
HAL Id: hal-02182089
https://hal.science/hal-02182089v1

Submitted on 1 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Empirical Study on REST APIs Usage in Android
Mobile Applications

Mohamed Oumaziz, Abdelkarim Belkhir, Tristan Vacher, Eric Beaudry,
Xavier Blanc, Jean-Rémy Falleri, Naouel Moha

To cite this version:
Mohamed Oumaziz, Abdelkarim Belkhir, Tristan Vacher, Eric Beaudry, Xavier Blanc, et al.. Empirical
Study on REST APIs Usage in Android Mobile Applications. 15th International Conference on
Service-Oriented Computing (ICSOC), Nov 2017, Malaga, Spain. pp.614-622, �10.1007/978-3-319-
69035-3_45�. �hal-02182089�

https://hal.science/hal-02182089v1
https://hal.archives-ouvertes.fr

Empirical Study on REST APIs usage in Android
Mobile Applications

Mohamed A. Oumaziz1, Abdelkarim Belkhir2, Tristan Vacher2, Eric Beaudry2,
Xavier Blanc1, Jean-Rémy Falleri1, and Naouel Moha2

1 Univ. Bordeaux - LaBRI - UMR CNRS 5800, Talence, France
2 LATECE, Département d’informatique, Université du Québec à Montréal, Canada

{moumaziz, xblanc, falleri}@labri.fr
{belkhir.abdelkarim, vacher.tristan}@courrier.uqam.ca

{beaudry.eric, moha.naouel}@uqam.ca

Abstract. A large set of mobile applications (apps) heavily rely on ser-
vices accessible through the Web via REST APIs. The mobile apps mar-
ket is therefore becoming a key market for service providers. However,
the way in which mobile apps use services in practice has never been
studied. In this paper, we perform an empirical study in the Android
ecosystem in which we analyze 500 popular applications and 15 popular
services. We also conducted an online survey to identify which are the
best practices for Android developers. Our results show that Android
developers generally favor invoking services by using an official service
library instead of directly invoking services with a generic HTTP client.
Our study shows that Android developers prefer to use a dedicated li-
brary developed by the service provider if it exists. The main advantages
of such a library are that it simplifies the calls of the REST services but
also provides added-value such as Android Views for example.

Keywords: Empirical Study, Mobile Applications, REST API, REST
Services, Android

1 Introduction

Following the REST principles [6], server side applications are nowadays com-
posed of several stateless independent micro-services [13]. They therefore make
client side applications consuming more and more REST services [5]. Such evolu-
tion then brings new challenges especially for the design of Android Applications3
that now have to handle lots of calls to REST services.

However, little is known on how Android apps use REST services in practice.
Such knowledge is of high importance for the service providers since it would help
them provide facilities to Android developers and hence improve the usability
of their REST services. For instance, do the developers prefer to handle JSON

3 There is now more than 3 million Android Applications:
https://www.appbrain.com/stats

documents or Java objects? Do they want dedicated service libraries or do they
want to perform the calls by using a HTTP client library?

In this article, we provide answers to these questions by proceeding to an
empirical study in the famous Android ecosystem. Our study focuses on two
research questions. Our first research question: “As service users, how An-
droid developers access popular REST services/APIs in their applica-
tions?” , aims at identifying the developers’ habits for accessing REST services.
Our study shows that Android developers prefer to use a dedicated service li-
brary developed by the service provider if it exists.

Our second question: “As service providers, how to design client helper
libraries to be popular among mobile applications?” , aims at identifying
which features of service libraries are considered important by the Android devel-
opers. For instance, our study shows that the essential features for the developers
are the existence of a complete documentation for the library, the library’s vo-
cabulary consistency with the service’s one, the use of raw JSON to exchange
data, the handling of authentication, and the ability to fine-tune the HTTP
requests issued by the library.

This paper is structured as follows. Sections 2 and 3 respectively describe the
study setup and results for research questions RQ1 and RQ2. Section 4 presents
the related work. Section 5 concludes and presents future works.

2 Research Question 1: As service users, how Android
developers access popular REST services/APIs in their
applications?

In this section, we investigate our first research question. Based upon an informal
look at the source code of several apps, we noticed that there are two main ways
to access services from Android apps: directly by using an HTTP client, or
by using a library developed by the provider of the services (official) or by its
users (third-party). To assess which method is the most popular, we analyze
how 15 popular services are used in a corpus of 500 popular apps. Section 2.1
explain in details how we build the corpus of services and apps. The Section 2.2
explains how apps invoke services. Results and observations are then presented
in Section 2.3.

2.1 Corpus

Our corpus consists of two sets: a set of popular apps and a set of popular
services that are called by the popular apps. Additionally, we also gather the list
of libraries that allows Android apps to interact with the services of our corpus.

We started by gathering a set of popular apps. To that extent, we crawled
the top 500 most popular apps list provided by the Google Play store4. We then
download the APK (application packages) of each app by using the AndroZoo
dataset5 maintained by our colleagues from the University of Luxembourg [1].
4 https://play.google.com/store/apps/collection/topselling_free
5 https://androzoo.uni.lu/

2

During this step, we were only able to download 487 APK files. Our corpus then
contains those 487 APK files.

To build the set of popular services, we analysed the 487 APK files to iden-
tify which popular services are called. We then used the AndroGuard tool6 to
extract all the strings contained in the DEX bytecode files of each of our apps.
Among these strings, we extracted the ones corresponding to URLs (i.e. starting
with http:// or https://). We then ranked these URLs by their number of
occurrences and filtered out the ones that do not correspond to a service (this
step was done by manually browsing the URLs). Finally, we manually selected 15
services among the 50 most popular ones, avoiding selecting too many services
from a same provider (such as Google for instance). Our final list of services is
shown in Table 1.

To identify all the libraries that are dedicated to the services of our corpus,
we then use the Google search engine with the following query "[service name]
android library"; where "[service name]" corresponds to the root URL of the
service. Then we manually look at the answers returned by Google to assess
whether it describes an official library (developed by the service provider) or a
third-party one.

2.2 Experimental setup

To answer our first research question, we check how apps call the services, and
in particular if they directly use the service by making HTTP requests or if they
use a dedicated library. To that extent, we first compute the services used by
each app in our corpus. Secondly, we compute for each app if it uses a library
or not to access the services. Using this data, for each service, we classify the
apps into three categories: apps using the service without library, apps using the
service with an official library, and apps using a third-party library.

To find out which applications are using a given service we sought additional
information from the services. First we manually read the documentation of each
service to find out their API URL. Secondly, we manually browsed the code of
all libraries to find out the list of all the Java packages they contain. Finally,
we used the AndroGuard tool again to extract all the strings contained in all
applications from our corpus. When we are able to find a service’s API URL, we
consider that the application uses this service. In this case, we also look for the
Java package names of this service’s libraries in the strings of the application.
When we are able to find a package name in the string list, we assumed that the
application is using its corresponding library.

Finally, to analyze how developers of Android applications access services in
practice, we perform the following process. For each service provider, we compute
the set of all Android applications from our corpus that use it. Then, we partition
this set into three subsets: the set of applications that use the official library, the
set of applications that use a third-party library or both the official library and
a third-party library, and the set of applications that do not use any library. To
6 https://github.com/androguard/androguard

3

discuss the favourite way of developers to access the service, we then compare
the size of these subsets, normalized by the size of all applications that use the
services. Results of this experiment are discussed in Section 2.3.

2.3 Results

The results of the experiment described in Section 2.2 are shown in Table 1. In
this table, we show for each service, the number of available official and third-
party libraries (columns 2 and 3), the number of client applications (column 4)
and the ratio of client applications using an official, a third-party or an official
and no library (through an HTTP Client), respectively in columns 5, 6 and 7.
Moreover, we have highlighted in bold the preferred way to use the service for
each service.

We can first notice that only 5 out of 15 services are accessed with a HTTP
client rather than a library. Moreover, 2 out of the 5 services provide no official
library (Instagram and OpenStreetMap). Therefore, developers favour libraries
to access services. Additionally, for the 10 services where a library is preferred,
it is always the official library that is preferred, even if there are only 3 cases
where no third-party library is available. In conclusion, official libraries are the
favourite way of developers to access services.

Table 1. Extracted results about the services of our corpus: number of available official
and third-party libraries, number of client applications, ratio of clients using an official,
a third-party or both third-party and official, and no library.

Available libraries Client applications

Service Official 3rd-party All Official 3rd-party None

AWS 1 2 73 36% 0% 64%
Crashlytics 1 0 84 70% 0% 30%

Digits 1 0 11 100% 0% 0 %
Dropbox 1 1 15 53% 0% 47%
Facebook 1 4 245 98% 0% 2%
Firebase 1 2 59 95% 0% 5%
Flurry 1 1 86 68% 30% 2%

GoogleMaps 2 4 20 70% 0% 30%
GoogleSignIn 1 0 394 71% 0% 29%
Instagram 0 2 6 0% 0% 100%
LinkedIn 1 4 6 0% 0% 100%

OpenStreetMap 0 3 1 0% 0% 100%
Paypal 1 2 7 100% 0% 0 %
Twitter 1 5 46 39% 28% 33%
YouTube 2 1 53 23% 0% 77%

4

Table 2 reports which HTTP clients are used by popular apps. Although
there are many HTTP clients, developers still prefer standard ones that are
embedded in the Android Framework (highlighted in bold), which represents
the top four in our ranking. We also notice that developers tend to use more
than just one HTTP client, this can be related to the features that each client
offers depending on developer’s needs. For instance, HttpsUrlConnection is able
to deal with HTTPS requests while HttpUrlConnection only deals with HTTP
requests.

Table 2. Extracted results from our corpus about the HTTP clients used in apps that
are using services: number of apps using the client, percentage of apps using a service
with the client.

HTTP Client Count % of all apps

HttpUrlConnection 204 98.07%
HttpsUrlConnection 178 85.57%
DefaultHttpClient 171 82.21%
AndroidHttpclient 134 64.42%

OkHttpClient 53 25.48%
Retrofit 35 16.82%
Volley 20 9.61%

AsyncHttpClient (loopj) 9 4.32%
GoogleHttpClient 6 2.88%

AsyncHttpClient (koushikdutta) 1 0.48%
RoboSpice (OkHttp) 1 0.48%
RoboSpice Basic 1 0.48%

Fuel 0 0.0%
RoboSpice (Retrofit) 0 0.0%

RoboSpice (GoogleHttpClient) 0 0.0%
AndroidAnnotations 0 0.0%

2.4 Threats to validity

We discuss here the threats to validity of our study following the guidelines
provided by Wohlin et al. [22].

Internal validity threats concern the causal relationship between the treat-
ment and the outcome. The techniques we used to detect client libraries and
API’s URLs are not infallible. We are aware about few limits of those techniques.
For instance, if the binary code of an application is obfuscated, our techniques
probably fail to identify URLs and used libraries. Another difficult case is the
construction of URLs by string concatenations. Since we made a static analysis,
we cannot catch all possible strings that could be built at runtime. Finally, we

5

had to manually look at all available libraries for each service in our dataset. We
may have missed few of them.

External validity threats concern the possibility to generalize our findings.
Further validation should be done with a bigger corpus. Our corpus only contains
15 services and about 500 apps. Therefore our results might be too specific to
our corpus and not generalizable to all Android apps.

Reliability validity threats concern the possibility of replicating this study.
We attempt to provide all the necessary details to replicate our study and our
analysis. Furthermore, python scripts and the dataset used in this study are
available on-line to leverage its reproduction7.

3 Research Question 2: As service providers, how to design
client helper libraries to be popular among mobile applications?

To answer the second research question, we proceeded as follows. As a first
step, we studied the technical process that apps follow to call a service, and the
different kinds of libraries used under the hood. This study allows us to have a
good understanding of such a process with its different steps (such as creating
and sending the requests). Then, as a second step, from this process we identified
the good versus bad practices that should be followed when designing a service
library to ease its interaction with the app. In the third step, we conducted an
online survey that was sent to Android developers to validate these good and
bad practices by experts. As a final step, we analysed the official service libraries
provided by popular service to verify if the latter are conform to these practices.
We detail in the following each of these steps.

Step 1. Process to consume a service. Figure 1 illustrates the general pro-
cess followed by any app to call a service. It presents all the actions, mandatory
and optional, that have to be done. Furthermore, for each action, it identifies
which library can be used to automate it. The process starts with a first op-
tional authentication sub-process where the client asks for an access right. In
this sub-process the app interacts with the service library that uses a parsing
library (to read and write JSON or XML document), a OAUTH library (to ask
for a permission) and a HTTP Client library (to deal with the HTTP protocol).
The process then continues with the service consumption sub-process where the
client interacts with the service. In that sub-process the app is also using the
service, parser and HTTP libraries.

Step 2. List of good and bad practices when developing a client library.
We identify here the good versus bad practices that must be followed when
designing a service library, as reported in Table 4. The practices are sorted in
three different categories : Query, Code, and Features.

7 http://se.labri.fr/a/ICSOC17-oumaziz

6

Fig. 1. Process to consume a Service API
Cl ient

Cl i ent Appl i cat i on Ser v i ce Libr ar y
JSON/XML Par sing

Libr ar y
OAUTH Libr ar y

HTTP Cl ient
Libr ar y

Invoke
Ser v i ce

using Token

Send HTTP
Quer y

Send
Response

Object

Ser ver

Authent i cat i on
Pr ovider

Ser v i ce API

Request
Access

Bui ld HTTP
Quer y

Send HTTP
Quer y

Pr ocess
Request

Bui l d
Response

Object

Ret r i eve
Response

Authent i cat i on
Pr ocess

Ser v i ce
Consum pt ion

Pr ocess

Retur n
Response

Bui ld HTTP
Quer y

Par se
Response

Retur n
Access
Token

Pr ocess
Request

Retur n
JSON/XML
Response

Ret r eive
JSON/XML
Response

Par se
Response

Bui ld
Dom ain
Speci f i c

Java Object

Display
View

Com ponent

Adapt
JavaObject

To The View

Set Quer y
Par am eter s

Stor e
Access
Token

Step 3. Online survey to validate the good and bad practices. The goal
of the survey is to confirm the best practices that must be followed by service
providers in their libraries to ease the authentication and service consumption by
Android developers. The survey is available online8. Based on the good and bad
practices identified in Step 2, we build a survey on Google Forms and emailed it
to 2000 Android developers that we randomly selected from the top 500 Android
apps developers for each category in the Google Play. We also submitted the sur-
vey as Reddit Thread on the very active subreddit Androiddev9, and advertised
the survey through the social networks. 51 Android developers responded to our

8 http://bit.ly/clientpractices
9 https://www.reddit.com/r/androiddev/

7

survey and 83% of them are familiar with Android application development. The
survey and its results are available on our website10.

Step 4. Analysis of the official REST libraries. As a final step, we manu-
ally analysed the 11 libraries and 14 services from our corpus. We did not analyse
the OpenStreetMap and Instagram services because no libraries are available
for these services, and the Google API Client library groups the GoogleMaps,
GoogleSignIn and YouTube services: . These libraries and services have been
analysed by three experienced Android developers to verify their conformance
with the practices identified and validated in the two previous steps. We per-
formed this analysis using their documentation, their source code, their provided
examples and/or typical client mobile apps. The latter were provided either by
the libraries as examples or available on GitHub. The results of this analysis are
reported in Table 3, and we discuss them in the following section.

3.1 Results of Research Question 2

For each good/bad practice listed in Table 4, we discuss the related results
reported in Table 3 followed by a discussion, highlighted in bold, on the results
of the survey.

¬ JSON vs. XML. As shown in Table 3, it seems that APIs favour the JSON
format over others. Every library allows to return at least a response in the
JSON format and provides sometimes at least another format (XML, CSV, etc.).
Although JSON is the most popular format, it is not used by default by all
libraries. For example, LinkedIn API uses XML by default over JSON. This
is also confirmed by the results of our survey, where 92.2% of the
developers stated that JSON was preferred. This result can be explained
by the fact that the JSON format is easier to handle, but also the loading and
reading of JSON files are especially faster on iOS and Android compared to
XML files [2].

­ Typed Response vs. Non-typed Response. As shown in Table 3, over the 11
libraries we studied, six return a domain-specific object representing an entity
of the API (e.g. a File in the DropBox Library). It means users do not need to
parse the response sent by the API. They have already their responses typed
and formatted. On the other hand, some providers such as AWS, Facebook,
and LinkedIn return an object containing data. For example, Facebook returns
a GraphResponse object that contains the response of a request, which can
be either a JSONObject, a JSONArray, or a Java String. The user has then
the choice of the format that is the most convenient for his use. In contrast,
the results of our survey indicate that more than 70.6% of Android
developers actually prefer to have responses as Raw service data (Java
Strings). Hence, they can use their own parser and control the way
they handle their responses.
10 http://se.labri.fr/a/ICSOC17-oumaziz/

8

T
ab

le
3.

R
es
ul
ts

of
th
e
m
an

ua
la

na
ly
si
s
of

se
rv
ic
e
lib

ra
ri
es

pr
ac
ti
ce
s

Q
ue
ry

C
od

e
Fe

at
ur
es

S
er
vi
ce

L
ib
ra
ry

¬
JS

O
N

vs
.X

M
L

­
T
yp

ed
R
es
po

ns
e

®
E
nc
.H

T
T
P

Q
ue
ry

|¯
Fu

ll
Su

pp
°

C
on

si
st
en
t
V
oc
.±

D
oc
um

en
te
d
|²

A
ut
h

³
A
nd

ro
id

Fu
nc
s

A
W

S
SD

K
3

P
ar
se
r-
sp
ec

O
bj

3
3

3
3

3
C
ra
sh
ly
ti
cs

N
o
re
sp
.

3
3

3
3

3
D
ig
it
s

D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
3

D
ro
pb

ox
Ja
va

SD
K

3
D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
3

Fa
ce
bo

ok
SD

K
3

P
ar
se
r-
sp
ec

O
bj

3
3

3
3

3
3

F
ir
eb
as
e
SD

K
fo
r
A
nd

ro
id

3
D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
F
lu
rr
y

3
D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
G
oo

gl
e
A
P
I
C
lie
nt

fo
r
Ja
va

3
D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
Li
nk

ed
In

SD
K

P
ar
se
r-
sp
ec

O
bj

3
3

3
3

P
ay
pa

lA
nd

ro
id

SD
K

3
N
o
re
sp
.

3
3

3
3

3
3

T
w
it
te
r
A
nd

ro
id

SD
K

3
D
om

ai
n-
sp
ec

O
bj

3
3

3
3

3
3

9

® Encapsulated HTTP Queries vs. Non-encapsulated HTTP Queries. Almost
all (10 out of 11) libraries except LinkedIn encapsulate HTTP queries. Users do
not have to build their own requests, they can use predefined methods. However,
some libraries such as Facebook allow users to build their own requests while
providing encapsulated queries. Therefore, this eases the building of “generic”
requests where data to retrieve are quite similar. In the survey, 37.3% of
developers consider that even if queries are encapsulated, having the
possibility modify them is mandatory, and 47.1% of them think that
it would be appreciated. Therefore, although the majority of libraries
encapsulate queries, developers still prefer to have access and control
the queries.

¯ Full API support vs. Non-exhaustive API support. All libraries provide the
objects and methods to cover all services declared in the API. The survey in-
dicates that 58.8% of developers would appreciate to have a complete
library, and 27.5% of them consider that it should be mandatory.

° Consistent vs. Inconsistent vocabulary with documentation. All libraries with-
out exception have a consistent vocabulary with the documentation provided in
the API. This observation is confirmed in the survey, where 60.8% of
developers answered that consistency is mandatory and 35.3% that it
would be appreciated.

± Documented vs. Non-documented Library. All libraries studied provide a doc-
umentation on how they should be used. The documentation is presented in
different forms: details about specific objects or methods, examples, applica-
tion samples, etc. In the survey, 70.6% of developers judge that such
documentation is mandatory, while only 3.9% judge that it is not
important.

² Allowing Authentication vs. Third-party Authentication. All services analysed
require authentication to be used. Therefore, the provider can restrict the data
used by a developer or an end-user. Authentication is a means to secure which
data are reachable to someone, but also to control the request flow for avoiding
overloading servers. One important point to emphasis is that all libraries imple-
ment the entire service authentication protocol, namely OAuth2. In the survey,
developers confirm the necessity to implement the whole service au-
thentication protocol with 58.8% who appreciate a library providing
authentication and 29.4% who request it to be mandatory.

³ Providing Android Specific Functionalities vs. Providing Only General Func-
tionalities. Libraries seem to have different points of view for providing Android
specific functionalities such as Widgets, Views, or Activities. Almost half of the
libraries (5 out of 11) provide at least one Android specific functionality such
as Widgets, Activities, or Views. Providing such functionalities to developers
could help them to focus on their own applications instead of trying to integrate

10

logic from a third-party environment. However, the majority of developers
(86.3%) in the study consider that providing such functionalities is
not important for a library.

3.2 Threats to Validity

In this section, we discuss the threats to validity using the same method as in
Section 2.4. The terminology used in the survey might have been misunderstood
by the responders. However we wrote definitions and examples to mitigate these
threats. Our survey was answered by only 51 Android developers. Therefore, our
findings might not be generalizable to all Android developers.

4 Related Work

In the following, we discuss some relevant research done on assessing bad and
good practices in REST APIs as well as research on libraries identification.

4.1 Bad and good REST practices

In [15,16,17], we evaluated the design of several REST APIs based on good and
bad REST practices, also called REST patterns and antipatterns. We proposed
automatic approaches for the detection of these practices. However, we specif-
ically evaluated APIs without considering any interaction with clients, and in
particular mobile clients, as we do here. Other works have followed proposing
similar (anti-)patterns detection approaches in service applications, but imple-
menting other techniques such as bi-level optimisation problems [20] or ontologies
[4].

In [18], Rodriguez et al. evaluated the conformance of design best practices
in REST APIs from the perspective of mobile applications. They analysed these
practices on a large dataset of HTTP requests collected from a Mobile Internet
traffic. This work is the first that has studied the traffic of HTTP requests from
the mobile perspective. However, the best practices analysed are rather common
to any kinds of REST APIs, and they focus specifically on HTTP requests.

In contrast, in this paper, we consider practices that may apply on mobile
apps. We take also into account the interaction between clients and REST APIs
by analysing all the process from the authentication to the service consumption,
and thus while considering all kinds of message exchanges (requests, responses).
We study also how REST APIs are implemented and documented.

4.2 Libraries identification

There are several works that have been done in the past for identifying advertise-
ment libraries in Android mobile apps. Book et al. [3] and Grace et al. [7] used
a method based on whitelists to identify advertising libraries. To do this, they

11

Table 4. List of good and bad practices when developing a service library

Query Related Practices

¬ 3JSON vs. 7XML

Description: Always choose JSON over XML when both are proposed by the API provider.

Example: 3”students” : [”firstName” : ”John”, ”lastName” : ”Doe”] is a JSON response re-
turned from the REST API. In opposite, 7< students >< student >< firstName > John <
/firstName><lastName> Doe </lastName></student></students> is the same response
returned in an XML format.

Consequences: XML is a more human readable format than JSON, but the problem is that all the
opening/closing tags in XML files make them heavier than JSON files. Not only is JSON format
more compact, it is also easier and more CPU-friendly to parse [14].

­ 3Typed vs. 7Non-typed Response

Description: The response returned from the library for a given query should be a Java Object. In
contrast, a Non-typed Response is a response returned as a JSON or XML format.

Example: 3ArrayList<Post> response is a 3Typed Response returned by the method GetTime-
line. this response can be directly used by the client developer.

7JSONObject response is a 7Non-typed Response returned by the method GetTimeline. This re-
sponse should first be parsed into local usable objects.

Consequences: When working with Non-Typed Responses, an additional effort is needed to parse
them depending on their format into usable Java Objects.

® 3Encapsulated vs. 7Non-encapsulated HTTP Queries

Description: The HTTP query should be encapsulated in a method proposed by the interface of
your library. A Non-encapsulated HTTP Query has to be manually built by the developer with all
the needed parameters.

Example: The Method 3SearchUser(Text, AccessToken) pro-
posed by the library 3encapsulate the HTTP POST Query : GET
https://www.example.com/v1/users/search?q={Text}&access_token={AccessToken}

In opposite, when using the method 3SearchUser(URL, AccessToken) the HTTP URL query is
visible in the code, this means that it is a 7Non-encapsulated HTTP Query.

Consequences: Client developers may prefer to consume method-encapsulated HTTP queries than
handling them directly. This eases the interaction with the API resources, by making its access
points practical, understandable and their invocations more readable within the consuming code.

Code Related Practices

¯ 3Full vs. 7Non-exhaustive API support

Description: The Service Library should cover all the services proposed by the REST API.

Consequences: It is less convenient to work with a non-exhaustive library. This will require client
developers to either compensate the lack of coverage by handling the queries manually, or choosing
a more exhaustive third-party library.

° 3Consistent vs. 7 Inconsistent vocabulary with documentation

Description: The vocabulary used in the code when naming classes, methods and attributes should
correspond to the one used in the documentation of the REST API.

Example: For Twitter, the concept of tweet is named as a 3Tweet in both its REST API docu-
mentation and the code the client library.

Opposite a bad practice would be to name the concept Tweet as 7Post in the code of the library,
because it is 7Not vocabulary-consistent with the term Tweet used in the documentation.

Consequences: Using a different vocabulary in your code might be confusing and misleading to
client developers. This will surely affect the understandability of your library. Having a consistent
vocabulary eases the development task of developers since each entity in the API and the library
has the same name.

± 3Documented vs. 7Non-documented Library

Description: The library should be well documented, the user should be able to understand how
to access the REST API endpoints preferably with code samples.

Consequences: As for any other software product, a well documented library will facilitate its use.

12

Features Related Practices

² 3Allowing Authentication vs. 7Third-party Authentication

Description: When an authentication is required to consume the offered services by the REST API.
It is preferable that your Service Library allows authentication.

Example: 7Apache Oltu, 7Spring Security OAuth are among the most common used third-
parties client libraries that allows authentication.

Consequences: The lack of means of authentication will force the developers to use another third-
party library.

³ 3Android Specific Functionalities vs. 7 Only General Functionalities

Description: A good practice is to provide some Android specific functionalities such as widgets,
views and fragments instead of providing only general functionalities

Example: The method GetPostView returns an object of type 3PostView witch could be directly
added in the view of the client Android application.

Consequences: It is highly appreciable when developing Android clients to have ready-for-use
components, this will make the client application more lightweight.

compared the packages included in each application with the ones they collected
in their lists.

There are also other tools such as AdDetect [12] and PEDAL [10] that applied
machine learning techniques (SVM classification) to identify advertising libraries
even if applications are obfuscated.

Mileva et al. [11] perform an analysis of the Maven configuration files of 250
Apache projects to mine usage of libraries and their versions. Such an approach
cannot be used in the context of Android applications as the configuration files
are not available.

Teyton et al. [19] used a corpus composed of 8795 libraries where they applied
static analysis on the source code of each library to automatically extract Java
package names. They were able to identify 1185 different libraries which they
then used to automatically identify Java libraries dependencies. Still in the same
idea, Li et al. [8] identified the use of over 1,113 android libraries for common
functionalities and 240 android ad libraries. To identify these libraries they used
their package names. They also did a pairwise similarity analysis to determine
what are the common libraries packages in Android applications.

Wang et al. [21] proposed a novel clustering-based technique to automatically
identify android third-party libraries. Their experiments showed that their tech-
nique was able to identify more than 600 different android libraries in a corpus
of 100,000 android applications.

Li et al. [9] proposed a novel approach for identifying third-party libraries
from Android applications. Rather than using code similarity to identify the
libraries, they proposed to use code dependencies. Using this approach, they
were able to identify 19,540 obfuscated libraries.

In this paper we used the Java package names as a way to identify libraries
as it was done by Teyton et al. [19] and Li et al. [8]. However, we had to identify
not just libraries but service libraries, to do so, we used API URLs as a way
to determine if an app was using a service and then we applied this library
identification technique to look if it was through a service library.

13

5 Conclusion and Future Work

While nowadays Android apps rely more than ever on REST services, no study
has been performed on how Android apps invoke services.

We alleviated this situation by performing an empirical study of 15 popular
web services on a dataset of almost 500 popular Android apps. We show that
developers prefer to use web service official libraries rather than using third-
party ones. We also show that developers that prefer to use HTTP clients rather
than libraries prefer the default clients provided in the Android Framework.

Second, we propose a list of good and bad practices, identified through an
analysis of the practices of the popular services and an online survey involving 51
Android developers. We show that the important features for libraries are: the
use of raw JSON to exchange data, the availability of a complete documentation,
the use of a consistent vocabulary with the service, the handling authentication
and the possibility for developers to fine-tune HTTP requests.

As a further work, we plan to extend our list of practices and to largely ex-
tend the size of our dataset of services and apps in order to have results that
can be more generalisable.

Acknowledgement. The authors thank the Android developers for answer-
ing the survey. This study is supported by NSERC (Natural Sciences and Engi-
neering Research Council of Canada) and FRQNT, Canada research grants.

References

1. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of
android apps for the research community. In: Proceedings of the 13th International
Conference on Mining Software Repositories. pp. 468–471. ACM (2016)

2. Betts, T.: Mobile performance testing - json vs xml. Blog (Accessed in June
20th, 2017), https://www.infragistics.com/community/blogs/torrey-betts/
archive/2016/04/19/mobile-performance-testing-json-vs-xml.aspx

3. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

4. Brabra, H., Mtibaa, A., Sliman, L., Gaaloul, W., Benatallah, B., Gargouri, F.: De-
tecting cloud (anti)patterns: OCCI perspective. In: 14th International Conference
on Service-Oriented Computing. Lecture Notes in Computer Science, vol. 9936, pp.
202–218. Springer (2016)

5. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: 20th International Conference on Web Services. pp. 523–530 (2013)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

7. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app advertisements. In: Proceedings of the fifth ACM conference on
Security and Privacy in Wireless and Mobile Networks. pp. 101–112. ACM (2012)

8. Li, L., Bissyandé, T.F., Klein, J., Le Traon, Y.: An investigation into the use of
common libraries in android apps. In: 23rd International Conference on Software
Analysis, Evolution, and Reengineering. vol. 1, pp. 403–414. IEEE (2016)

14

9. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R., Huo, W.: Libd:
Scalable and precise third-party library detection in android markets. In: 39th
International Conference on Software Engineering. pp. 335–346. IEEE Press (2017)

10. Liu, B., Liu, B., Jin, H., Govindan, R.: Efficient privilege de-escalation for ad li-
braries in mobile apps. In: Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services. pp. 89–103. ACM (2015)

11. Mileva, Y.M., Dallmeier, V., Burger, M., Zeller, A.: Mining trends of library usage.
In: Proceedings of the joint international and annual ERCIM workshops on Princi-
ples of software evolution (IWPSE) and software evolution (Evol) workshops. pp.
57–62. ACM (2009)

12. Narayanan, A., Chen, L., Chan, C.K.: Addetect: Automated detection of android
ad libraries using semantic analysis. In: Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on.
pp. 1–6. IEEE (2014)

13. Newman, S.: Building microservices - designing fine-grained systems, 1st Edition.
O’Reilly (2015)

14. Nurseitov, N., Paulson, M., Reynolds, R., Izurieta, C.: Comparison of JSON and
XML data interchange formats: A case study. In: 22nd International Conference
on Computer Applications in Industry and Engineering. pp. 157–162 (2009)

15. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.: Detection of REST patterns and
antipatterns: A heuristics-based approach. In: 12th International Conference on
Service-Oriented Computing. Lecture Notes in Computer Science, vol. 8831, pp.
230–244. Springer (2014)

16. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y., Tremblay, G.: Are rest-
ful apis well-designed? detection of their linguistic (anti)patterns. In: 13th Inter-
national Conference on Service-Oriented Computing. Lecture Notes in Computer
Science, vol. 9435, pp. 171–187. Springer (2015)

17. Petrillo, F., Merle, P., Moha, N., Guéhéneuc, Y.: Are REST apis for cloud com-
puting well-designed? an exploratory study. In: 14th International Conference on
Service-Oriented Computing. Lecture Notes in Computer Science, vol. 9936, pp.
157–170. Springer (2016)

18. Rodríguez, C., Báez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L., Per-
cannella, G.: REST apis: A large-scale analysis of compliance with principles and
best practices. In: 16th International Conference Web Engineering. Lecture Notes
in Computer Science, vol. 9671, pp. 21–39. Springer (2016)

19. Teyton, C., Falleri, J.R., Palyart, M., Blanc, X.: A study of library migrations in
java. Journal of Software: Evolution and Process 26(11), 1030–1052 (2014)

20. Wang, H., Kessentini, M., Ouni, A.: Bi-level identification of web service defects.
In: 14th International Conference on Service-Oriented Computing. Lecture Notes
in Computer Science, vol. 9936, pp. 352–368. Springer (2016)

21. Wang, H., Guo, Y., Ma, Z., Chen, X.: Wukong: a scalable and accurate two-phase
approach to android app clone detection. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. pp. 71–82. ACM (2015)

22. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

15

