N
N

N

HAL

open science

Automated Extraction of Mixins in Cascading Style
Sheets

Alan Charpentier, Jean-Rémy Falleri, Laurent Réveillere

» To cite this version:

Alan Charpentier, Jean-Rémy Falleri, Laurent Réveillere. Automated Extraction of Mixins in Cas-
cading Style Sheets. 32rd IEEE International Conference on Software Maintenance and Evolution

(ICSME), Oct 2016, Raleigh, United States. pp.56-66, 10.1109/ICSME.2016.15 . hal-02182065

HAL Id: hal-02182065
https://hal.science/hal-02182065
Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02182065
https://hal.archives-ouvertes.fr

Automated Extraction of Mixins in Cascading Style
Sheets

Alan Charpentier, Jean-Rémy Falleri and Laurent Réveillere
University of Bordeaux
LaBRI, UMR 5800
F-33400, Talence, France
Email: {acharpen,falleri,reveillere } @labri.fr

Abstract—Cascading style sheets (CSS) is a language that
describes the presentation of web documents. CSS is widely
adopted in web development and it is now common for web
projects to have several thousands of CSS lines of code. Because
the language lacks advanced features to allow code reuse, several
languages such as Sass and Less have emerged as extensions to
CSS. They provide mechanisms such as mixins to enable reuse.
However, when a developer wants to migrate her web project
from CSS to one of these extension languages, identifying mixins
is a challenging task. In this paper, we describe an automated
approach to extract mixins from CSS code. We have developed a
tool that identifies mixins in CSS files and automatically generates
Sass code. Our technique enables a fine-grained control on the
generated code tailored to developer needs. We evaluate our
approach on more than a hundred CSS files and conduct several
case studies to assess its real-world relevance.

Index Terms—CSS; code duplication; mixin.

I. INTRODUCTION

Cascading Style Sheets (CSS) is a language mainly used for
describing the presentation of HTML documents. Along with
JavaScript, CSS is a cornerstone technology used to develop
web applications. The massive adoption of the language has
led to a significant increase of the average size of CSS code.
Indeed, nowadays, web applications often contain several thou-
sands of lines of CSS code, and consequently a large amount
of duplication [1]. Duplicated code in software systems is
known to complicate code maintenance and evolution [2], [3],
as fault fixes and changes must be propagated in multiple
places. Therefore software developers tend to keep the amount
of duplicated code as low as possible.

However, in contrast to most programming languages CSS
does not provide advanced mechanisms such as variables or
functions to allow code reuse. To alleviate this lack, several
CSS preprocessors such as Sass! and Less? have recently
emerged on top of CSS. They provide advanced mechanisms
such as variables and mixins to ease the development and
maintenance of CSS code. Developers using these languages
invoke a compiler to generate the corresponding low level CSS
code that can be embedded into their application.

Because they facilitate code reuse, CSS preprocessors are
increasingly being used by developers of large well known

Thttp://sass-lang.com/
Zhttp://lesscss.org/

projects such as Bootstrap® and Foundation®, the two most
popular CSS frameworks. However, many applications still
rely on low level CSS code. A recent survey® with more than
13,000 responses from web developers showed that almost
half of them do not use CSS preprocessors.

In this paper, we argue that this low adoption of CSS
preprocessors in practice is partially due to the complexity
of migrating legacy CSS code and to the lack of tools to
support it. To assess our claim, we have conducted an informal
survey. We retrieved the list of trending repositories of the
month for the CSS language from GitHub®. We used data
of September 2015 to build a list of 43 repositories, and we
retrieved 500 developers from these repositories. We sent a
mail to each developer seeking its opinion on the usefulness
of an automatic tool to extract mixins from CSS code. As
a result, 64 developers answered anonymously our survey’,
leading to a response rate of 12.8%. We noticed that about
half of the participants were interested by such a tool. From
the developers that used both CSS and preprocessors, 65%
were mostly interested.

Overall, this paper makes the following contributions:

1) We introduce an automated approach that identifies mix-
ins from CSS code. We have implemented the approach
as a piece of open source software called Mocss. Our
approach enables a fine-grained control on the generated
code tailored to developer needs.

2) We assess the efficiency of our approach with four
case studies, demonstrating that our tool is able to
help developers removing code duplication by extracting
mixins from legacy CSS code.

The structure of this paper is as follows. Section II in-
troduces the CSS language and its extensions. Our approach
for the extraction of mixins from CSS code is described in
Section III and an evaluation of its efficiency and real-world
relevance is reported in Section IV. The related work are
discussed in Section V. We conclude and mention future work
in Section VL.

3http://getbootstrap.coms/

“http://foundation.zurb.com/

Shttps://css-tricks.com/poll-results- popularity-of-css- preprocessors

Ohttps://github.com/trending ?1=css&since=monthly

"Results of the whole survey are available online: http://www.labri.fr/perso/
acharpen/icsme16/materials.zip

II. BACKGROUND

Cascading style sheets is a language used to tune the
visual style of web documents. CSS enables the separation
of document content and presentation. This separation of
concerns eases the reuse of presentation code in different
documents. In the remainder of this section, we first describe
the mechanisms offered by CSS for describing the presentation
of a document. Then, we discuss the reasons behind the
presence of duplication in CSS.

A. The CSS Language

CSS code consists of a list of style rules. Each rule consists
of one or more selectors and a list of declarations. Listing 1
shows the syntax of a CSS rule.

Listing 1: Syntax of a CSS rule.

selector_1,
property_1:

.., selector_n {
value_1;

é;éperty_n: value_n;
}

Selectors specify the set of elements of a document on
which a style applies to. There are three ways to identify an
element in the document. First, an element can be selected
by its name. For example, h1 selects all h1l elements in the
HTML document. Second, elements can be selected based
on attributes they define, such as a unique identifier (of the
form #1id1) or a class that groups multiple elements (of the
form .classl). Third, elements can be selected depending
on their relative position in the document tree. For example,
div > p selects all p elements that are immediate children
of a div element. In addition, selectors can be combined to
obtain more specific selections. In that case, the order of the
selectors is important. For example, p .classl selects all
elements of class class1 that are inside p elements, whereas
.classl p selects all p elements that are inside elements
of class classl.

Declarations of a rule define the style of elements selected
by this rule. A declaration consists of a property and a value.
Each property has a finite set of possible values defined in the
CSS specification.

Different style rules can select the same elements and
apply values to the same properties. When several rules define
conflicting properties to a same element, the selector with the
highest specificity® wins. Last, if several selectors have the
same specificity, the last selector defined in the CSS file wins.

The order of style rules in a CSS file therefore has an impact
on the rendering of HTML documents, and thus is part of the
semantics of the CSS file. Consider the HTML document in
listing 2 that contains a div block using style rules from
both classes classl and class2, and listings 3 and 4 that
report two identical CSS files with the exception of the order
of the rules. The use of one or another CSS file will impact
the rendering of the HTML document. In the case that the first
(resp. the second) CSS file is linked to the HTML document,
eontent (resp. content) will be displayed.

8http://www.w3.org/TR/selectors/#specificity

Listing 2: A div block using style rules from two classes.

<div class= >content</div>

Listing 3: A sample CSS file.

.classl { text-decoration: underline; }

.class2 { text-decoration: line-through; }
Listing 4: Another sample CSS file.

.class2 { text-decoration: line-through; }

.classl { text-decoration: underline; }

B. Handling Duplication in CSS

Duplication can arise at different levels in CSS code.
Listing 5 shows examples of duplication at the property level
(font—-size), at the value level (red) and at the declaration
level (margin:0). CSS does not offer any mechanism to
avoid duplication at the property and value levels. Eliminating
duplication at the declaration level is usually done by grouping
selectors, as shown in Listing 6. However, this mechanism may
reduce code readability. Indeed, declarations of a particular
selector might be placed in multiple rules, and the number of
selectors for a particular rule might be very high. Another way
to eliminate duplication at the declaration level is to introduce
a new class instead of grouping selectors. This solution implies
to modify HTML documents. Thus, the lack of advanced
mechanisms to handle duplication has led to the emergence
of CSS extensions languages.

Listing 5: Property, value and
declaration duplication.

Listing 6: Eliminating dupli-
cation by grouping selectors.

#idl | #idl, #id2 {
font-size: 1l.lem; margin: 0;
background: red; }
margin: O; #idl {

} font-size: 1.lem;

background: red;

#id2 | }
font-size: 1.2em; #id2 {
color: red; font-size: 1.2em;
margin: 0; color: red;

} }

Several languages have emerged to extend CSS by provid-
ing advanced mechanisms that are not available to the last
CSS specification (CSS3). The most well-known extension
languages are Sass, Less and Stylus’. Programs written in
these languages are compiled into low level CSS code. They
support variables to avoid duplication at the value level. In this
paper, we focus on duplication at the property and declaration
levels. Extension languages provide the notion of mixins to
avoid these kinds of duplication. A mixin is similar to a macro
function and can be parametrized by variables. An example of
the use of mixins in Sass is depicted in Listing 7 whereas
Listing 8 shows the corresponding generated CSS code.

9https://learnboost.github.io/stylus

Listing 7: A sample mixin in
Sass factorizing two declara-
tions.

Listing 8: Generated CSS
code from the Sass code in
Listing 7.

@mixin config($s) { #idl {

font-size: $s; font-size: 1.lem;
margin: 0; margin: 0;
} background: red;
#idl | }
@include config(l.lem);
background: red; #id2 {
} font-size: 1.lem;
#id2 | margin: 0;
@include config(l.lem); color: red;
color: red; }

}

Identifying mixins in existing CSS code is made challenging
by the number of possible combinations of all the declarations.
Because mixins can be combined as well, this number of
possible combinations may explode. Consequently, extracting
mixins from a CSS file becomes a cumbersome task.

III. OUR APPROACH

Our approach applies formal concept analysis to automate
the extraction of mixins from CSS files. Mixins are identified
from a Galois sub-hierarchy (GSH) which is a Directed
Acyclic Graph. In this section, we first describe how to
generate a GSH from a CSS file and then we detail how to
extract mixins from this structure.

A. Generating the GSH

Formal Concept Analysis [4] (FCA) is a branch of lattice
theory [5], [6] that aims at automatically finding groups of
objects that share in common a group of attributes. FCA works
on a specific type of data, named a formal context, in which
objects are described by several attributes. A formal context
is a triple K = (O, A,I), where O and A are finite sets of
objects and attributes, respectively, and I C O x A is a binary
relation associating objects with attributes: (o0, a) € I if object
o has attribute a.

When building a formal context from a CSS file, objects
(O) are CSS selectors (e.g. h1l) and attributes (A) are both
CSS properties (e.g. color) and CSS declarations (e.g.
color:black). Hence, duplication at the property and dec-
laration levels can be easily detected. Let’s consider the CSS
code depicted in Listing 9 to illustrate the notion of formal
contexts. This example defines five rules containing from one
to four declarations. Table I shows the corresponding formal
context |O] x |A].

Listing 9: A sample CSS code.

body { .error {
font-size: lem; font-size: 1.3em;
padding: 0; color: black;

} font-weight: 200;

a { margin: 10px;
color: black; }

} #content {

.info { font-size: lem;
font-size: 1.2em; padding: 0;
color: black; color: black;
font-weight: 100; font-weight: 100;
margin: 5px; }

TABLE I: The formal context corresponding to the CSS code
of Listing 9.

ol o
£l § SIS
Bl 4] @ TS <
= =] - = g 2| =] = il &
.. < = = = v —
ol o o] o y = | .Bh o) &b I
NI N N| N2 R0 [- = - = =T
Zl 2| 7 7| g 8] | 2| 2| 5| 5| E| E| £
sl Ll L] L] Bl 3| 8| B &| L| 4| B0 Bof B0
= S| €| | Bl T S| & =} = = S| S| =
Ll | | L| & & 3| 3| L| L| Ll E| E| E
body
a
.info
.error
#content

Let X CO,YCA, f(X)={ac A|Voe X, (0,a) € I}
and g(Y) ={o€ O |Va €Y, (o,a) € I}, then f(X) gives all
the attributes shared by the objects contained in X, and ¢(Y)
gives all the objects sharing the attributes contained in Y. For
example, in the formal context of Table I, f({body,.info}) =
{font-size} and g({padding:0}) = {body, #content}.

A concept is a pair of sets (X,Y) such as X = g(Y)
and Y = f(X). In other words, a concept is a maximal
collection of objects sharing common attributes. In the formal
context of Table L, the objects {.info, .error, #content} and the
attributes {font-size, color, color:black, font-weight} constitute
a concept because these attributes together describe only these
objects, and these objects together share no other attributes.
Conversely, the objects {a,.error, #content} and the attributes
{color, color:black} do not constitute a concept because these
attributes describe also the object .info. For a concept (X,Y),
the set of objects X is the extent and the set of attributes Y
is the intent.

The set of all the possible concepts extracted from a formal
context forms a complete partial order and can be ordered in
a lattice. The subconcepts (resp. superconcepts) of a concept
¢; = (X;,Y;) are the concepts ¢; = (X;,Y;) suchas X; C X;
or, equivalently, ¥; C Y; (resp. X; C X; or Y; C Y)).
The result of the application of FCA on a formal context
is the concept lattice. Figure 1 shows the concept lattice
corresponding to the formal context of Table I. The source
of an edge is the superconcept and the destination is the
subconcept. The fop concept represents the attributes shared
by all the objects and the bottom concept represents the objects
that have all the attributes. In this example, the top concept has
an empty intent and the bottom concept has an empty extent.

The simplified extent (resp. simplified intent) of a concept
(X,Y) is the set X’ C X (resp. Y’ C Y) of objects (resp.
attributes) of this concept that are not in the extent of its
subconcepts (resp. in the intent of its superconcepts). The
simplified intent and extent are shown in bold in Figure 1. A
simplified lattice is a lattice containing the simplified extent
and the simplified intent of the concepts.

The GSH [5] is a simplification of concept lattice. Concepts
with empty simplified extent and simplified intent are dis-
carded. Figure 2 shows the GSH corresponding to the concept
lattice of Figure 1. In this example, top and bottom concepts

/'

body
a

.error
.info
#content

—

a

color
color: black

\/

font-size

font-weight

/\

margin

.error

font-size: 1.3em
font-weight: 200
margin: 10px

S

body

font-size: 1em
padding
padding: 0

font-weight: 100

.info

font-size: 1.2em
margin: 5px

#content

body
.error
a .info
#content
color
color: black font-size
.error \
.info body
#content #content
font-size font-size
color font-size: 1em
color: black padding
font-weight padding: 0
.error .info
.info #content
font-size font-size
color color
color: black color: black
font-weight font-weight
margin font-weight: 100
.error .info #content
font-size font-size font-size
font-size: 1.3em font-size: 1.2em font-size: 1em
color color padding
color: black color: black padding: 0
font-weight font-weight color
font-weight: 200 font-weight: 100 color: black
margin margin font-weight
margin: 10px margin: 5px font-weight: 100
font-size

font-size: 1em
font-size: 1.2em
font-size: 1.3em
padding
padding: 0
color

color: black
font-weight
font-weight: 100
font-weight: 200
margin

margin: 5px
margin: 10px

Fig. 1: Concept lattice corresponding to the formal context of
Table I. Simplified intents and extents are shown in bold.

have been removed. While the number of concepts in a lattice
can be exponential, it is at most equal to the number of objects
and attributes (|O| + |A]) in a GSH [7]. Finally, Galois sub-
hierarchies — which are Directed Acyclic Graphs — are the
cornerstone for the identification of mixins.

B. Extracting mixins from the GSH

Our algorithm for mixins extraction takes as input a topo-
logically sorted list of concepts extracted from the GSH, and
generates as output both a set of mixins and a set of CSS rules.
We define a filtering mechanism to discard irrelevant mixins
before the generation phase.

1) Filtering irrelevant concepts: To discard irrelevant mix-
ins, we remove concepts of the GSH. Removing a concept
from the GSH modifies the simplified intent of its subconcepts.

Fig. 2: GSH obtained from the concept lattice of Figure 1.

The content of the simplified intent of the removed concept is
duplicated in the simplified intent of each of its subconcepts.
Conversely, the simplified extent is not modified.

Four data are available to decide whether a concept has
to be filtered out or not: its extent, intent, superconcepts and
subconcepts. Any filtering function can be developed based
on this information. Several filtering methods can be applied
successively.

a) Our first filtering method: In this study, we consider
a mixin irrelevant if (1) it is not used enough, (2) it does
not introduce enough declarations, or (3) it takes too many
parameters. For each concept, these criteria are checked using
(1) the number of direct subconcepts, (2) the number of
declarations and properties in the simplified intent, and (3) the
number of properties in the intent. Thresholds are associated
to each of these criteria and concepts that do not fulfill
one of them are filtered out. Concepts with a non-empty
simplified extent can not be discarded because the selectors
they introduce would be lost. Consequently, when a concept
with a non-empty simplified extent has to be filtered out, only
edges with its subconcepts are suppressed if they exist.

Figure 3 shows a concept filtering on the GSH of Figure 2.
The numbering of concepts in this figure is only used to
ease their identification in the discussion. In this example,
we set the minimum number of children to 2, the minimum
number of declarations to 1 and the maximum number of
mixin parameters to 3. Concept#l and Concept#4 had only
one subconcept each. Hence, the edge with their subconcept
is removed. Their simplified intent is thus duplicated in the
simplified intent of their subconcept. Other concepts with a
non-empty simplified extent are kept because they do not
have more than three properties and introduce at least one
declaration or property.

b) Our second filtering method: We propose another
filtering function to meet developer needs, that can be applied
in combination to the threshold-based method presented above.
Concepts factorizing different kinds of properties are consid-
ered irrelevant and thus filtered out. Hence, mixins contain
only related properties, such as ones describing background,

1) a
E
color -
color: black font-size
‘3 ‘4 body
color font-size: 1em
color: black padding
font-weight padding: 0
E E
margin font-weight: 100
7| .error \/ ‘ 9| #content
‘s.mm
font-size: 1.3em font-size: 1em
font-weight: 200 font-size: 1.2em padding
margin: 10px margin: 5px padding: 0

Fig. 3: Concept filtering on the GSH of Figure 2.

animation or font. In order to determine whether two properties
are related or not, we rely on data from the w3schools'® web-
site which provides a classification of all the CSS properties
in several groups. Thus, we consider two properties related if
they belong to the same group.

2) Generating mixins and CSS rules: Before generating
mixins and CSS rules, properties that have a corresponding
declaration in the simplified intent of a concept are removed.
For instance, in Figure 3, Concept#] has both a property
color and a declaration color:black. The color prop-
erty is thus removed.

A mixin is generated when a concept has at least one
subconcept and a CSS rule is generated when a concept has
a non-empty simplified extent. For instance, in Figure 3, a
CSS rule is generated from Concept#8 and a mixin from
Concept#6. Listing 10 reports the Sass code generated with our
approach from the GSH of Figure 3. Four mixins are generated
corresponding to the concepts having subconcepts. When a
concept has both a non-empty simplified extent and one or
many subconcepts, a mixin and a CSS rule are generated. CSS
preprocessors, such as Sass and Less, have a limited support
of CSS rules inheritance: nested selectors can not be extended.
For instance, it is not possible to extend the selector .a #b.
This is why we generate both a mixin and a CSS rule for these
concepts.

A mixin call is generated when there is an edge between
two concepts. Calling a mixin requires to provide a value to
each of its parameters. A track between parameter and the
associated property is preserved. This allows to ensure the
right order of parameters in mixin call. If a parameter has a
matching declaration, i.e. a declaration with the same property,
the corresponding value is used in the mixin call. Declarations
that match a parameter are removed if they are in the simplified
intent. If a parameter does not have a matching declaration,
an abstract value is used in the mixin call. Abstract values
will be set by subconcepts. Consider the mixin call between
Concept#2 and Concept#3 on Figure 3. Since Concept#3 does
not have a declaration that matches the property font-size,

10http://www.w3schools.com/cssref/

an abstract value is used in the mixin call (line 5 in Listing 10).
Conversely, the value 1em is used for the mixin call between
Concept#2 and Concept#4 (line 31 in Listing 10).

Generating a mixin from a concept is a three-step process.
Firstly, a generic name is generated for the mixin. The list of
all the selectors from which the properties and declarations are
factorized is advised in comments ahead the mixin definition.
Secondly, mixin calls are generated for each of the supercon-
cepts, and the remaining declarations in the simplified intent
are added to the content of the mixin. Thirdly, parameters list
of the mixin is calculated. Properties in the simplified intent
and abstract values in mixin calls constitute the parameters
list. No particular order is used for the parameters list. For
instance, in Figure 3, Concept#2 generates a mixin with
one parameter corresponding to its property font-size
(line 1 in Listing 10). There is no other parameter since
it does not have any superconcept. Conversely, Concept#5
generates a mixin with three parameters (line 12 in Listing 10):
one corresponding to its property margin and two others
(font-weight and font-size) from its superconcepts.

Generating a CSS rule from a concept is a two-step process.
Firstly, selectors are obtained from all the simplified extent’s
elements joined with commas. Secondly, as for mixin genera-
tion, mixin calls are generated and the remaining declarations
in the simplified intent are added to the content of the rule. The
generation is then finished since concepts with a non-empty
simplified extent have only declarations in their simplified
intent. For instance, Concept#9 in Figure 3 generates a CSS
rule with one declaration and one mixin call since it has one
superconcept (line 23 in Listing 10).

It has to be mentioned that the compilation of Sass code into
CSS code does not handle multiple inclusion of a particular
declaration. Considering Sass code of Listing 10, the CSS
rule .info (line 19) has two mixin calls and both of them
includes mixin m3. Consequently, all declarations introduced
in m3 will appear twice in .info. Sass does not check if
declarations already exist before inserting them. The only issue
of this behaviour is the size increase of the generated CSS
code. Listing 11 reports the CSS code compiled from the Sass
code of Listing 10 for the rule .info. In fact, the problem
occurred when a concept has at least two paths to the same
superconcept: it is known as the diamond problem in the field
of object-oriented languages. To overcome it we compute a
spanning arborescence on the GSH to turn it into a tree. As
for the filtering step, the simplified intent of some concepts
are duplicated because of the removal of some edges. We
make this transformation optional since less refactorings are
available.

Listing 11: Excerpt of the CSS code compiled from the Sass
code of Listing 10.

.info {
color: black; font-size: 1.2em; font-weight: 100;
color: black; font-size: 1.2em; font-weight: 100;
margin: 5px;

}

Listing 10: Sass code generated from the GSH of Figure 3.

@mixin m2($s) {
font-size: $s;

}

@mixin m3(Sw, $s) {
Q@include m2 ($s);
font-weight: S$w;
color: black;

}

9 @mixin m6(S$s) {

10 @include m3 (100, $s);

11}

12 @mixin m5(m, Sw, $s) {

® 9o v oe W N e

13 Q@include m3 ($w, $s);

14 margin: $m;

15 }

16 a {

17 color: black;

18 }

19 .info {

20 @include m6 (1l.2em);

21 @include m5 (5px, 100, 1.2em);
22}

23 #content {

24 @include m6 (lem) ;

25 padding: 0;

26}

27 .error {

28 @include m5(10px, 200, 1.3em);
29 }

30 body {

31 @include m2 (lem) ;

32 padding: 0;
33 }

C. Ensuring CSS rendering preservation

In Section II-A page 2, we highlight the importance of style
rules order in a CSS file on the rendering of web document. To
preserve the semantics of a CSS file, we refine the objects —
the CSS selectors — by adding line numbers to the initial CSS
file. Thus, objects with the same name can be distinguished
by FCA.

Consider the sample CSS file in Listing 12. When ob-
jects are only CSS selectors, the formal context contains
one object (.info) with 4 attributes (color, color:black,
margin, margin:5px) and generates only one concept:
({.info}, {color, color:black, margin, margin:5px}). At this
step, we lose the information that the selector was de-
fined in two different places. Finally, the concept generates
only one CSS rule .info that contains two declarations:
color:black and margin:5px. Hence, we can not guar-
antee that the semantics of the initial CSS file is preserved.
Conversely, when adding line number information to CSS
selectors, the formal context contains two objects: .infol and
.info4. These object identifiers mean that two rules located at
lines 1 and 4 share the same selector . info. This formal con-
text generates two concepts ({.infol},{color,color:black})
and ({.info4}, {margin, margin:5px}) Consequently, two dis-
tinct rules are generated. They are then sorted to be in the same
order as in the initial CSS file. Finally all selectors grouped in
a same rule by our approach are splitted across different rules,
except if they were already in the same rule in the original file.
Duplication introduced while splitting selectors can be avoided
with mixins that are named differently.

TABLE II: Mocss options.

Option Description

max-parameters
min-children
min-declarations
groups-filter
no-duplicates-into-rule
keep-semantic

avoid mixins with too many parameters

avoid mixins not used enough

avoid mixins introducing not enough declarations
generates mixins factorizing common properties
avoid duplication as depicted in Listing 11
determines whether semantics of the input file has
to be preserved

Listing 12: Sample CSS file.

black; }
5px; }

.info { color:
.info { margin:

The semantics preservation of the original CSS file is
performed by default but it can be disabled. We apply the
following procedure to check the semantics validity of the
generated file. Once the file containing the mixins is generated,
we compile it and compare the result to the original CSS file.
Then, we check that exactly all CSS rules of the original file
are present in the same order and contain exactly the same set
of declarations.

D. Tool Implementation

We have implemented our approach to automatically iden-
tify mixins from CSS code in a Java open source tool, named
Mocss, that we make publicly available on GitHub!'. Mocss
takes as input a CSS file and generates equivalent Sass code
that uses mixins to reduce code duplication. The tool is
currently distributed as a command-line program that accepts
several parameters to control generated code, as described in
Table II. We rely on the work of Mazinanian and Tsantalis
[8] to define the default values of the first three options. They
conduct an empirical study on the CSS preprocessor codebase
of 150 websites and investigate the usage pattern of four
language features including mixins. They find out that 63% of
the mixins are called two or more times (min-children = 2),
and 68% of the mixins have either one or no parameters
(max-parameters = 1). We empirically evaluated that 3 seems
a sensible value for the min-declarations option.

IV. EVALUATION

To assess our approach, we perform two experiments and
several case studies. First, we evaluate the time performance
of our approach, to ensure that it is usable by developers on
real projects. Second, we assess the effect of the thresholds
described in the previous section on the number of generated
mixins. Finally, we describe several case studies where our
approach has been used by professional developers on CSS
code coming from projects they work on.

A. Experiments

In the experiments described in the remainder of this
section, we apply our approach on 108 CSS files. We use
the data from the evaluation of Mazinanian et al. [1] which

https://github.com/acharpen/mocss

TABLE III: Selected subjects.

#CSS #CSS #CSS #CSS
Web app. files! files? Web app. files' files?
Facebook 6 7 Pinteerst 2 3
YouTube 4 5 Reddit 1 2
Twitter 2 1 Tumblr.com 2 3
YahooMail 3 9 Wordpress.org 1 3
Outlook.com 6 11 Vimeo.com 3 2
Gmail 5 5 Igloo 2 2
Github 2 1 Phormer 1 1
Amazon.ca 3 3 BeckerElectric 1 0
Ebay 2 2 Equus 1 1
About.com 1 1 ProToolsExpress 1 3
Alibaba 3 0 UniqueVanities 3 3
Apple.ca 3 4 ICSE12 3 4
BBC 3 1 EmployeeSolutions 3 5
CNN 1 0 SyncCreative 3 3
Craiglist 1 3 GlobalTVBC 5 6
Imgur 2 1 Lenovo 1 1
Microsoft 1 1 MountainEquip 2 3
MSN 1 1 Staples 2 1
Paypal 1 3 MSNWeather 3 3

I Number of CSS files used in the study of Mazinanian et al. [1].
2 Number of CSS files used in this study.

contains CSS files from 38 real-world web applications. They
extracted 155 CSS files from these web applications. However
some of them contain invalid CSS code and consequently they
might raise parsing errors. Table III summarizes, for each of
the 38 web applications, the number of CSS files analyzed by
Mazinanian et al. and the number of CSS files successfully
parsed by the parser we rely on'?. As a result, we analyze
108 CSS files (69%) while Mazinanian did et al. 90 (58%).
1) Performance Evaluation: We evaluate our tool according
to two CSS file characteristics: the number of rules and the
number of declarations. Figure 4 shows the distributions of
these two characteristics among the 108 CSS files of our study.
One can note that 75% of these CSS files have less than 691
rules (resp. 1,768 declarations) and the median is 227 rules
(resp. 571 declarations). The maximum number of rules (resp.
declarations) in this set of CSS files is 3,981 (resp. 12,674).
We empirically evaluate that keep-semantic is the only
option having an impact on the execution time. Indeed, by
preserving the order of selectors, more objects are included
into the formal context and thus more concepts are inserted in
the generated Galois sub-hierarchy. For the sake of readability
we only report the time performance of one configuration: the
default one because it is likely to be the most used and it en-
ables semantic preservation. Further, we provide all necessary
data to analyze time performance of other configurations'3. We
run our tool ten times on each of the 108 CSS files and plot
the median of these ten executions on Figure 5. The curves on
the two figures represent the interpolation of the median times.
Our test machine is a 2.10Ghz Core i7-4600U with 16GB of
RAM. Overall, Mocss handles 63% of the CSS files in less
than one second, and 83% in less than two seconds. Thus, in
most of the cases, the results of Mocss are almost immediate.

Zhttps://github.com/phax/ph-css/releases/tag/ph-css-4.0.1
Bhttp://www.labri.fr/perso/acharpen/icsme 1 6/materials.zip

227 3981 571 12674
#Rules

......‘

#Declarations

(a) Rules number of the 108 CSS
files.

Fig. 4: Characteristics of the 108 CSS files used in the
experiment.

(b) Declarations number of the 108
CSS files.

114 114
101 104
— 9 — 9
» 8- %)
° T 8-
c =
g 7 S 74
[[
D 6+ Q 5.
(2] 2]
£ 54 £ 5-
o 44 O 44
£ 5. £ 4
= = 27
24 24
14 14
O- T T T T T 0- T T T
0 1000 2000 3000 4000 0 5000 10000
#Rules #Declarations

(a) Running times according to the
number of rules.

(b) Running times according to the
number of declarations.

Fig. 5: Running times of our tool on the 108 CSS files
according to the number of rules (left) and declarations (right).

More precisely, 85% of the CSS files that have a number of
rules lower than 691 or a number of declarations lower than
1,768 are processed by Mocss in less than one second, and
all these files in less than two seconds. For the largest files
of our corpus, Mocss running time is about eleven seconds,
which is still acceptable. To conclude, this experiment shows
that our tool is usable by developers on real projects.

2) Thresholds Evaluation: Mocss has three thresholds that
enable a fine-grained control on the generated mixins: min-
children, min-declarations and max-parameters. We evaluate
each of them individually on the set of 108 CSS files with
values ranging from 0 to 10. When a threshold is evaluated
the others are disabled in order to guarantee the measures
validity. Therefore, for each threshold and CSS file, we obtain
11 values corresponding to the number of mixins generated
by Mocss for a specific configuration on this CSS file. We
report only results for two CSS files in Figure 6 for the sake
of readability: the file having the maximum number of CSS
rules and the one with a number of rules close to the median.

Overall, the thresholds allow to reduce significantly the
number of generated mixins. Thresholds min-children and min-
declarations have a larger impact on the number of generated
mixins than max-parameters. The number of generated mixins
decreases very quickly when setting a value greater or equal
to 2 for min-children and min-declarations. Further, there are
only few mixins with more than 3 parameters: only a few
additional mixins are generated when setting a value greater
than 3 for this threshold.

- - FileMedianRules — FileMaxRules

- - FileMedianRules — FileMaxRules

1250
1000
750
500
250

#Mixins

- - FileMedianRules — FileMaxRules

1250 1250
1000 1000
2 750 2 750

X x
= 500 S 500

** **
250 250
e il 0

0o 1 2 3 4 5 6 7 8 9 10
#Children

(a) min-children

#Declarations

(b) min-declarations

i 2 3 4 5 6 7 8 9 10
#Parameters

(c) max-parameters

Fig. 6: Evolution of the number of generated mixins according to each of the three thresholds: (a) min-children, (b) min-

declarations and (c) max-parameters.

B. Case Studies

The case studies we conduct aim at getting some insight
about the real-world relevance of our approach. Hence, we
seek the opinion of developers that are more than familiar
with CSS. We investigate the relevance of the thresholds and
configuration options of our approach as well as its produced
output.

1) Research Methodology: Four developers participated to
the evaluation of our approach: Three are web developers from
local companies. They all work everyday with CSS, and thus
are more than knowledgeable about CSS and its extension
languages, including Sass. The fourth one is a faculty member
of our University. He is used to give lectures on web related
technologies, including CSS and its preprocessors.

We conduct a survey that include open-ended questions
through a Google form. Therefore, participants have unlimited
time to complete the survey. They are asked to evaluate our
tool on websites they designed. Each participant is allowed to
perform the evaluation on several projects. For each of them, a
two step process has to be conducted. First, she runs the tool
on a CSS file and has to determine the number of relevant
mixins from the whole set of results. In case she finds some
irrelevant mixins, she is asked to explain the reasons. This step
aims at investigating the default values of the configuration
parameters of the tool. Similarly, the second step aims at
evaluating the impact of the thresholds on the number of
relevant generated mixins. This step can be skipped when
the default configuration reports only relevant mixins. Each
participant is asked to test different values for the parameters
and to determine which configuration produces the best results,
i.e. the highest ratio of mixins that are relevant and useful
according to her. Once the survey is completed, participants
are asked to give their feelings on the tool.

Table IV reports the raw results of these case studies,
including the number of rules and declarations of the different
CSS files. Participant#1 evaluates our tool on three CSS files:
two of them are in plain CSS while the last is written in
Sass. One can note that the first two are medium sized while
the last is large sized. For this last CSS file, the compiled
version is used as the input of our approach. By evaluating

our tool on CSS code generated from Sass, we can evaluate
to what extend we can find mixins that were in the original
Sass code. Participant#2 and Participant#3 conduct the survey
on medium sized CSS files, while participant#4, who refers
to the faculty member of our University, uses a small sized
CSS file.

2) Results: The default configuration of our tool reports
203 mixins on the first CSS file considered by Participant#1.
According to him, 198 (97%) were relevant and 5 were not
used enough to be useful. He modified the value of the
threshold min-declarations from 3 to 4 to obtain the best
configuration. The latter reported 118 mixins that are all
relevant. This first CSS file is the one generated from Sass
code. Participant#I noticed that our tool found almost all of
his mixins and a lot of new ones. For the two other CSS files
he analyzed with our tool, the default configuration identified
respectively 15 and 11 mixins. In both cases, the whole set of
mixins were relevant. Overall, he found the tool easy to use
and very interesting to migrate a website from CSS to Sass.

For participant#2, 12 mixins from the 37 (32%) reported
by our tool were relevant. Irrelevant mixins had too many
parameters and factorized properties that are not related. He
did not identify a better configuration than the default one.
According to him, the tool should have proposed to factorize
related properties. We found his suggestion really interesting
and discussed on it through emails. We have implemented this
new way to filter mixins, as discussed in III-B1b (Our second
filtering method paragraph). Nevertheless, he did not have time
to test the new version of our tool.

For participant#3, the default configuration identified 25
mixins; 20 (80%) were relevant. Like participant#l, some
mixins were irrelevant because they were not used enough. In
order to reach the best configuration, participant#3 increased
the value of the threshold min-children from 2 to 3. This
custom configuration leads to 19 mixins that are all relevant.
Finally, she found out that the detection of mixins from legacy
CSS code is useful and that our tool is able to identify
interesting mixins.

Farticipant#4 found that all mixins reported by the default
configuration were relevant. He considered the detection of
mixins from CSS code interesting and found out that our

TABLE IV: Characteristics of the websites used in the case studies along with information about the mixins identified with

the default and best configurations.

Default configuration Best configuration'

Participant Source Generated file #Rules #Declarations #Total mixins %Relevant mixins #Total mixins % Relevant mixins
1 professional yes (with Sass) 2,819 6,133 203 97% 118 100%
1 personal no 194 721 15 100% - -
1 personal no 104 327 11 100% - -
2 professional no 327 1,014 37 32% - -
3 personal no 258 821 25 80% 19 100%
4 personal no 97 255 5 100% - -

! When default and best configurations are the same, the last two columns are left blank.

approach fits his needs.

All participants found that the tool’s running time is more
than satisfactory. Furthermore, most participants did not find
mixins’ naming too hard. They reported that the comment
inserted by the tool before a mixin simplifies the naming.
This comment includes the name of the selectors from which
declarations have been factorized.

3) Threats to validity: Our case studies bear one threat
to internal validity: participants are contacts of our research
group and thus their answers may have been influenced.
Nevertheless, they are all professional and therefore we are
confident they gave fair answers.

Threats to external validity refer to the generalization of
our findings. First, the number of CSS files evaluated by each
participant may not be sufficient. Case studies conducted by
these participants on other CSS files may produced different
results. To mitigate this threat, participants chose alone the
CSS files on which they have evaluated our tool and were
able to perform the survey on several CSS files. Second, only
four developers have evaluated our tool. However, they all are
experts on CSS and its preprocessors, and their participation to
the survey was voluntary. Third, participants skipped second
step of the case study when the default configuration reported
only relevant mixins. But even in that case, testing different
values for the parameters could have been valuable. Indeed,
different values for the parameters could produce more mixins
that are all relevant. This threat should be addressed in a
replication study in order to complete our results. Finally,
further validation with more participants should be performed
to increase the generalizability of the findings. Nevertheless
our tool seems to have a real-world relevance.

C. Discussion

We discuss here some limitations of current implemen-
tation of our tool. First, generating proper names for the
mixins is important. Providing the list of all the selectors
from which the properties and declarations are factorized
ahead the mixin definition is not helpful enough. Second,
our tool does not correctly handle shorthand properties. A
shorthand property is a CSS property that allows to set the
values of several other CSS properties. For instance, the
declaration border: 1lpx solid red sets 12 different
properties: border—top-color, border—top-style,
border—-top-width and so forth. Hence, some values are

overriden when properties and their corresponding shorthand
properties are in the same CSS rule. This overriding becomes
an issue when it is not possible to determine the final value of
a property. This occurs when the expansion of a declaration
with a shorthand property is ambiguous. In that case, our
tool can not guarantee the CSS rendering preservation of the
original file. Considering the following valid CSS declaration:
border: solid. In this example, the values of properties
border—color and border—-width can not be resolved
by analyzing a CSS file because default values defined on the
client side (web brower or user preferences) are used.

V. RELATED WORK

We divide related work into two groups. First, we discuss
the different issues investigated by the research community
on CSS code. Then, we provide a brief overview of the many
uses of formal concept analysis in software engineering.

Cascading style sheets

A number of studies have been conducted on developers’
experience with CSS and how to improve it. Quint and Vatton
[9] provide an overview of style issues a web author is faced
with and solutions to address these difficulties. They provide a
web authoring environment implementing the proposed solu-
tions. They argue that some issues of editing style sheets have
to be investigated. Keller and Nussbaumer [10] introduce an
abstractness factor for measuring CSS code quality. They argue
that a high abstractness factor represents a high reusability and
maintainability of CSS code. They conduct an empirical study
on human-written CSS code and generated CSS code, and they
find that manual CSS code has a higher abstractness factor
than generated code. Liang et al. [11] present a tool, called
SeeSS, that aims at automatically tracking CSS change impact
across an entire website and helping developers visualize them.
Participants of their case study indicate fixing CSS problems
more quickly when using SeeSS. Mesbah and Mirshokraie
[12] present a technique to automatically detect unmatched and
ineffective CSS code by analyzing the relation between CSS
rules and DOM (Document Object Model) elements of web
applications. They implement their approach in a tool called
Cilla. Similarly, Geneves er al. [13] focus on static analysis
for CSS style sheets. They propose a tool based on tree logics
that is capable of detecting a wide range of errors in CSS
code. Following on from the work of Geneves et al., Bosch et

al. [14] present a tool of static CSS semantical analyzer and
optimizer that aims at automatically detecting and removing
unnecessary property declarations in CSS files.

Several studies have been conducted on the detection of
duplication in web artifacts. Most of them focus on finding
web pages with similar content [15], [16] or structure [17],
[18]. Few studies focus on the detection of duplication in
CSS code. Mao et al. [19] present an automated process
for migrating websites from table-based layout to the style-
based layout. They use clone detection to find the duplicated
code across CSS files. The work of Mazinanian et al. [1]
is the most closely related work to this paper. They define
three types of CSS declaration duplication and propose an
automated technique to eliminate those instances. Conversely
to our approach, they identify only duplication at the decla-
ration level because they rely on the mechanisms available in
CSS (see Section II-B). Their technique eliminates duplicated
CSS declarations by grouping selectors as depicted Listing
6, and uses DOM tree instances from web applications to
find presentation-preserving refactorings, and thus to preserve
the CSS semantics. They conduct an empirical study on 38
real-world websites and find that the extent of duplication in
CSS code is extensive ranging from 40% to 90%. They also
find that the number of presentation-preserving refactorings
is significant. Differences with our work are due to the
possibilities offered by CSS preprocessors over just the CSS.

Several extension languages have emerged to overcome the
limitations of the CSS language. Badros et al. [20] propose a
constraint-based style sheet model, called CCSS. Their model
allows more flexible specification of layout and it is compatible
with the CSS2 specification. Marden et al. [21] introduce
another style sheet language, named PSL. More recently, CSS
extension languages — such as Sass, Less and Stylus — offer
among other things the support of mixins.

Formal concept analysis

Researchers apply FCA to debugging [22], [23], testing
[24] and refactoring. The refactoring techniques of applying
concept lattice include particularly class hierarchies refactoring
[25], [26], module refactoring [27]-[29] and low-level to high-
level programming refactoring [30], [31]. Our work is close
to class hierarchies refactoring. Lienhard et al. [25] propose a
semi-automatic approach using FCA for the identification of
traits in inheritance hierarchies. Their tool enables a refactor-
ing of class hierarchy with traits which preserves the initial
behavior of each of the classes. They validate their approach
with a case study and find that their refactorings are similar to
the ones obtained manually. Snelting and Tip [26] present a
method based on FCA for finding design problems in a class
hierarchy by making the relationship between class members
and variables explicit. They show their technique to be capable
of identifying design anomalies such as class members that are
redundant or that can be moved into a derived class.

To the best of our knowledge, using FCA to automatically
extract mixins from CSS file has not been addressed in the
literature.

VI. CONCLUSION AND FUTURE WORK

The CSS language is widely adopted in web development
and it is now common for web projects to have several
thousands of CSS lines of code. Although its use is almost
mandatory, the language lacks many of the advanced features
programming languages provide to support code reuse. Thus,
extension languages such as Sass have emerged to extend
CSS capabilities. Programs written in these languages are
then compiled into low level CSS code. However, migrating
existing CSS code to Sass is challenging for web developers
because of the lack of tool support.

In this paper, we have presented a new approach to au-
tomatically identify and remove code duplication in CSS
code. Our approach relies on formal concept analysis (FCA)
to automate the identification and extraction of mixins. We
have implemented our approach in a tool named Mocss that
automatically generates Sass code from existing legacy CSS
code.

We perform an experiment on 108 CSS files from real-world
web applications and find that our tool enables a fine-grained
control of the generated code and has good performance as
well. Further, we conduct several case studies to evaluate the
real-world relevance of our approach. We demonstrate that our
tool helps developers removing code duplication by extracting
mixins from existing CSS code. Developers that tested our tool
appreciate the opportunity it provides to automatically migrate
legacy CSS code to Sass.

We are now exploring a number of research avenues. We
are working on some improvements of our tool: we are
adding support for media queries, variables in order to avoid
duplication at the value level, and nesting since developers
widely use it according to Mazinanian and Tsantalis [8].
We are also investigating the use of FCA to identify other
refactoring opportunities of CSS rules. From now, mixins
generated with our approach contain only declarations. Nev-
ertheless, extension languages enable mixins to factorize full
CSS rules. This offers an additional way to reduce the amount
of duplicated code in CSS files. Further, we plan to work
on an extension of our approach: a step-wise approach that
recommends a ranked list of mixin opportunities and allows
developers to preview each one of them in order to assess their
impact on maintainability and understandability. Following
this step-wise approach, developers would give appropriate
names to the mixins.

ACKNOWLEDGMENTS

The authors would like to thank all the participants to the
survey and the case studies.

REFERENCES

[1] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Discovering Refactoring
Opportunities in Cascading Style Sheets,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 496-506. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635879

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

A. Lozano and M. Wermelinger, “Assessing the effect of clones on
changeability,” in IEEE International Conference on Software Mainte-
nance, 2008. ICSM 2008, Sep. 2008, pp. 227-236.

A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto,
“Software quality analysis by code clones in industrial legacy
software,” in Proceedings of the S8th International Symposium on
Software Metrics, ser. METRICS °02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 87-. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=823457.824038

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foun-
dations, 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1997.

M. Barbut and B. Monjardet, Ordre et classification algébre et combi-
natoirs. Hachette, 1970.

G. Birkhoff, G. Birkhoff, G. Birkhoff, and G. Birkhoff, Lattice theory.
American Mathematical Society New York, 1948, vol. 25.

A. Berry, M. Huchard, A. Napoli, and A. Sigayret, “Hermes:
an efficient algorithm for building Galois sub-hierarchies,” in
CLA’2012: 9th International Conference on Concept Lattices and
Applications, U. P. Laszlo Szathmary, Ed. Fuengirola (Mdlaga), Spain:
Universidad de Malaga, Oct. 2012, pp. 21-32. [Online]. Available:
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00743882

D. Mazinanian and N. Tsantalis, “An empirical study on the use of
css preprocessors,” in Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, ser.
SANER 2016, 2016.

V. Quint and I. Vatton, “Editing with style,” in Proceedings of the 2007
ACM symposium on Document engineering. ACM, 2007, pp. 151-160.
M. Keller and M. Nussbaumer, “CSS Code Quality: A Metric for
Abstractness; Or Why Humans Beat Machines in CSS Coding,” in
Quality of Information and Communications Technology (QUATIC),
2010 Seventh International Conference on the, Sep. 2010, pp. 116-121.
H.-S. Liang, K.-H. Kuo, P.-W. Lee, Y.-C. Chan, Y.-C. Lin, and M. Y.
Chen, “Seess: Seeing what i broke — visualizing change impact of
cascading style sheets (css),” in Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST *13.
New York, NY, USA: ACM, 2013, pp. 353-356. [Online]. Available:
http://doi.acm.org.gate6.inist.fr/10.1145/2501988.2502006

A. Mesbah and S. Mirshokraie, “Automated Analysis of CSS Rules to
Support Style Maintenance,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 408-418. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2337223.2337272

P. Geneves, N. Layaida, and V. Quint, “On the Analysis of
Cascading Style Sheets,” in Proceedings of the 21st International
Conference on World Wide Web, ser. WWW °12. New York,
NY, USA: ACM, 2012, pp. 809-818. [Online]. Available: http:
//doi.acm.org/10.1145/2187836.2187946

M. Bosch, P. Geneves, and N. Layafida, “Automated Refactoring
for Size Reduction of CSS Style Sheets,” in Proceedings of the
2014 ACM Symposium on Document Engineering, ser. DocEng ’14.
New York, NY, USA: ACM, 2014, pp. 13-16. [Online]. Available:
http://doi.acm.org/10.1145/2644866.2644885

C. Boldyreft and R. Kewish, “Reverse engineering to achieve maintain-
able www sites,” in Reverse Engineering, 2001. Proceedings. Eighth
Working Conference on, 2001, pp. 249-257.

F. Calefato, F. Lanubile, and T. Mallardo, “Function clone detection
in web applications: A semiautomated approach,” J. Web Eng.,
vol. 3, no. 1, pp. 3-21, May 2004. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2011138.2011140

A. De Lucia, R. Francese, G. Scanniello, and G. Tortora, “Understanding
cloned patterns in web applications,” in Program Comprehension, 2005.
IWPC 2005. Proceedings. 13th International Workshop on, May 2005,
pp- 333-336.

G. Di Lucca, M. Di Penta, and A. Fasolino, “An approach to identify
duplicated web pages,” in Computer Software and Applications Confer-
ence, 2002. COMPSAC 2002. Proceedings. 26th Annual International,
2002, pp. 481-486.

A. Y. Mao, J. R. Cordy, and T. R. Dean, “Automated conversion of
table-based websites to structured stylesheets using table recognition
and clone detection,” in Proceedings of the 2007 Conference of the
Center for Advanced Studies on Collaborative Research, ser. CASCON
’07. Riverton, NJ, USA: IBM Corp., 2007, pp. 12-26. [Online].
Available: http://dx.doi.org/10.1145/1321211.1321214

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

(30]

(31]

G. J. Badros, A. Borning, K. Marriott, and P. Stuckey, “Constraint
Cascading Style Sheets for the Web,” in Proceedings of the 12th
Annual ACM Symposium on User Interface Software and Technology,
ser. UIST "99. New York, NY, USA: ACM, 1999, pp. 73—-82. [Online].
Available: http://doi.acm.org/10.1145/320719.322588

P. M. Marden Jr and E. V. Munson, “Psl: An alternate approach to style
sheet languages for the world wide web.” J. UCS, vol. 4, no. 10, pp.
792-806, 1998.

G. Ammons, D. Mandelin, R. Bodik, and J. R. Larus, “Debugging
temporal specifications with concept analysis,” in Proceedings of
the 2003 ACM SIGPLAN Conference on Programming Language
Design and Implementation. San Diego, CA: ACM, June 2003, pp.
182-195. [Online]. Available: http://research.microsoft.com/apps/pubs/
default.aspx?id=72000

P. Cellier, “Formal concept analysis applied to fault localization,” in
Companion of the 30th international conference on Software engineer-
ing. ACM, 2008, pp. 991-994.

S. Khor and P. Grogono, “Using a genetic algorithm and formal
concept analysis to generate branch coverage test data automatically,”
in Proceedings of the 19th IEEE International Conference on
Automated Software Engineering, ser. ASE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 346-349. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2004.71

A. Lienhard, S. Ducasse, and G. Arévalo, “Identifying Traits with
Formal Concept Analysis,” in Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE °05. New York, NY, USA: ACM, 2005, pp. 66-75. [Online].
Available: http://doi.acm.org/10.1145/1101908.1101921

G. Snelting and F. Tip, “Reengineering class hierarchies using concept
analysis,” in Proceedings of the 6th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. SIGSOFT
"O8/FSE-6. New York, NY, USA: ACM, 1998, pp. 99-110. [Online].
Available: http://doi.acm.org/10.1145/288195.288273

R. Al-Ekram and K. Kontogiannis, “Source code modularization using
lattice of concept slices,” in Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. Eighth European Conference on, March
2004, pp. 195-203.

H. Kim and D.-H. Bae, “Object-oriented concept analysis for software
modularisation,” IET software, vol. 2, no. 2, pp. 134-148, 2008.

P. Tonella, “Concept analysis for module restructuring,” Software Engi-
neering, IEEE Transactions on, vol. 27, no. 4, pp. 351-363, Apr 2001.
A. El Kharraz, P. Valtchev, and H. Mili, “Concept analysis as
a framework for mining functional features from legacy code,”
in Proceedings of the S8th International Conference on Formal
Concept Analysis, ser. ICFCA’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 267-282. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-11928-6_19

P. Tonella and M. Ceccato, “Aspect mining through the formal concept
analysis of execution traces,” in Reverse Engineering, 2004. Proceed-
ings. 11th Working Conference on, Nov 2004, pp. 112-121.

