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Abstract Considerable improvements in the technology and performance of SAT solvers has made their use possible
for the resolution of various problems in artificial intelligence, and among them that of generating plans. Recently,
promising Quantified Boolean Formula (QBF) solvers have been developed and we may expect that in a near
future they become as efficient as SAT solvers. So, it is interesting to use QBF language that allows us to produce
more compact encodings. We present in this article a translation from STRIPS planning problems into quantified
propositional formulas. We introduce two new Compact Tree Encodings: CTE-EFA based on Explanatory frame
axioms, and CTE-OPEN based on causal links. Then we compare both of them to CTE-NOOP based on No-op
Actions proposed in [3]. In terms of execution time over benchmark problems, CTE-EFA and CTE-OPEN always
performed better than CTE-NOOP.
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1 Introduction

An algorithmic approach for plans synthesis is automated compilation (i.e., transformation) of planning problems.
In the Satplan planner [12], a planning problem is transformed into a propositional formula whose models,
corresponding to solution plans, can be found using a SAT solver. The SAT approach searches for a solution-plan
of fixed length k. In case of failure to find such a plan, this length is increased before restarting the search for
a solution. In the classical framework, the complexity of finding a solution to any problem is PSPACE-hard,
but the search for a fixed-size solution becomes NP-hard [2]. This compilation approach directly benefits from
improvements in SAT solvers1. The most obvious example is the planner Blackbox [14, 15] (and its successors
Satplan’04 [11] and Satplan’06 [16]). These planners won the optimal (in the number of plan steps) planning
track of the International Planning Competitions2 IPC-2004 and IPC-2006. This was unexpected because these
planners were essentially updates of Blackbox and did not include any real novelty: improved performance was
mainly due to progresses in the underlying SAT solver.

Numerous improvements of this original approach have been proposed since then, in particular via the devel-
opment of more compact and efficient encodings: [13, 7, 18, 19, 22, 23, 24, 28].

Following these works, numerous other similar techniques for encoding planning problems have been developed:
Linear Programming (LP) [30], Constraint Satisfaction Problems (CSP) [6], SAT Modulo Theories (SMT) [29, 20,
27]. More recently, a Quantified Boolean Formulas (QBF) approach had been proposed by [26, 3]. Currently SAT
solvers outperform QBF solvers and the SAT approach is the most effective because SAT solvers and encodings
have been greatly improved since 1992. However, over the past decade, there has been a growing interest in the
QBF approach. The competitive evaluation of QBF solvers QBFEVAL3 is now a joint event with the international
SAT conference and QBF solvers improve regularly. QBFEVAL’16 had more participants than ever and QBF-
related papers represented 27% of all papers published at SAT’16. Some promising techniques have been adapted

1http://www.satcompetition.org/
2http://www.icaps-conference.org/index.php/Main/Competitions
3http://www.qbflib.org/index_eval.php
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Figure 1: Both possible transitions in a CTE following the branching structure of a QBF: X0 → Xi (from
leaf to node on the left) and Xi → X0 (from node to leaf on the right). Note that i refers to any level
(except for the leaf layer), not only the root.

to QBF solving such as counterexample guided abstraction refinement (CEGAR) [4, 10, 9, 21]. For comparable
SAT / QBF encodings, the QBF approach also have the advantage to generate more compact formulas [3]. Even
if the QBF approach is not as efficient as the SAT approach, it deserves the interest of the community.

Our paper shows that beyond the implementation of solvers, further work must be done to improve the
encodings. In particular, we introduce two new QBF Compact Tree Encodings of STRIPS planning problems:
CTE-EFA based on Explanatory frame axioms, and CTE-OPEN based on causal links. Then we compare both of
them to [3] where CTE-NOOP based on No-op Actions is proposed. In terms of execution time over benchmark
problems, CTE-EFA and CTE-OPEN always performed better than CTE-NOOP.

2 Planning as QBF

In [3], two different approaches of planning as QBF have been proposed: Flat Encoding, that was first introduced
by [25] as an approach to general reachability, and Compact Tree Encoding (CTE). In [3], authors showed that
Compact Tree Encodings outperform Flat Encodings. Both these planning encodings make use of the branching
structure of the QBF to reuse a single set of clauses that describes a single step in the plan. The two assignments
inside each universal variable represent the first and second half of the plan split around that branch. The
assignments to each existential set represent action choices within a single step.

2.1 Preliminary Definitions

Let F be a finite set of fluents (atomic propositions). A STRIPS planning problem is a tuple 〈I,A, G〉 where
I ⊆ F is the set of initial fluents, G ⊆ F is the set of goal fluents and A is the set of actions. An action a ∈ A is
a tuple 〈Pre(a),Add(a),Del(a)〉 where

• Pre(a) ⊆ F is the set of fluents required to be true in order to execute a,

• Add(a) ⊆ F and Del(a) ⊆ F are the sets of fluents respectively added and removed by the action a.

All QBF encodings studied in this paper use propositional variables for actions. The Compact Tree Encoding
proposed in [3] is based on the planning graph introduced in [1] and uses additional no-op actions as frame axioms.
We denote it by CTE-NOOP. Considering every action as a propositional variable, we define a set of propositional
variables X, given by X = A ∪ {noopf | f ∈ F}.

In a CTE formula, we want to select two consecutive steps in order to define transitions (Figure 1). For each
depth i of the tree, Xi denotes a copy of the set of variables X.

For CTE-NOOP, there exists a single variable ai ∈ Xi for each action and a single variable noopf,i ∈ Xi (no-op
action) for each fluent used to determine a transition in the plan. At a same depth i, the value of these variables
depends on the node (corresponding to a step in the plan) selected by the values of upper universal branching
variables bi+1 . . . bdepth. More details can be find in the slides4.

An upper bound on the plan length is 2k+1 − 1, where k is the number of alternations of quantifiers in the
quantified boolean formula associated with the planning problem. In the case of CTE, k is also the compact tree

4https://www.irit.fr/~Frederic.Maris/documents/coplas2018/slides.pdf



depth. The number of possible states for a given planning problem is bounded by 2|F|. Then, the existence of a
plan can be determined using a linear QBF encoding with at most k =| F |.

In the sequel, we propose two new encodings of planning problems into QBF. The first, denoted by CTE-
OPEN, is based on causal links (plan-space). It has been introduced by [19] but needs to be adapted using
additional variables for open conditions. The second, denoted by CTE-EFA, is based on explanatory frame
axioms (state-space) first introduced by [12] and uses variables for fluents as well as for actions.

2.2 Causal Link Encoding: CTE-OPEN

The plan-space encodings of [19] cannot be directly adapted to the CTE. All these encodings refer to three indexed
(not necessarily consecutive) steps of the plan. This is not possible in a CTE because each rule can refer to only
one branch of the tree. To overcome this problem, it would be possible to duplicate the tree by adding, for each
branching variable bi, two more branching variables b′i and b′′i , and for each node Xi, two node copies X ′

i and X ′′
i ,

and equivalence rules
∧

xi∈Xi

(

(xi ↔ x′
i) ∧ (xi ↔ x′′

i )
)

. Unfortunately, this would increase the branching factor
unnecessarily. So, we propose a new plan-space encoding which allows us to only refer to consecutive steps in the
plan.

For every fluent f ∈ F , we create a propositional variable openf to express that f holds in some previous step
and must be protected at least until the current step. In Figure 2, the fluent f is an open condition in step Si,
entailing that either f ∈ I or an action a′ which adds f is executed in a previous step Si−k. Open conditions are
propagated backwards until the initial state or some step in which they are added by an action.

a

f ∈ Pre(a)

openf

Si−1 Si

propagate
openf

Si−k

openf

a′

f ∈ Add(a′)

Figure 2: Causal link: a′produces f for a.

We define the set of “open” variables, denoted as ∆, as ∆ = {openf | f ∈ F}. Considering every action as a
propositional variable, we define a set of propositional variables X, given by X = A ∪∆.

Quantifiers For each depth i of the tree, Xi denotes a copy of the set of variables X. It exists a single variable
ai ∈ Xi for each action used to determine last transition in the plan and a single variable openf,i ∈ Xi for each
fluent used to determine if f is an open condition. At a same depth i, the value of these variables depends
on the node (corresponding to a step in the plan) selected by the values of upper universal branching variables
bi+1 . . . bdepth.

∃
a∈A

adepth. ∃
f∈F

openf,depth.∀ bdepth.

∃
a∈A

adepth−1. ∃
f∈F

openf,depth−1.∀ bdepth−1.

. . .

∃
a∈A

a1. ∃
f∈F

openf,1.∀ b1. ∃
a∈A

a0. ∃
f∈F

openf,0.

In the following, a node now refers to a non-leaf node (i.e., an inner node) and depth is the depth of the tree.
The predecessor of a node at level i is the rightmost leaf of the left subtree. The successor of a node at level i is
the leftmost leaf of the right subtree. In order to select these transitions, we introduce the leaf-to-node operator
left(i) defined as:

left(i) ≡ ¬bi ∧

i−1
∧

j=1

bj .

Symmetrically, we introduce the node-to-leaf operator right(i) defined as:

right(i) ≡ bi ∧

i−1
∧

j=1

¬bj .



Open conditions If an action a is executed in a step of the plan, then each precondition of a must be an
open condition at this step (i.e., a causal link is required for this precondition).

depth
∧

i=0

∧

a∈A



ai ⇒
∧

f∈Pre(a)

openf,i





In the last plan step leading to the goal (i.e. the rightmost leaf of the tree), all the goal fluents must be either
open conditions or added by actions executed in this step.

depth
∧

i=1

bi ⇒
∧

f∈G
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a∈A
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Propagate and close No conditions should remain open in the first plan step (i.e. the leftmost leaf of the
tree) if it is not provided in the initial state.

depth
∧

i=1

¬bi ⇒
∧

f∈F\I

¬openf,0

Any open condition in a step must either remain open or be added (closed) by an action in the previous step.
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Protect open conditions An open condition in a given step cannot be removed in the previous step. This
guarantees not to break any causal link in the plan.

depth
∧

i=1

∧

f∈F









(

openf,i ∧ left(i)
)

⇒
∧

a∈A
f∈Del(a)

¬a0









depth
∧

i=1

∧

f∈F









(

openf,0 ∧ right(i)
)

⇒
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Prevent negative interactions In a given step, if an action removes a fluent which is needed or added by
another action, then these two actions cannot be both executed in this step.

depth
∧

i=0

∧

a∈A

∧

f∈(Add(a)∪Pre(a))

∧

a′∈A
a 6=a′

f∈Del(a′)

(

¬ai ∨ ¬a′
i

)

2.3 State-Space Encoding: CTE-EFA

In this encoding, we define the set of propositional variables as X = A ∪ F . Each step is now defined by a
transition (as in CTE-OPEN) as well as the resulting state (valuation of the fluents in F). The formula is an
adaptation to the CTE of the well known state-space SAT encoding rules based on explanatory frame axioms of
[12].



Quantifiers At each depth i of the tree, it exists a single variable ai for each action used to determine last
transition in the plan and a single variable fi for each fluent used to determine the state. At a same depth i , the
values of these variables depend on the node (corresponding to a transition in the plan and the resulting state)
selected by the values of upper universal branching variables bi+1 . . . bdepth.

∃
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f∈F
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. . .

∃
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a∈A

a0. ∃
f∈F

f0.

Goal In the state after the last plan transition (i.e. the rightmost leaf of the tree), all goal fluents must be
achieved.

depth
∧

i=1

bi ⇒
∧

f∈G

f0

Conditions and effects of actions If an action a is executed in a transition of the plan, then each effect
of a occurs in the resulting state and each condition of a is required in the previous state.
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∧
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a0 ∧ right(i) ⇒
∧
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Moreover, an action which do not have all conditions in initial state cannot be executed in the first plan
transition (i.e. the leftmost leaf of the tree):

depth
∧

i=1

¬bi ⇒
∧

a∈A
Pre(a)6⊂I

¬a0

Explanatory frame axioms If the value of a fluent changes between two consecutive states, then an action
which produces this change is executed in the plan transition between these states.
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An extra rule is also required to describe explanatory frame axioms for the first plan transition from initial
state (i.e. the leftmost leaf of the tree):

∧
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Prevent negative interactions Unlike in CTE-NOOP and CTE-OPEN, contradictory effects are already
disallowed by previous rules (effects of actions). Then, this rule only need to prevent interactions between
conditions and deletes of actions. If an action removes a fluent which is needed by another action, then these two
actions cannot be both executed in a same plan transition.

depth
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∧

f∈Pre(a)
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f∈Del(a′)

(
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)

3 Experimental Trials

To compare these three encodings on a same basis we used our translator TouIST5 [5] that can use several
QBF solvers. We ran all available STRIPS IPC benchmarks (1 through 8, except for the 7th which was not
available and authors did not answer) on an Intel Xeon CPU E7-8890 v4 @ 2.20GHz, 512 GB of RAM. The
domains tested include Gripper, Logistics, Mystery, Blocks, Elevator, Depots, DriverLog, ZenoTravel, FreeCell,
Airport, Pipesworld-NoTankage, Pipesworld-Tankage, PSR, Satellite, OpenStacks, Pathways, Rovers, Storage,
TPP, Trucks, ChildSnack, Hiking, VisitAll and the non-IPC Ferry.

We tried to consider as many QBF solvers as possible using the QBFEval 2017 as a reference. Qute (version of
2017-07-09, based on dependency learning QCDCL) and CaQE (version of 2017-07-08, based on CEGAR clausal
abstraction) were not able to give a valuation for the outer existential quantifier. AIGSolve and Qell weren’t
available for download. GhostQ was skipped (but we should have included it). DepQBF (version 6.03 of 2017-08-
02, based on “generalized Q-resolution”, described in [17]) and RAReQS (version 1.1 of 2013-05-07, based on a
CEGAR approach, detailed in [8]) were the only solvers left. RAReQS was consistently twice as fast as DepQBF,
we thus dismissed DepQBF and only shown results for RAReQS. Finally, we did not apply any QBF preprocessor
(e.g., Bloqqer).

5https://www.irit.fr/touist
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Figure 3: Plan decision time (EFA/OPEN vs NOOP).

Encoding Solved problems Decision Time Literals Clauses Transitions-over-nodes ratio

CTE-NOOP 412 over 2112 (20%) 0% 0% 0% 30%
CTE-EFA 463 over 2112 (22%) -55% -26% +15% 47%
CTE-OPEN 445 over 2112 (21%) -41% -2% -28% 17%

Table 1: Comparison of the presented encodings across 65 STRIPS domains from IPC 1 through 8 (IPC 7
excepted) with a total of 2112 problems. Decision time, literals count, clauses count and the transitions-
over-nodes ratio are averages. The transitions-over-nodes ratio measures the quantity (in average) of
transition-based constraints over node-based constraints.

We ran these benchmarks using our new encodings CTE-EFA and CTE-OPEN as well as the state-of-the-art
compact tree encoding (CTE-NOOP). We compared them two-by-two by considering the time needed to prove
the existence of a plan (decision time, Figure 3) and the overall time required to obtain a plan (extraction time,
Figure 5). The “decision” step consists of launching incrementally the QBF solver on a CTE of increasing depth
until the solver returns true or reaches the upper bound (total number of fluents). The “extraction” step consists
of one solver launch per node of the tree in order to retrieve the plan. Each experiment had a 60 minutes6 timeout
for searching the plan and 60 minutes for extracting it. The benchmark results are available as an Excel file7.

The results show that our encodings CTE-EFA and CTE-OPEN are more efficient than CTE-NOOP both in
plan existence as well as in plan extraction. CTE-EFA by a factor of 2.1 (1/0.4843) and CTE-OPEN by a factor
of 1.7 (1/0.5953). Also, the comparison between CTE-EFA and CTE-OPEN (Figure 4, Figure 6) consistently
shows that CTE-EFA outperforms CTE-OPEN by a factor of 1.4 (1/0.7266). Table 1 gives a summary of the
benchmark results.

Contrary to what happens with flat encodings, the gain over CTE-NOOP cannot be explained by the difference
in quantifier alternations as the depth is the same in the three encodings. However, the way actions are represented
in these encodings may explain this difference.

4 Discussion

In order to identify the source of these improvements, we propose two hypothesis:

6The grounding step (i.e., action instantiation) is not included in the elapsed time.
7https://www.irit.fr/~Frederic.Maris/documents/coplas2018/results.xls
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Figure 4: Plan decision time (EFA vs OPEN).
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Figure 5: Plan extraction time (EFA/OPEN vs NOOP).

Hypothesis 1 “The performance gain is correlated to a decrease in the number of clauses and/or literals across
encodings”. Although the size of the problem is known to be noticeably non-correlated with its hardness
in SAT, we wondered if we could see the same non-correlation. As shown in Table 1, we do not observe
any clear tendency: CTE-EFA tends to have a slightly higher number of clauses (+15%) than CTE-NOOP
although having less variables (-26%). CTE-OPEN has the same number of literals and much less clauses
than CTE-NOOP, but resulting in a lower performance gain (-41%) than CTE-EFA (-55%). This non-
correlation leads us to reject this hypothesis.

Hypothesis 2 “The performance gain is due to a difference in the number of transition-based constraints com-
pared to the number of node-based constraints”. Intuitively, one can think that a lower ratio of transition-
based constraints over node-based constraints would ease the solving process: in node-based constraints, a
clause has the same context8 across the whole QBF expansion. In branch constraints, the corresponding

8Context and expansion are defined in [3]. Intuitively, the expansion is a tree representing the QBF and a context is a
leaf in that tree.
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Figure 6: Plan extraction time (EFA vs OPEN).

clause has different contexts depending on the selected branch. The idea is that clauses based on different
contexts slow the solver down. As displayed in Table 1, this hypothesis does not appear to be correct
experimentally: although CTE-OPEN shows a lower transitions-to-nodes ration, it does not lead to the
best performance gain. On the contrary, CTE-EFA has a poorer ratio, although being the most efficient
compared to CTE-NOOP. We thus refute this hypothesis as we did not see any noticeable correlation sup-
porting it, although we noticed a slight tendency where the decrease of time and of number of clauses were
correlated.

Through these hypotheses, we tried to understand the causes of these enhancements. None of these hypothesis
proved to be useful.

5 Conclusion

We have proposed two new QBF Compact Tree Encodings: CTE-OPEN based on causal links (plan-space) and
CTE-EFA based on explanatory frame axioms (state-space). We compared these encodings with the state-of-
the-art QBF encoding CTE-NOOP. In average over all available STRIPS IPC benchmarks, CTE-EFA performed
twice as fast as CTE-NOOP (respectively 1.7 times faster for CTE-OPEN).

Through experiments, we refuted the two hypotheses we had formulated in order to explain the causes of
this enhancement: neither the difference in the number of literals and clauses nor the transitions-to-nodes ratio
between the three encodings allow us to draw conclusions.

Although it is fair to say that the work we are presenting lacks explanations on the reasons for the gain
in performance, we think that this paper aims at showing the interest of systematically studying the statistical
properties of the various action representations in encodings in order to understand the ontological choices related
to these action representations.

Furthermore, it is noticeable that the performance ranking of the various action representations of SAT
encodings (e.g., No-op performs better than EFA) is different in QBF (as we showed, EFA performs better than
No-op in the CTE encoding). It would be interesting to study more broadly the methods used in SAT for encoding
actions and see how their QBF counterpart behave.
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