
HAL Id: hal-02182142
https://hal.science/hal-02182142

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Documentation Reuse: Hot or Not? An Empirical Study
Mohamed Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

To cite this version:
Mohamed Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc. Documentation Reuse: Hot
or Not? An Empirical Study. 16th International Conference on Software Reuse (ICSR), May 2017,
Salvador, Brazil. pp.12-27, �10.1007/978-3-319-56856-0_2�. �hal-02182142�

https://hal.science/hal-02182142
https://hal.archives-ouvertes.fr

Documentation Reuse: Hot or Not? An
Empirical Study

Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

CNRS, Bordeaux INP, Univ. Bordeaux
LaBRI, UMR 5800

F-33400, Talence, France
{moumaziz,acharpen,falleri,xblanc}@labri.fr

Abstract. Having available a high quality documentation is critical for
software projects. This is why documentation tools such as Javadoc are
so popular. As for code, documentation should be reused when possible to
increase developer productivity and simplify maintenance. In this paper,
we perform an empirical study of duplications in JavaDoc documentation
on a corpus of seven famous Java APIs. Our results show that copy-
pastes of JavaDoc documentation tags are abundant in our corpus. We
also show that these copy-pastes are caused by four different kinds of
relations in the underlying source code. In addition, we show that popular
documentation tools do not provide any reuse mechanism to cope with
these relations. Finally, we make a proposal for a simple but efficient
automatic reuse mechanism.

Keywords: documentation, reuse, empirical study

1 Introduction

Code documentation is a crucial part of software development as it helps devel-
opers understand someone else’s code without reading it [13,25]. It is even more
critical in the context of APIs, where the code is developed with the main intent
to be used by other developers (the users of the API) that do not want to read
it [12, 16, 17]. In this context, having a high quality reference documentation is
critical [5].

Further, it has been shown that the documentation has to be close to its cor-
responding code [8,9,14]. Developers prefer to write the documentation directly
in comments within the code files rather than in external artifacts [22]. Popular
documentation tools, such as JavaDoc or Doxygen, all share the same principle
which is to parse source code files to extract tags from documentation comments
and to generate readable web pages [20,24].

Writing documentation and code are highly coupled tasks. Ideally, developers
should write and update the documentation together with the code. However, it
has been shown that the documentation is rarely up-to-date with the code [8,9,
14] and is perceived as very expensive to maintain [4, 5].

2 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

We think that one possible reason for this maintenance burden is that docu-
mentation tools lack reuse mechanisms whereas there are plenty of such mecha-
nisms in programming languages. Developers that write documentation therefore
copy-paste many documentation tags, which is suspected to increase the main-
tenance effort [11].

As an example, let us consider a case of delegation as shown in the Figure 1. In
this example, the right method is just returning directly a value computed from
the left method. As expected, some documentation tags from the left method
are copy-pasted in the right method: the common parameters and the return
value. As a consequence, if the documentation of the callee method is updated,
an update of the caller documentation will have to be carried out manually,
which is well known to be error-prone [11].

/**
* @param a the first collection, must

not be null
* @param b the second collection, must

not be null
* @return true iff the collections

contain the same elements with the
same cardinalities.

*/
public static boolean

isEqualCollection(final
Collection a, final
Collection b) {

...
return true;
}

/**
* @param a the first collection, must

not be null
* @param b the second collection, must

not be null
* @param equator the Equator

used for testing equality
* @return true iff the collections

contain the same elements with the
same cardinalities.

*/
public static boolean

isEqualCollection(final
Collection a, final
Collection b, final Equator
equator) {

...
return

isEqualCollection(collect(a,
transformer), collect(b,
transformer));

}

Fig. 1. Extract of a documentation duplication due to method delegation (in the
Apache Commons Collections project). Duplicated tags are displayed in bold.

In this paper, we investigate this hypothesis and more formally answer the
two following research questions:

– RQ1: Do developers often resort to copy-paste documentation tags?
– RQ2: What are the causes of documentation tags copy-paste and could they

be avoided by a proper usage of documentation tools?

We answer our research questions by providing an empirical study performed
on a corpus of seven popular Java APIs where the need of documentation is crit-
ical (see Section 2.1). We answer the first research question by showing how big
is the phenomenon of documentation tags copy-pasting (see Section 3). To that
extent, we automatically identify what we call documentation tags duplications
(Section 2.2), count them, and manually check if they are intended copy-pastes

Documentation Reuse: Hot or Not? An Empirical Study 3

or just created by coincidence. We answer the second research question by in-
vestigating the intended copy-pastes we observed with the objective to find out
their causes. Then we analyze whether existing documentation tools can cope
with them (see Section 4). We further extend our second research question by
providing a proposal for a simple but useful documentation reuse mechanism.

Our results show that copy-pastes of documentation tags are abundant in
our corpus. We also show that these copy-pastes are caused by four kinds of
relations that take place in the underlying source code. In addition, we show
that popular documentation tools do not provide any reuse mechanism to cope
with these relations.

The structure of this paper is as follows. First, Section 2 presents our corpus
and the tool we create to automatically identify documentation duplications.
Then, Section 3 and Section 4 respectively investigate our two research questions.
Finally, Section 5 describes the related works about software documentation and
Section 6 concludes and describes future work.

2 Experimental Setup

In this section, we first explain how we create our corpus (Section 2.1), and give
general statistics about it. Then, we describe how we extract documentation
duplications contained in our corpus (Section 2.2).

2.1 Corpus

The corpus of our study is composed of seven Java APIs that use JavaDoc, arbi-
trary selected from the top 30 most used Java libraries on GitHub as computed
in a previous work of Teyton et al. [23]. We just considered the source code
used to generate the documentation displayed on their websites. We also choose
to focus only on methods’ documentation, as this is where there is most of the
documentation. In the remainder of this paper, we therefore only discuss about
the documentation of Java methods written in JavaDoc.

Table 1 presents these seven APIs. All the data gathered for this study is
available on our website1. As we can see in the General section of this table, the
projects are medium to large sized (from 33 to 1,203 classes). As expected, they
contain a fair amount of documentation: from about 28% to 97% of the methods
are documented. The Tags section of this table gives some descriptive statistics
of the JavaDoc tags used. As we can see, the most frequent tags are usually,
in order: @description, @param, @return and @throw. Finally, the inheritDoc
section of this table shows that there are few @inheritDoc tags. Such tags are
used to express a documentation reuse between two methods but the method
that reuses the documentation must override or implement the method that
contains the reused documentation.

1 http://se.labri.fr/a/ICSR17-oumaziz

4 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

Table 1. Statistics computed from our corpus and the documentation it contains.

acc1 acio2ggson3Guava JUnit Mockito SLF4J

General
of classes 466 119 72 1,203 205 375 33
of methods 4,078 1,173 569 9,928 1,319 1,716 433
% of documented methods 61.53 97.27 52.55 36.37 43.44 28.15 36.49

Tags
of @description 1,939 922 265 3,073 448 436 128
of @param 1,199 734 106 749 178 237 51
of @throw 438 209 65 462 12 11 5
of @return 892 322 92 414 90 131 42

inheritDoc
of usage 85 18 0 112 2 0 0

1 Apache Commons Collections
2 Apache Commons IO
3 google-gson

2.2 Documentation Duplication Detector

A documentation duplication is a set of JavaDoc tags that are duplicated among
a set of Java methods. If it is intended then it was created by a copy-paste, if
not then it was created by coincidence. We propose a documentation duplication
detector that inputs a set of Java source code files and outputs the so-called
documentation duplications2.

The detector first parses the Java files and identifies all the documentation
tags they contain by using the GumTree tool [7]. To detect only meaningful
duplications, it extracts the most important tags of JavaDoc: @param, @return,
@throws (or its alias @exception). It also extracts the main description of Java
methods as if it is tagged too (with an imaginary @description tag). Finally, to
avoid missing duplications because of meaningless differences in the white-space
layout, it cleans the text contained in the documentation tags by normalizing the
white-spaces (replacing tabs by spaces, removing carriage returns and keeping
only one space between two words). For the same reasons, it also transforms all
text contained in documentation tags to lowercase.

As a next step, the detector makes a comparison between tags, and checks
if they are shared between different Java methods. Table 2 shows the result of
this step w.r.t. to the Java code of Figure 1.

The third and last step of the process consists in grouping the Java methods
and the tags they share with the objective to identify maximal documentation
duplications. This step is complex as it can lead to a combinatorial explosion,
but fortunately, it can be solved efficiently using Formal Concept Analysis [10]
(FCA). FCA is a branch of lattice theory that aims at automatically finding

2 https://github.com/docreuse/docreuse

Documentation Reuse: Hot or Not? An Empirical Study 5

Table 2. The methods and their respective tags computed from Figure 1 source code
(duplicated tags are depicted in bold).

@
p
a
ra

m
a

@
p
a
ra

m
b

@
re

tu
rn

@
p
a
ra

m
eq

u
a
to

r

I1: isEqualCollection(final Collection a, final Collection b)

I2: isEqualCollection(final Collection a, final Collection b, ...)

maximal groups of objects that share common attributes. In our context, the
objects simply correspond to Java methods, and the attributes correspond to
documentation tags.

FCA returns a hierarchy of so-called formal concepts. A formal concept is
composed of two sets: the extent (a set of Java methods in our context) and the
intent (a set of documentation tags in our context). The extent is composed of
objects that all share the attributes of the intent. In other words in our context, a
formal concept is a collection of Java methods that share several documentation
tags.

The hierarchy returned by FCA then expresses inclusion relationships be-
tween the formal concepts. The Figure 2 shows such a hierarchy from the formal
context of Table 2. To identify duplicated documentation tags, we search within
the hierarchy the concepts that have at least two objects in their extent, and
discard all other concepts as they do not correspond to duplications. The formal
concepts corresponding to maximal duplications are shown in plain line in Fig-
ure 2, the others are not relevant in our context. In our example, one maximal
documentation duplication has been identified.

3 Research Question 1

In this section, we answer our first research question: Do developers often resort
to copy-paste documentation tags?. To investigate if documentation duplications
are frequent, we simply apply our documentation duplication detector to our
corpus and report statistics about the extracted duplications. To ensure that
these duplications are intentional, we draw at random a subset of the extracted
duplications and ask three developers to manually decide for each duplication if
it is intentional or coincidental.

3.1 Frequency of Duplications

As shown in the Documentation part of Table 3, our detector has identified
about 2,800 documentation duplications in the seven APIs of our corpus. As we

6 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

I1, I2

@param a
@param b
@return

I1

@param a
@param b
@return

I2

@param a
@param b
@param equator
@return

@param a
@param b
@param equator
@return

Fig. 2. Hierarchy computed by FCA from the formal context of Table 2. Retained
concepts are depicted with plain lines, while discarded concepts are depicted with
dotted lines.

can see, at most 4% of the documented methods have their documentation com-
pletely duplicated (line % of complete dupl.). This indicates that completely
duplicating a method’s documentation is rare. On the contrary, about 40% to
75% of the documented methods have their documentation partially duplicated
(line % of partial dupl.). This indicates that duplicating some method’s doc-
umentation tags is very frequent, at least much more frequent than using the
@inheritDoc tags as seen in the Table 1, which raises questions about the limi-
tations of this mechanism as we will see in Section 4.

1
2

2

3

3

4

4

5

5

6

6

7 8 9 10 11 12 13 16 19 20 22 28 54 63 82
1

2

2

3

3

4

4

5

5

6

6

7 8 9 11 14 16 18 19 33 34 42 76

Fig. 3. Diagrams presenting the number of Java methods and tags of the identified
duplications in Guava (left) and Mockito (right). The rows correspond to the number
of Java methods, and the columns correspond to the number of documentation tags.
The color in a cell correspond to the number of duplications (the darker the cell is, the
more duplications).

In addition, we can see in the Documentation tags part of Table 3 a fine-
grained analysis of the duplicated tags. Even though the frequency of duplica-
tions for each tag depends on the project, param and throws are often the most
duplicated tags (from 20% to 40% of these tags are duplicated). The return

Documentation Reuse: Hot or Not? An Empirical Study 7

tags are also largely duplicated (from 14% to 31%). Finally, the description

tag is rarely duplicated (from 4% to 15%).

Table 3. Statistics computed from our corpus and the duplications it contains.

acc1 acio2ggson3Guava JUnit Mockito SLF4J

Documentation
of dupl. 1,137 684 59 630 134 86 36
% of complete dupl. 1.51 4.03 0.67 0.80 0.00 0.00 0.00
% of partial dupl. 75.53 77.83 48.49 38.72 42.76 58.59 73.42

Documentation tags
% of dupl. @description 11.24 14.53 8.30 6.57 14.96 4.13 3.91
% of dupl. @param 41.78 42.78 22.64 30.71 37.08 17.72 39.22
% of dupl. @throw 49.09 55.98 21.54 33.33 8.33 27.27 40.00
% of dupl. @return 27.35 31.37 15.22 25.85 14.44 19.85 26.19

1 Apache Commons Collections
2 Apache Commons IO
3 google-gson

Figure 3 presents the number of documentation tags and Java methods of
the identified duplications for Mockito and Guava projects. Due to the lack of
space, we only show these two projects, but the figures are very similar for all
the projects in our corpus, and can be found on our website. The Figure shows
that most of the identified duplications have few documentation tags and few
Java methods: many duplications involve only two Java methods that share a
single documentation tag. On these figures, we notice that the maximum number
of duplications’ documentation tags ranges from 3 (in SLF4J) to 8 (in Apache
Commons Collections). The maximum number of Java methods ranges from 22
(in google-gson) to 183 (in Apache Commons IO). Thus, there exist duplications
involving a lot of method and only a few tags or a lot of tags and a few methods.
Finally, there is no duplication with both a large number of methods and a large
number of tags.

3.2 Copy-pastes vs Coincidental Duplications

To answer the second part of our research question we perform a qualitative
experiment that relies on the manual judgement of several developers. We choose
to involve three experienced Java developers for the experiment, as advised in [2],
because judging if a duplication is an intended copy-paste or not is subjective.
Involving three developers allows us to have a trust level on the status of a
duplication. In our experiment, the developers are three of the paper’s authors.

We then decided to create a sample composed of 100 duplications randomly
drawn from our dataset of identified duplications, representing about 5% of the
population of that dataset. Due to limitations in time we had to limit our manual

8 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

analysis to 100 duplications, we randomly selected them to have a representa-
tive ratio of the corpus. Each of the 100 duplications was then presented to each
developer through a web interface that also presented the associated code. The
developers then had as much time as they needed to judge whether the dupli-
cation was an intended copy-paste or not. Of course, the developers were not
authorized to talk about the experiment until its completion.

A duplication labeled as “intended” is called from now on a copy-paste while a
duplication labeled as “not intended” is called an coincidental duplication. When
a developer is not able to decide whether the answer should be “intended” or
“not intended”, he must label the duplication as “not intended”, to ensure that
the number of copy-pastes that are found is a solid lower bound. We therefore
define the two following trust levels. First, a copy-paste has a “majority” trust
level when it has been labeled as “intended” by at least two participants. Last, a
copy-paste has a “unanimity” trust level when it has been labeled as “intended”
by the three participants.

Finally, we apply the bootstrapping statistical method [6] on our sample to
compute a 95% confidence interval for the ratio of copy-pastes in our corpus. The
bootstrapping method is particularly well-suited in our context since it makes
no assumption about the underlying distribution of the values.

Before presenting our experiment results, it should be noted that the devel-
opers replied an identical answer on 69 out of 100 duplications. This indicates
that the task of rating a duplication is not too subjective. Moreover, on these
69 cases, the developers agreed on a copy-paste 68 times, and on a coincidental
duplication only one time3. It means that agreeing on a copy-paste is easy while
agreeing on an coincidental duplication is difficult.

The main results of the experiment are presented in the Figure 4. About
85% to 96% of the duplications are copy-pastes when using the majority trust
level. When using the stricter unanimity trust level, about 57% to 76% of the
duplications are copy-pastes. In both cases, more than half of the duplications
are copy-pastes.

3.3 Threats to Validity

Our experiment bears two main threats to validity. First, the developers are
authors of the paper, therefore, it could bias their answer when judging the du-
plications. Even if they took extra care to be as impartial as possible, replicating
the study would enforce its validity and that it is why all the experiment’s data
is available.4 Second, the results obtained from this experiment cannot be gen-
eralizable to all APIs, because we used the duplications of only seven Java open-
source APIs. Even if we only considered well known and mature open-source
projects for the experiment, it would be better to replicate the study with other
APIs wether open-source or not and in various programming languages.

3 http://se.labri.fr/a/ICSR17-oumaziz/RandomExperiment
4 http://se.labri.fr/a/ICSR17-oumaziz

Documentation Reuse: Hot or Not? An Empirical Study 9

0.00

0.25

0.50

0.75

1.00

Majority Unanimity
Trust level

R
a

tio
 o

f
d

u
p

lic
a

tio
n

s

Duplication status intended not_intended

Fig. 4. Ratio of intended or coincidental duplications for the majority and unanimity
trust levels, shown with their 95% confidence interval.

4 Research Question 2

In this section we answer our second research question: What are the causes
of documentation copy-pastes and could they be avoided by a proper usage of
documentation tools? We start by an analysis of the causes that lead to docu-
mentation copy-paste, and their root in the source code (see Section 4.1). Then
we check whether the existing documentation reuse mechanisms can cope with
these causes (see Section 4.2). Finally, we propose a new documentation reuse
mechanism that can be used to cope with the unsupported causes (see Section
4.3).

4.1 Causes of Documentation Copy-pasting

To identify the causes that lead to copy-paste, we manually analyzed the source
code corresponding to the 61 copy-pastes (68 initially with 7 containing only
main tags which we did not keep) identified to answer RQ1 (see Section 3). After
performing our manual analysis we identified four different causes: delegation,
sub-typing, code clone and similar intent.

A delegation, as shown in Figure 1, appears when a method calls another
one, and thus has a part of its documentation coming from the called one.

A sub-typing appears when a method overrides another one that is defined
in a same hierarchy. In this case, it is common that the overriding method’s
documentation comes from the one of the overridden method.

A code clone appears when a method shares similar lines of code with another
one, hence duplicating a part of its body. Figure 5 shows an example of code
clone as the two methods share common lines of code.

10 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

/**
* Writes a String to the {@link

StringBuilder }.
*
* @param value The value to write
*/
@Override
public void write(final String

value) {
if (value != null) {
builder.append(value);

}
}

/**
* Writes a portion of a character

array to the {@link
StringBuilder }.

*
* @param value The value to write
* @param offset The index of the

first character
* @param length The number of

characters to write
*/
@Override
public void write(final char[]

value , final int offset , final
int length) {

if (value != null) {
builder.append(value , offset ,

length);
}

}

Fig. 5. Example of copy-paste due to code clone in the Apache Commons IO project.
Duplicated tags are displayed in bold.

Finally, a similar intent appears when a method performs a computation
that is similar to another method, which is why they share some documentation
tags.

/**
* Delegates to {@link

EndianUtils#
readSwappedInteger(InputStream)}
* @return the read long
* @throws IOException if an I/O error

occurs
* @throws EOFException if an end of

file is reached unexpectedly
*/
public int readInt () throws

IOException , EOFException {
return
EndianUtils.readSwappedInteger(in);

}

/**
* Delegates to {@link

EndianUtils#
readSwappedFloat(InputStream)}
* @return the read long
* @throws IOException if an I/O error

occurs
* @throws EOFException if an end of

file is reached unexpectedly
*/
public float readFloat ()

throws IOException ,
EOFException {

return
EndianUtils.readSwappedFloat(in);

}

Fig. 6. Extract of copy-paste due to two methods with a similar intent in the Guava
project. Duplicated tags are displayed in bold.

Figure 6 shows such an example. Here the two methods only differ because
of the return type (float or int). It is not a clone because there is no common line
between them. Further, the funny thing is that the developer made a mistake as
he clearly copied the documentation of the long method but didn’t change the
documentation of the int and float ones. In Java, most of similar intent cases we

Documentation Reuse: Hot or Not? An Empirical Study 11

observed are due to developers implementing several times a same feature for
each primitive type.

Table 4 shows the occurrences of each relation in our corpus based on our
analysis. We can see that the main cause of documentation copy-pastes is del-
egation (60%) and then code clone (28%). There are very few sub-typing (8%)
and similar intent (3%) cases. Further, looking at the tag level we notice that
this distribution is quite consistent whatever the tag.

Table 4. Percentage of copy/paste for each cause in our corpus.

Cause

Delegation Sub-typing Code clone Similar intent

copy-pastes 37/61(60%) 5/61(8%) 17/61(28%) 2/61(3%)
@description 8/15(53%) 1/15(7%) 6/15(40%) 0/15(0%)
@param 27/41(66%) 4/41(10%) 9/41(22%) 1/41(2%)
@return 18/30(60%) 3/30(10%) 8/30(27%) 1/30(3%)
@throw 18/30(60%) 1/30(3%) 9/30(30%) 2/30(7%)

4.2 Existing Documentation Tools

As a second step, we first look at the different documentation tools to obtain the
mechanisms they provide for reusing documentation. As there are too many doc-
umentation tools (about fifty) 5, and due to time constraints, we choose to focus
on the most popular ones. As a proxy to compute the popularity, we compute
for each tool the number of questions asked by developers on StackOverflow, for
the tools where a dedicated StackOverflow tag is available.

Table 5. The five documentation tools with the most questions in StackOverflow

Tool Language #Questions

JavaDoc Java 2,022
Doxygen C, C++, Java, C#, VBScript, IDL 1,894

Fortran, PHP, TCL
phpDocumentor PHP 636
JSDoc JavaScript 574
Doc++ C, C++, IDL, Java 570

We then analyze in detail the five tools having the most related questions on
StackOverflow, whether they are compatible with Java or not, in order to be sure

5 https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

12 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

that there is no mechanism available for other languages that could avoid copy-
pastes and therefore should be implemented for Java. These tools are shown in
Table 5.

As a second step for our experiment, for each tool, we go through the whole
user-guide to find out the list of reuse mechanisms. We find out that these reuse
mechanisms have two main aspects. The first aspect is about the reuse granu-
larity: some allow only to reuse a whole method documentation, some allow to
reuse documentation tags separately. The second aspect is about the location of
the reused documentation. Some mechanisms only allow to reuse documentation
located in an overridden method, some allow to reuse documentation located in
any method. Table 6 summarizes the aspects of the mechanisms offered by the
documentation tools.

Table 6. Aspects of the reuse mechanisms. Reuse granularity indicates if the doc-
umentation has to be completely reused (Whole) or if it is possible to select some
tags (Choice). Source location indicates where can be the source of the reused docu-
mentation: in an overridden method (Override) or in a method anywhere in the code
(Anywhere).

Reuse granularity

Source location Whole Choice

Override JavaDoc, JSDoc JavaDoc
Anywhere Doxygen, JSDoc

First, it is important to notice that only three tools out of five provide reuse
mechanisms: DOC++ and phpDocumentor have no support at all to reuse doc-
umentation. More surprisingly, no tool supports the reuse of documentation tags
anywhere in the code. Indeed, JavaDoc allows to reuse documentation tags, but
only in an overridden method, while JSDOC and Doxygen allow to reuse com-
plete method documentations in the code, but not specific documentation tags.

As a result for our classification, delegation, code clone and similar intent
relations are not yet handled by any existing mechanism. On the contrary, du-
plications due to sub-typing relations are already properly handled by JavaDoc.

4.3 Documentation Reuse Revisited

Based on our findings, we suggest a novel mechanism to allow developers to
automatically reuse documentation tags from a method to another one. Our
proposal is an inline tag for JavaDoc. An inline tag can be used inside another
tag, giving therefore the possibility to reuse the content of a specific tag but also
to add more content before and after the reused one. We define it as: {@reuse
Class:Method(type[, type])[:TagName]}.

For instance, by using this new mechanism, the documentation of the right
method in Figure 1 becomes as in Figure 7.

Documentation Reuse: Hot or Not? An Empirical Study 13

/**
* @param a {@reuse Class:isEqualCollection(Collection, Collection)}
* @param b {@reuse Class:isEqualCollection(Collection, Collection)}
* @param equator the Equator used for testing equality
* @return {@reuse Class:isEqualCollection(Collection, Collection)}
*/

Fig. 7. Example of a documentation reuse with our @reuse inline tag.

As you can see in Figure 7, while using the @reuse tag inside @param, there
is no need to specify which tag name to reuse, by default it will automatically
reuse the tag with the same name as the tag it belongs to, therefore the @param

named a.
We implemented our proposal as a doclet for JavaDoc, the source code can

be accessed in our website6. By using this mechanism, it is possible to avoid
at least all the copy-pastes due to delegation, the most frequent ones in our
corpus (60% of the copy-pastes). While this mechanism could also be used for
copy-pastes due to code clone and similar intent, one main problem would be to
decide which method should be the documentation origin which is a still open
research question. Finally, our proposal is not able to cope with @description

tags, as they are not materialized in JavaDoc. We also plan to conduct a more
thorough study of our proposal as a future work.

5 Related Work

This section describes the work done on the subject of software documentation:
studies and tools. We start by describing the existing studies on this subject,
which all agree on the fact that developers need more assistance for maintaining
the documentation.

Forward et al. [9] perform a qualitative study on 48 developers and man-
agers about how they feel about software documentation as well as the tools
that support it. They discover that their favourite tools are word processors
and Javadoc-like tools. They also discover that the participants think that the
documentation is usually outdated. Finally, they discover that the participants
would greatly appreciate tools that help in maintaining the documentation.

Dagenais and Robillard [5] perform a qualitative study involving 12 core
open-source contributors writing documentation and 10 documentation read-
ers. They analyze the evolution of 19 documentation documents across 1500
revisions. They identify three documentation production modes: initial effort,
incremental changes and bursts (big amount of change in a small period). They
also discover that Javadoc-like documentation is perceived as a competitive ad-
vantage for libraries, and is easy to create but costly to maintain.

Finally, Correia et al.[4] show that maintaining a documentation is highly
challenging. They identify four so-called patterns to help tackling this challenge:

6 http://se.labri.fr/a/ICSR17-oumaziz

14 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

information proximity, co-evolution, domain structured information and inte-
grated environment.

In order to help creating and maintaining the documentation, several tools
have been developed. We describe these tools in the remainder of this section,
even if none of them supports documentation reuse as presented in our study.

DocRef [26] helps detecting errors in software documentation by combining
code analysis and natural language processing techniques. This tool has then
been validated on 1000 detected documentation errors from open-source projects,
and has proven usefulness as many errors have been fixed after having been
reported.

Childs and Sametinger [3] suggest the use of object-oriented programming
techniques such as inheritance and information hiding in documentation to avoid
redundancy. They also describe documentation reuse concepts and how to apply
them using literate programming on documentation that is either or not related
to source code.

Parnas [18] explains the lack of interest of researchers about the documen-
tation topic. He further explains that his team and him developed a new math-
ematical notation that is more adapted for documentation but didn’t convince
academics and practitioners.

Buse and Weimer [1] present a tool that can statically infer and characterize
exception-causing conditions in Java and then output a human-readable doc-
umentation of the exceptions. The tool is evaluated on over 900 instances of
exception documentation within 2 million lines of code. They find out that the
output is as good as or better than the existing one in the majority of the cases.

Pierce and Tilley [19] suggest using reverse engineering techniques to au-
tomate the documentation process. They propose an approach based on this
principle in their Rational Rose tool. This approach offers the possibility to au-
tomatically generate up-to-date documentation. However their approach is not
subjected to a serious evaluation.

McBurney and McMilla [15] describe a new method that uses natural pro-
cessing language with method invocation analysis to generate a documentation
not only explaining what the method does but also what is its purpose in the
whole software project.

Robillard and Chhetri [21] describe a tool, Krec, that is able to extract rele-
vant fragments of documentation that correspond to a given API element. The
tool has been evaluated on a corpus of 1000 documentation units drawn from 10
open source projects and has shown to have a 90% precision and 69% recall.

6 Conclusion

Code documentation is a crucial part of software development. Like it is the case
with source code, developers should reuse documentation as much as possible to
simplify its maintenance.

By performing an empirical study on a corpus of seven popular Java APIs, we
show that copy-pastes of documentation tags are unfortunately too abundant. By

Documentation Reuse: Hot or Not? An Empirical Study 15

analyzing these copy-pastes, we identified that they are caused by four different
kinds of relationships in the underlying source code.

Our study pinpoints the fact that popular documentation tools do not provide
any reuse mechanism to cope with these causes. For instance, there is definitely
no mechanism supporting documentation reuse in the case of delegation, which
is the major cause of copy-paste.

We looked towards a proposal providing a simple tag that makes the doc-
umentation reuse simple but efficient. As a further work, we obviously plan to
extend our study. We plan to analyze other programming languages and docu-
mentation tools, and to detect not only identical documentations but also similar
ones, aiming to find duplications with tiny differences. We finally plan to extend
and validate our proposal from a developer point of view.

References

1. Buse, R.P., Weimer, W.R.: Automatic documentation inference for exceptions. In:
Proceedings of the 2008 international symposium on Software testing and analysis.
pp. 273–282. ACM (2008)

2. Charpentier, A., Falleri, J.R., Lo, D., Réveillère, L.: An Empirical Assessment of
Bellon’s Clone Benchmark. In: Proceedings of the 19th International Conference
on Evaluation and Assessment in Software Engineering. pp. 20:1–20:10. EASE ’15,
ACM, Nanjing, China (2015), bibtex: charpentier empirical 2015

3. Childs, B., Sametinger, J.: Literate programming and documentation reuse. In:
Software Reuse, 1996., Proceedings Fourth International Conference on. pp. 205–
214. IEEE (1996)

4. Correia, F.F., Aguiar, A., Ferreira, H.S., Flores, N.: Patterns for consistent software
documentation. In: Proceedings of the 16th Conference on Pattern Languages of
Programs. p. 12. ACM (2009)

5. Dagenais, B., Robillard, M.P.: Creating and evolving developer documentation:
understanding the decisions of open source contributors. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering. pp. 127–136. ACM (2010)

6. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall,
New York (1993)

7. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and Accurate Source Code Differencing. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. pp. 313–324. ASE
’14, ACM, New York, NY, USA (2014)

8. Fluri, B., Würsch, M., Gall, H.C.: Do code and comments co-evolve? on the relation
between source code and comment changes. In: Reverse Engineering, 2007. WCRE
2007. 14th Working Conference on. pp. 70–79. IEEE (2007)

9. Forward, A., Lethbridge, T.C.: The Relevance of Software Documentation, Tools
and Technologies: A Survey. In: Proceedings of the 2002 ACM Symposium on
Document Engineering. pp. 26–33. DocEng ’02, ACM, New York, NY, USA (2002)

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edn. (1997)

11. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: IEEE 31st International Conference on Software Engineering, 2009. ICSE 2009.
pp. 485–495 (May 2009)

16 Mohamed A. Oumaziz, Alan Charpentier, Jean-Rémy Falleri, Xavier Blanc

12. Kramer, D.: API documentation from source code comments: a case study of
Javadoc. In: Proceedings of the 17th annual international conference on Computer
documentation. pp. 147–153. ACM (1999)

13. Lakhotia, A.: Understanding Someone else’s Code: Analysis of Experiences. J. Syst.
Softw. 23(3), 269–275 (Dec 1993)

14. Lethbridge, T.C., Singer, J., Forward, A.: How Software Engineers Use Documen-
tation: The State of the Practice. IEEE Softw. 20(6), 35–39 (Nov 2003)

15. McBurney, P.W., McMillan, C.: Automatic documentation generation via source
code summarization of method context. In: Proceedings of the 22nd International
Conference on Program Comprehension. pp. 279–290. ACM (2014)

16. Monperrus, M., Eichberg, M., Tekes, E., Mezini, M.: What Should Developers Be
Aware Of? An Empirical Study on the Directives of API Documentation. Empirical
Software Engineering 17(6), 703–737 (2012)

17. Parnas, D.L.: A Technique for Software Module Specification with Examples. Com-
mun. ACM 15(5), 330–336 (1972)

18. Parnas, D.L.: Software aging. In: Proceedings of the 16th international conference
on Software engineering. pp. 279–287. IEEE Computer Society Press (1994)

19. Pierce, R., Tilley, S.: Automatically connecting documentation to code with rose.
In: Proceedings of the 20th annual international conference on Computer docu-
mentation. pp. 157–163. ACM (2002)

20. Pollack, M.: Code generation using javadoc. JavaWorld, http://www. javaworld.
com/javaworld/jw-08-2000/jw-0818-javadoc. html (2000)

21. Robillard, M.P., Chhetri, Y.B.: Recommending reference API documentation. Em-
pirical Software Engineering 20(6), 1558–1586 (2015)

22. de Souza, S.C.B., Anquetil, N., de Oliveira, K.M.: A Study of the Documentation
Essential to Software Maintenance. In: Proceedings of the 23rd Annual Interna-
tional Conference on Design of Communication: Documenting &Amp; Designing
for Pervasive Information. pp. 68–75. SIGDOC ’05, ACM, New York, NY, USA
(2005)

23. Teyton, C., Falleri, J.R., Palyart, M., Blanc, X.: A study of library migrations in
Java. Journal of Software: Evolution and Process 26(11), 1030–1052 (Nov 2014)

24. Van Heesch, D.: Doxygen (2004)
25. Vanter, M.L.V.D.: The documentary structure of source code. Information and

Software Technology 44(13), 767 – 782 (2002), special Issue on Source Code Anal-
ysis and Manipulation (SCAM)

26. Zhong, H., Su, Z.: Detecting API documentation errors. In: ACM SIGPLAN No-
tices. vol. 48, pp. 803–816. ACM (2013)

