
HAL Id: hal-02182070
https://hal.science/hal-02182070

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Raters’ reliability in clone benchmarks construction
Alan Charpentier, Jean-Rémy Falleri, Floréal Morandat, Elyas Ben Hadj

Yahia, Laurent Réveillère

To cite this version:
Alan Charpentier, Jean-Rémy Falleri, Floréal Morandat, Elyas Ben Hadj Yahia, Laurent Réveillère.
Raters’ reliability in clone benchmarks construction. Empirical Software Engineering, 2017, 22 (1),
pp.235-258. �10.1007/s10664-015-9419-z�. �hal-02182070�

https://hal.science/hal-02182070
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Raters’ Reliability in Clone Benchmarks Construction

Alan Charpentier · Jean-Rémy Falleri · Floréal
Morandat · Elyas Ben Hadj Yahia · Laurent
Réveillère

Received: date / Accepted: date

Abstract Cloned code often complicates code maintenance and evolution and must there-
fore be effectively detected. One of the biggest challenges for clone detectors is to reduce the
amount of irrelevant clones they found, called false positives. Several benchmarks of true
and false positive clones have been introduced, enabling tool developers to compare, assess
and fine-tune their tools. Manual inspection of clone candidates is performed by raters that
do not have expertise on the underlying code. This way of building benchmarks might be un-
reliable when considering context-dependent clones i.e., clones valid for a specific purpose.
Our goal is to investigate the reliability of rater judgments about context-dependent clones.
We randomly select about 600 clones from two projects and ask several raters, including
experts of the projects, to manually classify these clones. We observe that judgments of non
expert raters are not always repeatable. We also observe that they seldomly agree with each
others and with the expert. Finally, we find that the project and the fact that a clone is a
true or false positive might have an influence on the agreement between the expert and non
experts. Therefore, using non experts to produce clone benchmarks could be unreliable.

Keywords Duplication · Code clone · Empirical study · Software metrics

Alan Charpentier
University of Bordeaux, LaBRI, UMR 5800, F-33400, Talence, France
Tel.: +33 (0)5-4000-3554
E-mail: acharpen@labri.fr

Jean-Rémy Falleri
University of Bordeaux, LaBRI, UMR 5800, F-33400, Talence, France
E-mail: falleri@labri.fr

Floréal Morandat
University of Bordeaux, LaBRI, UMR 5800, F-33400, Talence, France
E-mail: fmoranda@labri.fr

Elyas Ben Hadj Yahia
University of Bordeaux, LaBRI, UMR 5800, F-33400, Talence, France
E-mail: elyas.bhy@labri.fr

Laurent Réveillère
University of Bordeaux, LaBRI, UMR 5800, F-33400, Talence, France
E-mail: reveillere@labri.fr



2 Alan Charpentier et al.

1 Introduction

Redundant code in software systems is referred as code clones in the literature. Two code
fragments form a code clone if they are similar or identical [3]. Code clones can arise due
to the use of so-called ”copy-paste” development, in which a developer creates new code
by copying existing code that is expected to have similar intent, and possibly modifying it
slightly according to its new context. Duplicating code can reduce dependencies between
modules and help new developers conform to the prevailing coding style. While cloning
code is not always harmful to the system quality [15], it often complicates code maintenance
and evolution, as fault fixes and changes must be propagated from one instance of a clone to
the others. Therefore, software developers tend to keep the number of code clones as low as
possible.

The desirability of identifying, and sometimes eliminating, clones has led to the devel-
opment of clone detectors, which scan a code base for potential clones [9,11,13,20,24].
Several studies have used such tools to estimate the number of code clones in a software
project, reporting from 5% to 23% of cloned code [1,2,18]. One of the biggest challenges
for an effective application of clone detection in practice is detection precision. Indeed,
some code clones reported by a clone detector may be viewed as false positives as they are
irrelevant for the user of the detection tool. In addition, identifying false positives is made
challenging simply by the amount of data that a clone analysis of a large project generates.

A traditional approach to reduce the number of false positives is to enhance the clone
detection algorithm and fine-tune the detection tool. To support this tuning, several bench-
marks of clones have been proposed [3,17,27], enabling tool developers to assess the results
of their tools. Recently, machine learning techniques have been introduced to automatically
classify generated clones in true or false clones based on feedback from the user of the
tool [30]. These approaches rely on a set of clones that have already been rated as true or
false positives. Producing such a set of clones always requires a human judgment. Manual
inspection of clone candidates is usually performed by students or researchers who may
have no or few expertise on the underlying software projects.

Clone candidates from existing clone benchmarks are usually classified without any
specific purpose in mind. We call such benchmarks context-free as there is no relation be-
tween their usage and the way they are defined. As a consequence, one could ask to which
extent the present way of building clone benchmarks is reliable when considering context-
dependent clones i.e., clones classified as useful with respect to a specific purpose.

In this paper, we investigate the reliability of rater judgments about context-dependent
clones. Our goal is to bring out several guidelines to ease the construction of context-
dependent clones benchmarks. In this experiment, we address both refactoring and co-
evolution activities. We consider two software projects and for each of them a set of four
raters to judge the results produced by a clone detector. Among the raters, three are external
raters with no or few preliminary knowledge about the project and one is an expert, one
of the main developers of the project. Expert’s judgment is very important for a context-
dependent clone benchmark because the clones identified by a clone detector have to be
useful for her. Hence, the two experts are oracles deciding whether a clone is a true or false
positive, according to a given context. Finally, we use the answers of the raters to discuss
the reliability of rater judgments.

We show that using external raters to build context-dependent clone benchmarks may
be unreliable. We also show that the project being studied may have a significant impact
on the agreement between external raters and experts. Additionally, we find that true posi-
tives clones (as judged by the experts) seem to be significantly harder to judge by external



Raters’ Reliability in Clone Benchmarks Construction 3

raters. Based on our findings, we recommend to use several external raters to build context-
dependent clone benchmarks and to involve experts to validate true positives.

The structure of this paper is as follows. Section 2 describes related work. Section 3
introduces the issue of detection precision. Next, we describe our empirical study method-
ology in section 4. Section 5 presents the findings of our empirical study; it highlights a
number of research questions and their answers. We discuss the threats to the validity of our
study in section 6. We conclude and mention future work in section 7.

2 Related Work

In this section, we provide some background about clone benchmarks and clone rater relia-
bility.

2.1 Clone benchmarks

Bellon et al. provide a benchmark of clones to compare and evaluate clone detection tools
[3]. Six researchers helped Bellon to construct the benchmark. Each of them applied his own
clone detector on eight large C and Java programs and provided the found clones to Bellon.
Bellon classified alone 2% of the 325,935 submitted clones and built a reference corpus
by retaining only clones he judged as true positives. Clone detectors’ results are compared
to the reference corpus, and assessed using the traditional information retrieval measures:
precision and recall. This benchmark is largely used by the research community [6,16,23,
26,29].

Krutz and Le built a set of function-level clones to help the evaluation of clone detection
tools [17]. They asked seven persons to judge 1,536 randomly drawn function pairs from
three open source programs: Apache, Python and PostgreSQL. Three are experts who have
research experience with code clones and four are students with programming expertise but
no prior experience with clones. Students were asked to read related papers beforehand to
familiarize with the notion of clones. Their process is more rigorous than the one used by
Bellon et al. [3] but the size of their benchmark is significantly smaller, which might impact
its usefulness.

Svajlenko et al. provide a function-level benchmark of inter-project clones [27], called
BigCloneBench. This benchmark is built independently of clone detection tools, by using a
search-based approach. Hence, it is not limited to the clones that tools are able to identify.
This benchmark aims at containing clones related to ten functionalities (such as bubble sort
or zip decompression). For a candidate clone, several raters manually check if it is a true
or false positive clone by deciding whether or not related code fragments implement the
same functionality. The judges are provided a clear specification of what implementing the
functionality requires. This benchmark differs from the others on clone validation. It is the
only one considering context-dependent clone. Context matches a functionality.

Roy and Cordy propose a mutation / injection based framework for empirically evalu-
ating clone detection tools [25]. The framework has two main phases. First, mutated code
fragments are created from their proposed editing taxonomy for cloning. Second, these mu-
tated code fragments are injected into original code base. Then, precision and recall values
are computed and used to evaluate individual tool or to compare different tools. Their frame-
work does not rely on clone validation since the clones are automatically created. Thus, it



4 Alan Charpentier et al.

avoids the validation issues. However as mentioned in the paper, their editing taxonomy
cannot guarantee to create clones for a particular task, such as refactoring or co-evolution.

In all the benchmarks we present above, no raters are experts on the programs used to
build the clone benchmarks1. While this way of building benchmarks is valid for context-
free clones, one can ask whether it is still correct when considering context-dependent
clones. In our study, we investigate this potential threat to validity of the construction of
context-dependent clone benchmarks and assess its impact.

2.2 Clone raters reliability

Walenstein et al. use the corpus provided by Bellon et al. [3] to investigate the level of
agreement among raters [28], who are researchers. They claim that past reports of relevance
and precision for clone detectors have to be interpreted with caution because of the problem
of inter-rater reliability. Additionally, they find that the agreement among raters strongly
depends on the projects being studied and on the question asked to raters. In this article, we
also observe that the choice of the project has a significant influence on the agreement.

Kapser et al. perform a study to assess agreement among researchers when classifying
potential clones as true or false positives [14]. They use CCFinder [13] to select 20 candidate
clones from the PostgreSQL source code. They observe that only 50% of candidate clones
are classified in the same way by more than 80% of the raters. They highlight the importance
of reporting the criterion used for clone judgment in order to make possible the comparison
with previous works. In this article, we also observe that raters can have different judgments
about clones.

Mende et al. propose an approach to support the grow-and-prune model [8] in the evo-
lution of software projects by using clone detection [22]. They evaluate their technique by
measuring recall and precision with respect to a benchmark. They consider multiple raters
to increase the confidence of the judgments. The raters, five researchers and four graduate
students in computer science, judge the same pairs of functions. A concrete scenario is given
to the raters to help them decide whether or not two functions are similar. Authors find a rea-
sonable agreement among the raters. This result is different from the observation we make
in this article. However, the work of Mende et al. considers function clones, and our work is
about all types of clones. This could have an influence on the agreement of raters. Addition-
ally, the clones of Mende et al. were not validated by an expert of the analyzed code. Such
an expert may have a different judgment about these clones.

In a previous work [5], we analyzed the reliability of the reference clones contained in
Bellon’s benchmark. We showed that there are debatable clones in this benchmark, and that
it might alter the values of precision and recall computed using the benchmark. In this article
we go beyond this previous work. First, raters are asked to judge context-dependent clones,
either for refactoring or co-evolution activity. Second, we add experts of the underlying code
in the experiment. We found that agreeing with an expert is hard, especially for true positive
clones.

3 Research Questions

Manual inspection of clone candidates in existing benchmarks is usually performed by stu-
dents or researchers who are not experts of the underlying software projects. Additionally,

1 These studies mentioned no information about any raters’ expertise of the analyzed code.



Raters’ Reliability in Clone Benchmarks Construction 5

these raters generally do not receive any training before judging the clones. Nevertheless,
since these benchmarks are context-free, one can ask to which extent this way of building
clone benchmarks is reliable when considering context-dependent clones?

In this study, we explore the reliability of rater judgments about context-dependent
clones. We focus our research on two main points. First we investigate the repeatability
of raters’ answers. We wonder if, when a rater is presented several times the same clones,
she will always judge the clone consistently. Second, we explore inter-rater reliability. More
precisely, we evaluate if several raters judge the clones identically. We include an expert of
the code in the set of raters. Reflecting the judgment of an expert is very important for a
context-dependent clone benchmark because the clones reported by a clone detector must
be useful for her. Therefore we evaluate if external raters can judge clones in the same way
as an expert of the code. Finally we also evaluate if there are some clones for which it is
easier to reach an agreement between external raters and experts. To sum-up, we investigate
the following research questions.

Repeatability of rater answers

RQ1. Are rater answers consistent over time?
As previously explained, raters are usually not trained before judging clones. This could be
a threat to the repeatability of their answers, since there is a chance that they can be subject
to a learning effect when rating clones. In this research question, we want to assess if a rater
would always judge the same clone in the same way. We also want to refine this question by
distinguishing experts from external raters. If the judgments of the clones are not repeatable,
it could be a sign of a learning effect.

Inter-rater reliability

RQ2. Do external raters agree with each others, and also with the expert of a project?
In this research question, we want to assess if several raters judge the clones identically.
First of all, we want to evaluate to which extent several external raters agree with each
others. Then we want to evaluate if the external raters agree with the experts. By answering
this research question, we know if it is reliable to build context-dependent clone benchmarks
by using external raters instead of experts.

RQ3. What are the characteristics that influence the agreement between experts and exter-
nal raters?
In this research question, we want to evaluate if some characteristics make easier for external
raters to have the same judgment as the expert. We investigate this question because if some
characteristics are shown to make the clone very easy to judge in the same way as the
expert by the external raters, we can build reliable context-dependent clone benchmarks by
including clones having these characteristics, without the need of an expert.

We investigate two types of characteristics: clone based characteristics and project and
expert based characteristics.
The clone-based characteristics are as follows:

– Type: is it easier to judge Type-2 or Type-3 clones (as defined by Bellon et al. [3])? We
do not consider Type-1 clones as they are less debatable.



6 Alan Charpentier et al.

– Size: is it easier to judge clones having big fragments than clones having small frag-
ments?

– Distance: is it easier to judge clones in completely different files or in the same file?

The project and expert based characteristics are as follows:

– Project: is it easier to judge clones from one project rather than another one?
– False/true positives: is it easier to judge true or false positive clones, as judged by the

expert?

In the remainder of the paper, clones refer to context-dependent clones.

4 Experimental setup

We describe in this section the empirical study we conduct to answer our research questions
and investigate the accuracy of user judgments about clones. All data used and collected
during this study is available online2.

4.1 Overall approach

Our experiment consists in drawing randomly a set of clones from selected projects and
present them to four raters, including an expert of each selected project. The raters are asked
to judge the clones, through a web interface. The two code fragments of each clone are
displayed to the rater and she is asked to rate yes in case of a true clone, no in case of a false
clone, and unknown otherwise, i.e., if there is no obvious answer. Finally we use a statistical
analysis of the produced data to answer our research questions. This analysis is presented in
section 5.

4.2 Subjects and objects

We describe in this section the subjects and objects of our experiment. First we describe the
software projects on which we compute the clones. Then we explain which clone detector
was used, and how it has been configured. Finally, we present the raters who participated in
this experiment.

4.2.1 Software projects

Our experiment requires an expert for each project under study. Thus, we select two projects
developed by people from our research group: FastR3 and GumTree4. Both projects use
Java as the main language. FastR [12] is an open-source efficient implementation of the R
statistical language [10]. GumTree [7] is an open-source abstract syntax tree based code diff
tool.

To prevent the clone detector to search clones in locations that are irrelevant for the user,
the code base is pre-processed according to the advice of the expert of each project. First,

2 http://www.labri.fr/perso/acharpen/ese15/materials.zip
3 https://github.com/allr/fastr/tree/v0.168
4 https://github.com/jrfaller/gumtree/tree/v1.0.0



Raters’ Reliability in Clone Benchmarks Construction 7

Table 1 Software projects’ description

Project Java Files Java LOC # Clones

FastR 343 54,511 49,911
GumTree 77 4,750 216

files that are automatically generated and never modified manually are discarded. Second,
files corresponding to tests and examples are also discarded. Indeed, such code is usually
maintained in a different way than the code from the core. At the end, we stripped out blank
lines and comments in all remaining files. Table 1 summarizes the number of files and the
number of lines of code (LOC) in Java we obtain for each project. GumTree is a small-sized
project and FastR is a medium-sized project. The small size of GumTree allows to manually
investigate all clones a clone detector could report.

4.2.2 Clone detector

Various clone detectors have been introduced to identify clones from source code. All of
them can be tuned using plenty of parameters. Therefore, the choice of a specific clone
detector and its configuration parameters may have a huge impact on the list of computed
clones. In this study, we rely on the work of Wang et al. [29] to minimize the impact of this
choice. They introduce an approach to find suitable configurations for empirical studies. We
choose a configuration that maximizes recall because we want an overview of all the clones
present in the selected projects.

We choose iClones [9] as the clone detector for two reasons. First, it is easily available
for replication purposes. Second, it is the only reputed Type-3 clone detector in the litera-
ture that is compatible with Java Generics, and both selected projects use this feature a lot.
iClones has two parameters: minblock, the minimum length of identical token sequences
that are used to merge near-miss clones, and minclone, the minimum length of clones mea-
sured in tokens. As recommended by Wang et al. to maximize recall for Java projects, we
set minblock to 6 and minclone to 26.

4.2.3 Clone raters

The four raters participating to this experiment are authors of the paper. The fifth author,
namely Alan Charpentier, does not rate clones. He is responsible for running a fair exper-
iment to answer predefined research questions. He was the only one to know the research
questions during the survey.

All participants have an extensive Java programming experience and all are more than
familiar with the notion of clones. For each project, we consider one expert and three ex-
ternal raters. For FastR, the expert is Floréal Morandat, one of the main developer of this
project. For GumTree, the expert is Jean-Rémy Falleri, its official maintainer. Non expert
raters are external raters and denoted by rater1, rater2 and rater3 in the remainder of
the paper.

4.3 Clone selection

For each project, we run iClones to compute a list of clones. Table 1 reports the number of
clones (only Type-2 and Type-3) identified by iClones in the two selected projects, using



8 Alan Charpentier et al.

GumTree

FastR

0 50 100 150

(a) Size characteristic

GumTree

FastR

0 5 10 15

(b) Distance characteristic

Fig. 1 Distribution of clone sizes and distances in FastR and GumTree.

the configuration presented above. We remind that in RQ3, we want to explore if there are
factors that have an effect on the judgment of raters. Some factors, namely type, size and
distance are information computed from the clones. We use the same definition of type
as Bellon et al. [3]. Clone size is defined as the number of lines of code of the two code
fragments involved laid end to end. Clone distance represents how close are these two code
fragments in the file system tree. If the two fragments are in the same file, the distance is
0. If they belong to different files within the same directory, the distance is 1. In any other
cases, the distance is 1 plus the minimum number of hops to reach one file from the other.

To ensure having at least some representatives of each characteristic, clones are ran-
domly drawn according to their characteristic. Concerning the type factor, once Type-1 re-
moved (see RQ3), there are two natural clusters: Type-2 and Type-3. However, there is no
natural definitions of clusters for size and distance. By performing an exploratory analysis
in our projects of both the clone sizes and distances distribution (figure 1), we noticed that
these distributions are right skewed with a very long tail. Therefore we choose to separate
the clones in two clusters, the ones from the head of the distribution, and the ones from the
tail. To avoid the bias of selecting a threshold, we use an automatic technique to create the
clusters for size and distance. Additionally, we want this technique to be deterministic so
that researchers can reproduce our results. To fulfill these requirements we use the neural
gas data-mining algorithm [21] which is a generalization of k-means that produces stable
clusters. On our corpus, tens of runs of neural gas produce clusters without any significant
difference. Finally we end up with four clusters. Two are from the size factor: Σ -Big and
Σ -Small, and two from the distance factor: ∆ -Close and ∆ -Far. The computed threshold to
separate the two clusters of the size is 17 (resp. 18) for FastR (resp. GumTree). In other
words, clones in FastR (resp. GumTree) having a size lower or equal to 17 lines (resp. 18)
are in Σ -Small, while others are in Σ -Big. The thresholds for the distance are 0 for FastR
and 5 for GumTree.

Based on our previous experience of rating clones, the number of clones to rate by each
participant has been limited to 600. Since we have six clusters, we draw at random 50 clones
in each cluster for both projects. However, if a cluster has less than 50 clones, we select all
clones of this cluster. This case only happens for GumTree in two clusters that do not contain
enough elements: Σ -Big and ∆ -Far with both 17 clones. As a result, we obtain a set of 300
clones for FastR and another of 234 clones for GumTree, amounting to 534 clones to rate.

In addition to the type, size and distance factors, we also evaluate the influence of the
expert opinion on the clones. Therefore we also compute the union of all clusters for each
project. We call this union general and we use this sample to evaluate the effect of the two
aforementioned factors. Since cluster sampling is likely to produce biased samples when
clusters are joined, we plot the distribution of the clones of our samples against the clones
of the whole project in figure 2. As reported in table 1, FastR contains 49,911 clones and
GumTree 216. For GumTree, we can see that clusters Σ -Big and ∆ -Far have very few ele-



Raters’ Reliability in Clone Benchmarks Construction 9

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

0%

25%

50%

75%

100%

FastR 300 FastR 300 FastR 300 FastR 300 FastR 300 FastR 300

(a) FastR and our sample of 300 clones.

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

0%

25%

50%

75%

100%

GumTree 234 GumTree 234 GumTree 234 GumTree 234 GumTree 234 GumTree 234

(b) GumTree and our sample of 234 clones.

Fig. 2 Distribution of clones in each cluster for each project and its associated sample.

 0

20

40

60

80

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

Fig. 3 Distribution in each cluster of the 65 duplicates in GumTree sample.

ments (less than 17%, corresponding to 50/300). Additionally, one can see that each project
and its associated sample have a similar distribution of clones according to the six clusters.

Since clones of each cluster are randomly selected from the whole set of clones iden-
tified by iClones for a project, duplicates may appear. In particular, since the number of
clones drawn in GumTree was greater than the total number of clones, duplicate clones
were mandatory. This was done on purpose to evaluate the repeatability of rater judgments
as stated in RQ2. One author of the paper, Alan Charpentier, has checked for duplicates in
the set of 534 clones. As a result, there are 65 duplicates in the 234 clones from GumTree
and 1 in the 300 clones from FastR. In other words, there are in fact 163 unique clones for
GumTree and 299 for FastR. As previously explained, this author did not warn the other
raters of the presence of duplicates in the set of clones to rate. Thus, only Alan Charpen-
tier knew that there were duplicates. Figure 3 shows the distribution of the duplicates from
GumTree in the clusters. One can notice that this distribution is similar to the general distri-
bution shown in figure 2.



10 Alan Charpentier et al.

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

0%

25%

50%

75%

100%

FastR GumTree FastR GumTree FastR GumTree FastR GumTree FastR GumTree FastR GumTree

yes no

Fig. 4 Ratios of yes and no answers given by the expert on the clones of each project.

4.4 Data collection

In this section, we first describe the procedure we use to gather judgments from raters and
then we present the raw results we obtained.

4.4.1 Procedure

Answers are collected through a web interface. This interface displays the two files involved
in the clone, highlights in yellow the fragments belonging to the clone in each file, and
shows a text diff in orange inside both fragments. To avoid rater fatigue, the web interface
is able to save and restore the work session, and to go back to already processed clones
to change the answer. It therefore enables the raters to process their clones taking as much
time as they need. Raters were able to complete the survey in several days, splitting their
work as they wished. The order of the clones has been randomized, and they are presented
to each rater in the same order. The question we ask to the participants is the following: ”Is
this clone useful for refactoring or co-evolution purpose”. To avoid to forcing the rating of
clones, the external raters were allowed to answer unknown to the question, meaning that
they do not have a judgment. The participants were forbidden to exchange about the clones
and the experiment until it was completed by everybody. During the clone rating process,
only Alan Charpentier had knowledge of the research questions and how the clones were
selected. Other raters did not know the research questions.

4.4.2 Results

Every participant went through the 534 clones. For each project, additionally to the answers
from the expert and the external raters, we also compute a majority vote that aggregates the
votes from the external raters. To compute this majority vote we use the following rules. If
two external raters have answered yes (respectively no) the majority vote is yes (respectively
no). In any other cases, the majority vote is unknown.

Results of this experiment for the experts of each project are shown in figure 4. One
can see ratios of true and false positive clones found by the expert of each system. For each
project, ratios are given for each of the six clusters as well as for all the clones of the project
(denoted by general as explained in section 4.3). Overall, the FastR expert finds a slightly
greater number of true clones than the GumTree expert, but the mean ratio of true clones is
in the same range for both projects.



Raters’ Reliability in Clone Benchmarks Construction 11

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

0%

25%

50%

75%

100%

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

yes no other

(a) FastR sample

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far

0%

25%

50%

75%

100%

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

expert

rater1
rater2

rater3
majority

yes no other

(b) GumTree sample

Fig. 5 Ratios of yes, no and unknown answers given by the experts, the external raters and the majority for
the clones of each project.

Both experts seem to agree that the Σ -Big cluster contains mostly true positive clones.
Additionally, the ∆ -Far cluster seems to contain also a higher ratio of true clones than the
other clusters for both experts. All other clusters contain more false positives than true pos-
itives. In this study, we consider expert answers as references, that is to say when an expert
answers yes (respectively no) we have a true positive or true clone (respectively a false
negative or false clone).

The external raters have different behaviors. Their answers are shown in figure 5. For the
FastR project, rater 1 and rater 3 are pessimistic about the clones while rater 2 is optimistic.
The Σ -Big and the ∆ -Close clusters are the only ones in which a majority of external raters
finds more true positives than false positives. For the GumTree project, raters 1 and 2 are
much more optimistic than rater 3. The Σ -Big cluster is the only one in which all raters find
a majority of true clones. In this project, the majority vote has a significant ratio of true
positives in the Type-2 and ∆ -Far clusters.

5 Results and discussion

In this section, we first present the results of our study according to each research question
and provide some guidelines to make the construction of context-dependent clone bench-
marks more reliable. We provide the feedback from the raters collected in a discussion ses-
sion organized after the experiment.



12 Alan Charpentier et al.

expert rater1 rater2 rater3

0%

25%

50%

75%

100%

stage1 stage2 stage3 stage1 stage2 stage3 stage1 stage2 stage3 stage1 stage2 stage3

yes no other

(a) FastR

expert rater1 rater2 rater3

0%

25%

50%

75%

100%

stage1 stage2 stage3 stage1 stage2 stage3 stage1 stage2 stage3 stage1 stage2 stage3

yes no other

(b) GumTree

Fig. 6 Rater answers over time (stage 1: first third of the clones, stage 2: second third and stage 3: last third).

5.1 Repeatability of raters answers (RQ1)

The first research question is related to the consistency of rater answers. By consistent, we
mean that for a given rater, the same clone always receive the same judgment. To evaluate
this phenomenon we assess if there is a change of behavior of raters across time. We postu-
late that since the order in which clones are presented to the raters is randomized, the ratio
of yes, no and unknown answers should stay stable during all the experiment. If it is not the
case, it means that a learning effect or a fatigue effect biased the answers of the raters. To
quantify this phenomenon we split the clones of each project in three sets. Stage 1 is the first
third of the clones rated clones, stage 2 (resp. 3) is the second (resp third) third of clones.
As shown in figure 6, there is no significant variation of the ratio between the stages which
means that the behavior of raters remains stable across time. However, this does not indicate
that a rater will judge consistently the same clone.

To evaluate the consistency of rater answers, we use the 59 duplicates contained in
GumTree clones. First we investigate if raters can change between a yes, no or unknown
answer for a same clone. For each rater, we compute the ratio of these clones for which the
rater did not give the same judgment. Results depicted in table 2 show that the behavior of
the expert is different from the one of the external raters. The expert gives very consistent
answers and only 1 duplicate received a different judgment, which is negligible. While for
external raters, the number of inconsistently rated clones varies from about 5% to about
20% of the rated duplicates, which is significant. We investigated if there are some trends in
the way inconsistent answers evolve across time, however there are not enough inconsistent
duplicates to conclude. As a general conclusion on inconsistencies, they may be attributed



Raters’ Reliability in Clone Benchmarks Construction 13

Table 2 Inconsistent answers for the 59 duplications in GumTree.

Rater # %

expert 1 1.7
rater1 11 18.6
rater2 3 5.1
rater3 7 11.9

to some kind of learning effect, hence a training session would be beneficial for external
raters.

5.2 Inter-rater reliability

In this section, we investigate the inter-rater reliability of clone judgments. First, we eval-
uate if several external raters give or not the same judgments about the same clones. Then,
we investigate if the external raters give the same judgments as an expert of the project.
Finally, we investigate if there are factors that allow external raters to better approximate the
judgment of experts.

5.2.1 Agreement among raters (RQ2)

Firstly, we evaluate the agreement between the external raters using Fleiss’ Kappa. The
result of this measure of an agreement in a group of person is shown in the first line of table
3. This statistic is interpreted using the thresholds provided by Landis and Koch [19] shown
in table 4. We can see that in both projects, there is no agreement among the external raters,
meaning that they give divergent judgments about the same clones. It therefore seems that
judging clones is a very subjective task. Secondly, we evaluate the agreement between each
external rater and the expert of both projects. Results are shown in lines 2 to 4 of table 3.
Finally, we evaluate the agreement between the majority vote of external raters (as defined in
section 4.4) and the expert of both projects. Line 5 shows the values obtained using Cohen’s
Kappa to measure the agreement. We observe a different behavior in the two projects. It
seems easier for the external raters to agree with the expert in GumTree than in FastR. We
also observe that the choice of a particular external rater has a high impact on the agreement
with the expert. For instance in FastR the agreement is at worse slight and at best fair, and
for GumTree the agreement is at worse slight and at best moderate. Therefore, using only
one external rater to judge clones is unreliable. Finally, we can see that using the majority
vote of external raters instead of using a particular external rater is a good strategy for both
projects. Indeed the maximum value of the Kappa statistic (bolded in table 3) is reached in
this case for both projects which means that the majority always has a best agreement with
the expert than any particular external rater.

5.2.2 Factors influencing agreement between external raters and experts (RQ3)

In this research question, we investigate if there exists factors that make it easier for external
raters to agree with the expert. Since the majority vote of external raters has proven to
be the best strategy in the previous section, we only consider for this research question
the judgment of the majority. Figure 7 reports raw agreement between the expert and the



14 Alan Charpentier et al.

Table 3 Agreement among raters.

FastR GumTree

Raters κ Agreement κ Agreement

external raters -0.12 none -0.05 none
expert and rater1 0.24 fair 0.42 moderate
expert and rater2 0.09 slight 0.13 slight
expert and rater3 0.16 slight 0.28 fair
expert and the majority 0.25 fair 0.44 moderate

Table 4 Kappa statistic interpretation.

κ Interpretation

≤ 0 No agreement
]0,0.2] Slight agreement
]0.2,0.4] Fair agreement
]0.4,0.6] Moderate agreement
]0.6,0.8] Substantial agreement
]0.8,1] Almost perfect agreement

Table 5 Number of identical and different answers between the expert and the majority.

FastR GumTree

Characteristic Identical Different Identical Different

Type-2 26 24 27 23
Type-3 35 15 39 11

Σ -Small 23 27 31 19
Σ -Big 33 17 17 0

∆ -Close 26 24 34 16
∆ -Far 26 24 16 1

General 169 131 164 70

majority for each characteristic under study. First observations tend to indicate that some
characteristics have an impact on the agreement between the majority and the expert (e.g.
Size or Project). In the remainder of this section, we evaluate statistically the influence of
characteristics on the agreement between the expert and the majority. First, we present the
effect of clone characteristics. Then, we present the effect of the factors related to the expert
judgment on the clones.

Clone characteristics To evaluate the effect of clone characteristics we use two clusters
for each characteristic (as explained in section 4.3). For each cluster we are interested in
two numbers: the numbers of identical and different answers with the expert. Therefore, for
each characteristic, we construct a 2× 2 contingency table as shown in table 5. Our null
hypothesis is that the number of identical/different answers with the expert is independent
of each characteristic. Our alternative is that this number is not independent. We use the
chi-square test to assess our hypothesis. We apply Yates’ continuity correction to chi-square
computation when the value in a cell is too small i.e., lower than 5. Additionally, we compute
the effect size of each characteristic using Cramer’s V that is interpreted as shown in table
6.



Raters’ Reliability in Clone Benchmarks Construction 15

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far General

0%

25%

50%

75%

100%

Yes No Yes No Yes No Yes No Yes No Yes No Yes No

agreement disagreement

(a) FastR

Type-2 Type-3 Σ-Small Σ-Big Δ-Close Δ-Far General

0%

25%

50%

75%

100%

Yes No Yes No Yes No Yes No Yes No Yes No Yes No

agreement disagreement

(b) GumTree

Fig. 7 Agreement between the expert and the majority.

Table 6 Cramer’s V interpretation.

Cramer’ V Effect size

≤ 0.10 Very weak
]0.10,0.19] Weak
]0.20,0.29] Moderate
≥ 0.30 Strong

For the type characteristic, the p-value is 0.07 (V = 0.19) for FastR and 0.01 (V = 0.25)
for GumTree. The p-value for FastR is not significant using a 0.05 ratio. However, the p-
value for GumTree is significant, and the effect size moderate. It indicates that this char-
acteristic could have an influence in the GumTree project. For the size characteristic, the
p-value is 0.04 (V = 0.20) for FastR and 7.1e−3 (V = 0.37) for GumTree. The p-value for
FastR is significant, and the effect size moderate. The p-value for GumTree is also signifi-
cant, and the effect size strong. It indicates that this characteristic could have an influence
in both projects. Nevertheless, results of this chi-square test are unreliable due to the small
number of clones in the Σ -Big cluster. One can note that Yate’s continuity correction has
been used because of the small number of clones in the Σ -Big cluster for GumTree. For the
distance characteristic the p-value is 1 (V = 0) for FastR and 0.07 (V = 0.26) for GumTree.
Both p-values are not significant. Finally, the Size characteristic is the only one that has an
influence on both projects. It is significantly harder for external raters to agree with the ex-
pert on small clones. For these clones, using external raters could be unreliable, and thus
using an expert of the project seems mandatory.



16 Alan Charpentier et al.

Table 7 Number of identical and different answers between the expert and the majority.

Project Identical Different

FastR 199 101
GumTree 191 43

Table 8 Number of identical and different answers between the expert and the majority for true and false
positives as judged by the expert.

FastR GumTree

Expert judgment Identical Different Identical Different

Yes 72 61 64 4
No 97 70 100 66

Project and expert judgment To assess the influence of the project we construct a 2× 2
contingency table with the projects as lines, and as rows the number of identical and different
answers in the related project, as shown in table 7. We use a chi-square test, that yields a
p-value of 1.1e−3 (V = 0.14). This p-value is significant and the effect is weak. It means that
it seems significantly harder to judge the clones of FastR than GumTree in the same way as
the expert. Therefore, clones of some projects may not be judged by external raters.

To evaluate if the judgment of the expert about clones has an effect on the number of
identical answers with the majority of raters, we use the union of clones of all clusters, de-
noted as general, as explained in section 4.3. We start by investigating if it is easier to agree
with a false or true positive as judged by the expert. To that extent we partition all clones into
two sets: clones judged positively by the expert (the yes set) and clones judged negatively
by the expert (the no set). For each set, we count the number of identical/different answers
between the majority and the expert of each project. We use these numbers to build a 2×2
contingency table as shown in table 8. Similarly to the previous section, we use a chi-square
test that yields a p-value of 0.49 (V = 0.04) for FastR and a p-value of 2.8e−7 (V = 0.34)
for GumTree. The p-value for GumTree is significant. It means that it is significantly harder
for external raters to judge the true positives than the false positives in GumTree. Indeed,
when judging true positives, external raters give more different answers than identical an-
swers with the expert. On the contrary, when judging false positives, external raters give
more identical answers than different ones. This indicates that using external raters to judge
true positives could be unreliable. For these clones, using an expert of the project seems
mandatory. Some mitigations are required as we do not observe the same effect in FastR.
We acknowledge the fact that more projects need to be examined to draw more general
conclusions.

5.3 Participant feedback

After having conducted the experiment, all the participants have performed a meeting where
the important issues concerning the difficulty of rating clones were discussed. These issues
are categorized and discussed in the remainder of this section.



Raters’ Reliability in Clone Benchmarks Construction 17

5.3.1 Clone rating

Every participant found that it was very difficult to rate the clones in a homogeneous way.
Indeed, their judgment evolved as they rated clones (as confirmed in table 2).

Every participant found that it would have been easier to rate the clones if they were
ordered by clone classes. At least it would have improved the homogeneity of the answers.

Two participants found that it would have been easier to rate the clones if they were or-
dered by context (clones within the same function and the same Java class). They explained
that it sometimes takes time to understand the surrounding code of a clone, and it would
thus be better to make this effort only once.

Every participant noticed that is was easier to decide if a clone is of interest for refactor-
ing purpose than co-evolution purpose. They motivated their answer by explaining that co-
evolution requires a much deeper knowledge of the code. However, they do not always agree
on refactoring opportunities. For instance, some of them would apply refactoring operations
for a single line while others require a significant amount of code to perform refactoring.

5.3.2 Clone detection tool

Alignment Every participant had trouble with some clones detected by iClones that are not
aligned with the structure of the code (for instance a clone that starts in a function and ends
in another). This is caused by the fact that iClones is a token-based detection tool. All the
participants discarded several clones that could have been useful if better aligned to the code
structure.

Extension Every participant also remarked that iClones computed some clones that could
have been extended easily. Experts and non-experts had trouble to rate these clones. Each
participant judged these clones consistently according to its own strategy. Some decided to
keep the clones, while several others decided to discard them.

The participants identified all together 43 clones that could have been extended, 32 for
FastR and 11 for GumTree, amounting to 8% of the rated clones. Results about inter-rater
reliability (section 5.2 page 13) have been recalculated from the set of 491 clones (534−43)
corresponding to the ones that do not require to be extended. No significative changes have
been observed. Hence, our results are not affected by these clones. As a consequence, during
the construction of a clone benchmark, raters should be able to modify the boundaries of a
clone candidate before its classification. One can note that Bellon used this good practice in
its benchmark construction [3].

To conclude, it seems that a clone detector should both, increase the size of a clone to the
maximum according to the code structure, then shorten clones to align their boundary on
the boundary of the code. This however requires either a language dependent clone detector
tool or at least a post-processing step.

5.3.3 Programming language

Two participants noticed that the features of the programming language had sometimes a big
impact on the relevance of a clone. For instance, static typing of the Java language makes
some clones irrelevant, but these clones would have been of great help in a dynamically
typed language. These was particularly emphasized on FastR which requires type inlining
due to Java boxing.



18 Alan Charpentier et al.

Two participants found that the visitor pattern induces the presence of a lot of clones
which are hard to rate.

6 Threats to validity

We have identified the following threats to validity of our study.

6.1 Construct validity

The main threat to construct validity is related to the process of building the clusters of
clones, from which we do sampling. There could be some influence between the clusters,
i.e., a big clone can have more odds to be a type-3 clones. This could bias the result of the
influence of the type, size and distance characteristics. However, we did not observe any
influence of these characteristics. Similarly, the effect of the expert judgments is based on
the general set of clones as explained in section 4.3. Since this set is the union of all the
clusters, and not a random sampling of all clones, it may be biased. However, we did show
that the distributions of the characteristics of these clones is similar to the ones of all clones.

6.2 Internal validity

Our empirical evaluation bears several threats to internal validity. First, raters may talk to
each other during the evaluation process, and influence their judgments. Since participants
are authors of the paper, they agreed beforehand not to talk about the survey until all have
completed it. A second threat is that all the raters are authors of the paper, and this could
influence their answers. To minimize this threat, we make all the data collected during the
experiments publicly available for examination and replay (see footnote of section 4). An-
other threat is related to the process of constructing our clusters. We minimize this threat by
using a well known clustering algorithm (neural gas) to extract the clusters for each charac-
teristic. This clustering algorithm has been selected because it has the reputation to be very
stable (it always finds the same clusters if run multiple times). The number of samples we
draw within each cluster may also not be sufficient to be representative in some clusters (es-
pecially the one with a huge population such as Σ -Small or ∆ -Close). Unfortunately, manual
clone inspection is very expensive and we were limited by the total number of clones a rater
can assess. One of the external raters of GumTree has already submitted several patches
to this project, and this could have influenced his agreement with the expert. However he
was not considering himself as an expert of the project, as his intervention in the code is
very limited. Another threat is related to the removal of comments in the two projects under
study. Non-experts might have a more difficult time judging the clones. This threat should
be addressed in a replication study in order to complete our results. Thus, the impact of
comments in such a study could be evaluated.

6.3 External validity

Threats to external validity refer to the generalization of our findings. First, we have focused
this study on two projects which definitely may not represent all real-world projects. How-
ever, the number of projects that can be investigated is limited by the necessity of having one



Raters’ Reliability in Clone Benchmarks Construction 19

expert in the set of raters, and by the number of clones a rater can assess. Additionally, both
projects use Java as the main language. Therefore, the results could be different in projects
in other programming languages. Nevertheless, Java is recognized as one of the most pop-
ular programming languages used in software projects [4]. Moreover, Walenstein et al. also
find that system specifics appear to have an impact on inter-rater reliability [28]. Further val-
idation on more projects written in other programming languages should be performed. In
this way, we provide all necessary data to replicate this study and complete the findings (see
footnote of section 4). A second threat is that we only rely on four raters and the results may
change with more raters. Although each selected project has a different expert, our findings
may not be generalizable to other open source projects. However, all raters of our study have
an extensive Java programming experience and none of them is an undergraduate student.
Another threat is related to the use of only one clone detection tool in our study. Once again,
the number of clones a rater can assess limits the number of clone detectors that can be
considered. Nevertheless, to minimize this threat we rely on both a reputed Type-3 clone
detector, iClones, and the work done by Wang et al. [29] to define the configuration file. The
configuration recommended by Wang et al. is such that it maximizes the set of clones that
would have been discovered by all main clone detection tools, thus limiting this threat to
validity. Additionally, we provide all necessary data to replicate this experiment with other
clone detection tools that would be compatible with Java generics. Finally, we investigated
only one question about the clones in our study. Our results could change with a different
question. However, the question we asked is very representative of the use of code clones by
software developers. A last threat is related to the Type-1 clones we ignored in this experi-
ment. In a previous work [5], we found that developers have a better agreement on Type-1
clones than on other types. Based on this result, we focused on other characteristics, despite
no experts were involved in this previous work. Finally, although Type-1 clones should be
included to complete the study, our findings are not affected.

7 Conclusion and future work

In this article, we investigate reliability of rater judgments about context-dependent clones.
We examine two kinds of raters: external raters and experts. We find that external rater
judgment may not be reliable. Firstly, external rater answers repeatability seems not good.
This indicates that a training session would be beneficial to increase the repeatability of
answers. Secondly, the inter-rater reliability seems poor among external raters, and also
between external raters and experts. This is a critical issue since it might lead to benchmarks
that do not reflect the judgment of project experts, and thus conduct to unreliable context-
dependent clone benchmarks. We show that using the majority vote is one way to mitigate
this issue. Finally we have seen that there are several characteristics that appears to have a
significant effect on the number of identical and different answers between external raters
and experts. First of all, the chosen project and expert has a weak to moderate influence on
this matter. It means that some projects yield clones that could not be judged by external
raters. Second true positive clones seem harder to judge by external raters than false positive
clones. Indeed, this characteristic has a strong influence on the number of identical and
different answers. Third, it seems harder for external raters to agree with the expert on
small clones. Therefore, it seems mandatory to rely on a project expert to validate either
true positives or small clones in a benchmark. While the generalization of certain findings is
limited, this study is a first and necessary step in the construction of reliable and high quality



20 Alan Charpentier et al.

context-dependent clone benchmarks. The availability of all data used and collected during
this study is heading in this direction.

As future work, we plan to investigate more clone characteristics and their effect on the
agreement (for instance the textual similarity between two fragments of a clone). We also
plan to ask other questions than the one we use in our study to assess the impact of the
question in the agreement level. Finally we want to use our findings to build high quality
benchmarks of clones and to design a machine learning based approach that better eliminates
irrelevant clones.

References

1. Baker, B.S.: On finding duplication and near-duplication in large software systems. In: Proceedings of
the Second Working Conference on Reverse Engineering, WCRE ’95, pp. 86–. IEEE Computer Society,
Washington, DC, USA (1995)

2. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using abstract syntax trees.
In: Software Maintenance, 1998. Proceedings., International Conference on, pp. 368–377 (1998). DOI
10.1109/ICSM.1998.738528

3. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation of clone
detection tools. Software Engineering, IEEE Transactions on 33(9), 577–591 (2007). DOI
10.1109/TSE.2007.70725

4. Bissyandé, T.F., Thung, F., Wang, S., Lo, D., Jiang, L., Réveillère, L.: Empirical Evaluation of Bug
Linking. In: Proceedings of the 17th European Conference on Software Maintenance and Reengineering
(CSMR 2013), pp. 1–10. Genova, Italy (2013)

5. Charpentier, A., Falleri, J.R., Lo, D., Réveillère, L.: An empirical assessment of bellon’s clone
benchmark. In: Proceedings of the 19th International Conference on Evaluation and Assessment
in Software Engineering, EASE ’15, pp. 20:1–20:10. ACM, New York, NY, USA (2015). DOI
10.1145/2745802.2745821. URL http://doi.acm.org/10.1145/2745802.2745821

6. Ducasse, S., Rieger, M., Demeyer, S.: A language independent approach for detecting duplicated code.
In: Software Maintenance, 1999. (ICSM ’99) Proceedings. IEEE International Conference on, pp. 109–
118 (1999). DOI 10.1109/ICSM.1999.792593

7. Falleri, J.R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained and Accurate Source
Code Differencing. In: Proceedings of the International Conference on Automated Software Engineer-
ing, pp. –. Sweden (2014)

8. Faust, D., Verhoef, C.: Software product line migration and deployment. Software Practice and Experi-
ence, John Wiley & Sons, Ltd 33, 933–955 (2003)

9. Gode, N., Koschke, R.: Incremental clone detection. In: Software Maintenance and Reengineering, 2009.
CSMR ’09. 13th European Conference on, pp. 219–228 (2009). DOI 10.1109/CSMR.2009.20

10. Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of computational and
graphical statistics 5(3), 299–314 (1996)

11. Jiang, L., Misherghi, G., Su, Z.: Deckard: Scalable and accurate tree-based detection of code clones. In:
In ICSE, pp. 96–105 (2007)

12. Kalibera, T., Maj, P., Morandat, F., Vitek, J.: A fast abstract syntax tree interpreter for R. In: 10th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, VEE ’14, Salt Lake
City, UT, USA, March 01 - 02, 2014, pp. 89–102 (2014). DOI 10.1145/2576195.2576205

13. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic token-based code clone detection system
for large scale source code. Software Engineering, IEEE Transactions on 28(7), 654–670 (2002). DOI
10.1109/TSE.2002.1019480

14. Kapser, C., Anderson, P., Godfrey, M., Koschke, R., Rieger, M., van Rysselberghe, F., Weis̈gerber, P.:
Subjectivity in clone judgment: Can we ever agree? In: Duplication, Redundancy, and Similarity in
Software, no. 06301 in Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany (2006)

15. Kapser, C., Godfrey, M.: ”cloning considered harmful” considered harmful. In: Reverse Engineering,
2006. WCRE ’06. 13th Working Conference on, pp. 19–28 (2006). DOI 10.1109/WCRE.2006.1

16. Koschke, R., Falke, R., Frenzel, P.: Clone detection using abstract syntax suffix trees. In: Pro-
ceedings of the 13th Working Conference on Reverse Engineering, WCRE ’06, pp. 253–262.
IEEE Computer Society, Washington, DC, USA (2006). DOI 10.1109/WCRE.2006.18. URL
http://dx.doi.org/10.1109/WCRE.2006.18



Raters’ Reliability in Clone Benchmarks Construction 21

17. Krutz, D.E., Le, W.: A code clone oracle. In: Proceedings of the 11th Working Conference on Min-
ing Software Repositories, MSR 2014, pp. 388–391. ACM, New York, NY, USA (2014). DOI
10.1145/2597073.2597127. URL http://doi.acm.org.gate6.inist.fr/10.1145/2597073.2597127

18. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M., Hudepohl, J.: Assessing the benefits of incorporating
function clone detection in a development process. In: Proceedings of the International Conference on
Software Maintenance, ICSM ’97, pp. 314–. IEEE Computer Society, Washington, DC, USA (1997).
URL http://dl.acm.org/citation.cfm?id=645545.853273

19. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. biometrics pp.
159–174 (1977)

20. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: finding copy-paste and related bugs in large-
scale software code. Software Engineering, IEEE Transactions on 32(3), 176–192 (2006). DOI
10.1109/TSE.2006.28

21. Martinetz, T., Schulten, K.: A ”Neural-Gas” Network Learns Topologies. In: Artificial Neural Networks,
vol. I, pp. 397–402 (1991)

22. Mende, T., Koschke, R., Beckwermert, F.: An evaluation of code similarity identification for the grow-
and-prune model. Journal on Software Maintenance and Evolution 21(2), 143–169 (2009)

23. Nguyen, H.A., Nguyen, T.T., Pham, N., Al-Kofahi, J., Nguyen, T.: Clone management for evolv-
ing software. Software Engineering, IEEE Transactions on 38(5), 1008–1026 (2012). DOI
10.1109/TSE.2011.90

24. Roy, C., Cordy, J.: Nicad: Accurate detection of near-miss intentional clones using flexible pretty-
printing and code normalization. In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE In-
ternational Conference on, pp. 172–181 (2008). DOI 10.1109/ICPC.2008.41

25. Roy, C., Cordy, J.: A mutation/injection-based automatic framework for evaluating code clone detection
tools. In: Software Testing, Verification and Validation Workshops, 2009. ICSTW ’09. International
Conference on, pp. 157–166 (2009). DOI 10.1109/ICSTW.2009.18

26. Selim, G., Foo, K., Zou, Y.: Enhancing source-based clone detection using intermediate representa-
tion. In: Reverse Engineering (WCRE), 2010 17th Working Conference on, pp. 227–236 (2010). DOI
10.1109/WCRE.2010.33

27. Svajlenko, J., Islam, J.F., Keivanloo, I., Roy, C.K., Mia, M.M.: Towards a big data curated benchmark of
inter-project code clones. ICSME p. 5 (2014)

28. Walenstein, A., Jyoti, N., Li, J., Yang, Y., Lakhotia, A.: Problems creating task-relevant clone detection
reference data. In: Reverse Engineering, 2003. WCRE 2003. Proceedings. 10th Working Conference on,
pp. 285–294 (2003). DOI 10.1109/WCRE.2003.1287259

29. Wang, T., Harman, M., Jia, Y., Krinke, J.: Searching for better configurations: A rigorous approach to
clone evaluation. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pp. 455–465. ACM, New York, NY, USA (2013). DOI 10.1145/2491411.2491420

30. Yang, J., Hotta, K., Higo, Y., Igaki, H., Kusumoto, S.: Classification model for code clones based on
machine learning. Empirical Software Engineering pp. 1–31 (2014)


