalytics or GoogleAPI.
On the contrary, web applications that have a lower ranking
use more libraries. We have validated this observation by
using a Spearman correlation test. The results of this test
is ρ = 0.37 with a p-value of 0.0006. There is therefore a
medium correlation between the rank of a web application

Table 6: JS library usage frequency for Alexa global top 100
web applications on Oct. 20, 2015

Snapshot-2015-10-20 Library name Frequency

1 jQuery 63
2 GoogleAnalytics 25
3 Modernizr 19
4 jQueryCookie 18
5 Underscore 12
6 jQueryUI 12
7 Facebook SDK 11
8 RequireJS 9
9 SWFObject 8
10 Twitter 7
...

Backbone 7
Bootstrap 3
AngularJS 0
Polymer 0

Table 7: JS.ORG rank on Oct. 20, 2015
JS.ORG rank Library name

1 AngularJS
2 D3
3 jQuery
4 RevealJS
5 React
6 ImpressJS
7 ThreeJS
8 Backbone
9 jQueryFileUpload
10 SocketIO
...

in the top 100 and the number of library it uses.

These statistics reinforce our hypothesis that the libraries
used by the famous web applications are the ones to use.
Indeed as famous web applications use only a few libraries,
we claim that they do use the libraries that provide a very
strong added-value. However, this phenomenon questions
the number of popular web applications that have to be con-
sidered to perform valuable observations that yield useful
suggestions. We currently choose 100 web applications but
we are not sure that this number is representative enough.
Therefore this number could be increased or decreased de-
pending on the objective: analyzing only widely used web
applications, or analyzing also less famous web applications.
We investigated how the results change when using 1000
applications, and there was a very limited impact on the
results.

5.2 Analysis of the October 2015 Snapshot
Table 6 lists the JS library usage frequency for Alexa global
top 100 web applications on Oct. 20, 2015. We can ob-
serve that jQuery is widely used by web applications and
ranks first (63 web applications use it). In the opposite
MVC (Model View Controler) libraries such as AngularsJS,
Backbone and Polymer, are rarely used by famous web ap-
plications. These results contradicts the trends provided by
JS.ORG10, which gives statistics about popular JS projects
on GitHub. Table 7, which presents the statistics of JS.ORG,
states that AngularsJS ranks first which is very different
from the results of our study.

We claim that our results confirm our hypothesis, and that
they can be used to give some suggestions. In particular, we
claim that libraries such as jQuery are essentials. On the
contrary, libraries such as AngularJS, Backbone and Poly-
mer should be avoided as they are possibly not yet mature
enough to be included in web applications.

10http://stats.js.org/

http://stats.js.org/
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Our observations that focus on versions can be used to give
precise suggestions on a particular library. As an example,
Figure 6 shows the version distribution of the jQuery library
among the top 100 web applications on Oct. 20, 2015. Ac-
cording to this figure, jQuery-1.7.2 and jQuery-1.10.2 are
the most popular versions. Moreover, most of the famous
web applications prefer to use the version 1.x.x of jQuery
than the version 2.x.x. Figure 7 presents our observations
for the versions of the Modernizr library. This figure shows
that the version 2.8.3 is the preferred one, and therefore may
be used preferentially.

5.3 Analysis of a Three Years Period
We used Wayback Machine11, the internet archive website,
to get older versions of the Alexa top 100 web applications.
Thanks to Wayback Machine, we are therefore able to ob-
serve which libraries were used through the history of these
web applications. We focused on a three years period (from
Oct. 20, 2012 to Oct. 20, 2015) to observe library usage
evolution. Figure 8 shows such observations for the top
10 used JS libraries as computed from the October 2015
snapshot. It shows that jQuery is the first used library for
three years, and exceeds to a large extent the other libraries.
The GoogleAnalytics library has a steep increasing slope dur-

11https://archive.org/web/
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Figure 8: Evolution of top 10 JS libraries for three years

ing 20 Oct’12 and 20 Oct’13, but tends to decline since 20
Apr’15. Further, in the beginning Modernizr is not widely
used by web applications, but accumulates popularity and
exceeds jQueryCookie to rank third around October 2014.

As a main conclusion, Figure 8 shows that the usage of
client-side JS libraries evolves, but not that fast. During a
three years period, which is quite long for web applications,
there are few evolutions.

6. RELATED WORK
To the best of our knowledge, there is only one survey, which
is done by the W3Techs company, that provides statistics
on the client-side library usage among popular web applica-
tions.12 However, W3Techs does not communicate its un-
derlying methodology. On the contrary, our methodology is
fully described, making it possible to reproduce or extend
it. In the remainder of the section, we present the work
done in the fields of analysis of third-party library usage,
identification and recommendation.

In [1], Teyton et al. analyze a large set of open source soft-
ware systems to mine their library migrations (replacement
of a library by a competing one). Their approach is based on
the analysis of the source code and build system artifacts,
and cannot therefore be reused in our context.

In [15], Lämmel et al. perform a large-scale study on AST-
based API-usage over a large set of open-source projects.
We didn’t use the same approach, as analyzing a JavaScript
(JS) AST for mining library usage is very complex, because
of dynamic typing and high order functions.

In [16], Mileva et al. perform an analysis of the Maven
configuration files of 250 Apache projects to mine usage of
libraries and their versions. Such an approach cannot be
used in the context of web application as the configuration
files are not available.

Seifert et al. [17] present a static method to detect malicious
code in web applications. The method checks the initial
HTTP response and HTML code to find static attributes.
Our sensor strategy has been inspired by this approach.

Finally, Zhong et al. [18] and Thung et al.[19] provide ap-
proaches to automatically recommend library methods and

12http://w3techs.com/technologies/overview/javascript
library/all

https://archive.org/web/
http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all


code snippets. Further, Thung et al. [10] also describe an
new approach that can automate the recommendation of a li-
brary depending on the developers’ needs. These approaches
are however based on the source code of the projects, which
is not available in our context of web applications.

7. CONCLUSION
In this paper we propose an approach to automatically iden-
tify client-side JavaScript (JS) libraries used web applica-
tions. Our approach combines three different strategies that
respectively aim to (1) look for any name of a library in the
comment part of the JS files linked to the application, (2)
compare these same linked JS files with reference files of li-
braries, and (3) execute a sensor JS plug-in to dynamically
identify library usage.

Our approach has the advantage to be highly precise (more
than 92%) once the sought libraries are included the knowl-
edge base of our approach. We used our approach on the 100
most popular websites referenced by Alexa. Our intent is to
identify the popular client-side JS libraries, and to give some
suggestions to the developers that have trouble to choose a
library to include within their own web application.

Based on our observations, we can state that there are some
essential libraries (such as jQuery, Modernizr or Underscore),
and other ones that are rarely used (such as AngularJS and
Polymer). This contrasts with ranking that are provided by
websites dedicated to software development, and that states
that AngularJS is very popular. We argue that our approach
is focused on popular and commercial web applications, and
therefore is resilient to technological buzz.

As a last result, the observations we made on a three years
period shows that the library usage evolves but not that fast.
Most, if not all, the libraries that were used three years ago,
are still used nowadays. As a future work, we think about
partitioning web applications into several business domains
to check whether some libraries are more used depending on
these domains.
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