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Reconstruction of Partially Sampled Multiband

Images—Application to STEM-EELS Imaging
Étienne Monier , Student Member, IEEE, Thomas Oberlin , Member, IEEE, Nathalie Brun , Marcel Tencé,

Marta de Frutos, and Nicolas Dobigeon , Senior Member, IEEE

Abstract—Electron microscopy has shown to be a very powerful
tool to map the chemical nature of samples at various scales down
to atomic resolution. However, many samples can not be analyzed
with an acceptable signal-to-noise ratio because of the radiation
damage induced by the electron beam. This is particularly cru-
cial for electron energy loss spectroscopy (EELS), which acquires
spectral-spatial data and requires high beam intensity. Since scan-
ning transmission electron microscopes (STEM) are able to ac-
quire data cubes by scanning the electron probe over the sample
and recording a spectrum for each spatial position, it is possible
to design the scan pattern and to sample only specific pixels. As
a consequence, partial acquisition schemes are now conceivable,
provided a reconstruction of the full data cube is conducted as a
postprocessing step. This paper proposes two reconstruction al-
gorithms for multiband images acquired by STEM-EELS which
exploits the spectral structure and the spatial smoothness of the im-
age. The performance of the proposed schemes is illustrated thanks
to experiments conducted on a realistic phantom dataset as well as
real EELS spectrum-images.

Index Terms—Electron energy loss spectroscopy (EELS), scan-
ning transmission electron microscope (STEM), spectrum-image,
multi-band imaging, image reconstruction, partial sampling, in-
painting.

I. INTRODUCTION

I
N AN electron microscope, an electron beam is used as the

illumination source, which provides a spatial resolution far

superior to that of an optical microscope (nowadays down to
0.1nm). The present paper considers the scanning transmission

electron microscope (STEM), where the beam is focused as a
probe which is scanned over the sample area of interest. STEM

is well adapted to the simultaneous acquisition of a variety of

signals, both mono and multi-channels, for each probe position.
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Among the most commonly collected signals are cathodolumi-

nescence, high-angle annular dark field (HAADF) and electron-

energy loss spectroscopy (EELS) [2]. However, a classical prob-

lem encountered is that the electron beam can induce sample

damage, a phenomenon particularly limiting for sensitive ma-

terials [3], e.g., organic materials or molecular structures. Dif-

ferent mechanisms leading to an alteration in the composition

and/or structure can be involved depending on the sample com-

position and the incident electron energy, and the strategy for

minimizing damage has to be adapted to each case. Standard

acquisition schemes operate sequentially, line-by-line, and thus

concentrate electrons in contiguous areas. This scanning mode

can accentuate the effects on the data of certain types of damage

occurring over an area larger than the beam size: the signal at

a given point is affected by the damage originating from the

previous acquisitions. To overcome this, common practice is to

reduce the electron dose (number of electrons per unit surface)

by decreasing the incident beam current or the acquisition time

per pixel, which significantly lowers the signal-to-noise ratio

(SNR) and the overall image quality. To reduce the cumulative

damage on successive pixels, another possibility would be to

increase the distance between pixels, but in that case the use of

a periodic sampling scheme leads to under-sampling of spatial

information.

Recent works have addressed this issue and proposed random

sampling schemes for reducing damage while keeping the best

possible SNR and spatial resolution [4], [5]. These methods can

also be advantageously used to limit the effect of sample drift

by reducing the total acquisition time. Indeed, for a given to-

tal electron dose, one can either acquire all pixels at low SNR

(small acquisition time per pixel), or partially sampling some

specific pixels with a higher SNR (i.e., longer acquisition time

per pixel). The last method has several advantages as it allows

adaptive studies to be envisioned, such as a move detection by

considering J successive acquisitions of 100/J% of the pixels.

Such a random sampling has been implemented on the STEM

VG HB 501 microscope in the Laboratoire de Physique des

Solides (LPS, Orsay, France). This particular acquisition pat-

tern required the development of scan coils and blanking plates

specific controls [6]. Moreover, it also requires computational

reconstruction schemes to recover the full data from the partial

measurements within a post-processing task.

Among them, the most common technique which aims at

recovering the missing pixels in an image is referred to as in-

painting. Numerous techniques have been proposed in the last



decade to reconstruct an original image with high accuracy from

only partial information. More generally, a wide range of so-

called ill-posed inverse problems have been intensively studied

through the compressed sensing paradigm. Compressed sens-

ing is a general framework which provides recovery algorithms

along with theoretical guarantees for linear under-determined

inverse problems, including partial sampling in some basis, or

inpainting. The most common key assumptions are to assume

that the data is sparse in an appropriate representation space

and that the acquisition is random. As a consequence, such al-

gorithms have been implemented in several applied fields such

as MRI [7], ultrasonic imaging [8], astronomy [9] or tomog-

raphy in microscopy [10]. This has been enabled by recent

algorithmic advances that efficiently solved high-dimensional

optimization problems involving possibly non-smooth or non-

convex penalties. Without satisfying the compressed sensing

assumptions that are often too restrictive, solving generic but

high dimensional image processing problems such as comple-

tion [11], super-resolution [12] or fusion [13] has been shown

to be computationally realizable.

In particular, the problem of imaging sensitive materials have

been recently addressed thanks to partial acquisition schemes

coupled with reconstruction methods. These approaches were

based on dictionary learning, sparsity-based or low-rank reg-

ularization and applied in transmission electron microscopy

(TEM) video [14], electron tomography [15] and nuclear mag-

netic resonance (NMR) [16]. Standard inpainting methods for

2D images are now well-documented and can be applied to

two-dimensional HAADF images, for instance by minimizing

the Sobolev norm or the total variation or the image (see for

instance [17], [18]). Alternative regularizations include dictio-

nary learning, proposed to solve the sensitive-material prob-

lem in HAADF acquisition [5], [19]–[21], leading to satisfac-

tory results. However, in the case of EELS multi-band images

(hereafter referred to as spectrum-images), the spatial-spectral

structure of the data needs to be taken into account within the

reconstruction process. Interestingly, EELS fast acquisition and

reconstruction [22] has raised little interest compared to its hy-

perspectral counterpart for Earth observation and remote sens-

ing [23]–[26].

This paper considers the reconstruction of EELS spectrum-

images from partial acquisition. The proposed reconstruction

follows the same lines as the above-referenced techniques, by

casting the reconstruction into an inverse problem framework

with appropriate regularizations. Compared with the previous

works proposed in EELS microscopy, the proposed approach

introduces a spatial regularization, chosen to promote smoothly

varying images, and a spectral regularization to better take into

account the nature of EELS data. More precisely, two variants

of such a regularization are considered, leading to two differ-

ent problem formulations. Section II briefly presents the mi-

croscopy material and data. The direct problem, its inverse coun-

terpart and the proposed regularizations are also introduced. The

two proposed approaches are then stated in Section III, while

Section IV is devoted to their algorithmic implementations. Both

approaches are compared and evaluated through numerical sim-

ulations conducted on simulated data with controlled ground-

Fig. 1. STEM principle. The electron gun emits an electron beam that is
focused on the sample. This interaction is measured by different detectors.

truth in Section V, while Section VI reports experiments on

a real dataset acquired by the STEM VG HB 501 microscope

operated by LPS. Section VII finally concludes this work.

II. PROBLEM FORMULATION

A. STEM with Variable Spatial Sampling

Since this paper is specifically focused on STEM-EELS mi-

croscopy, the following paragraph briefly describes this imaging

modality (see [2] for a more detailed description). For that pur-

pose, an overall scheme is depicted in Fig. 1. The microscope is

based on an electron beam which is emitted by an electron gun.

This beam is focused on a sample local zone thanks to magnetic

lenses. Then, for each probe position, two signals are recorded

in parallel, namely,

1) HAADF 2D imaging: at each sample pixel a real value is

measured, depending on the amount of transmitted elec-

trons deviated from the optical axis at a relatively high

angle;

2) EELS spectrum-imaging: at each sample pixel an energy-

loss spectrum is acquired, produced by inelastically scat-

tered electrons.

The present paper focuses on EELS data. A typical EELS

spectrum is shown in Fig. 2. This spectrum is mainly composed

of i) a zero-loss peak corresponding to the electrons that did not

lose any detectable energy by interacting with the sample and ii)

a plasmon peak corresponding to collective electron excitations.

At higher energy loss, the decreasing slope reveals edges giving

information about the nature of sample atoms through inner shell

excitation. Such a spectrum is acquired for each spatial position



Fig. 2. A typical EELS spectrum.

of the imaged scene. Thus, multivariate data analysis techniques

can provide a wide variety of spatial maps corresponding to

chemical and physical properties of the sample.

To enable random sampling schemes, material developments

have been conducted such as the design of a beam blanker [4].

This blanker switches off the beam (with a switching time be-

low 100 ns) while the camera is readout, using an electrostatic

deflector. As soon as the beam is switched off, the next probe

position is setup. It drives magnetic coils, with an elapsed time to

reach the target position about 50 µs. Since the camera readout

time is always larger than 1ms, the probe can be safely assumed

at the target position when the beam is on again. Finally, partial

sampling considered in this work can be achieved by stopping

the procedure before the end of the random scanning path.

B. Direct and Inverse Problems

Let Y denote the M × P matrix that would correspond to

the full EELS data composed of P pixels inM channels. As ex-

plained previously, acquiring the whole data cube is not always

possible because of possible damaging effects the electron dose

could have on a sensitive sample. To avoid this, the scene of in-

terest can be sampled at only some given spatial locations. Note

that this spatial subsampling scheme is not accompanied by any

spectral subsampling, since, at each spatial position, the EELS

spectrometer separates simultaneously all electron loss ener-

gies, leading to the acquisition of the whole EELS spectrum. To

summarize, the full spectra are acquired at N among P avail-

able spatial positions, resulting in the spatial subsampling ratio

r = N/P . The corresponding index set of the N acquired pix-

els and the matrix of the measurements are denoted I and YI ,

respectively, where YI is the M ×N matrix gathering the N
columns of Y indexed by I.

The reconstruction problem consists in recovering a full (and

possibly denoised) M × P spectrum-image X from the ac-

quired data YI . This reconstruction task is an ill-posed problem

and can be addressed by minimizing the criterion

X̂ ∈ arg min
X

L(X,YI) + λφ(X) + µψ(X) (1)

where L(·,YI) is the data fidelity term and φ(·) and ψ(·) are

spatial and spectral regularizations with corresponding hyper-

parameters λ and µ, respectively.

In this study, the noise will be assumed to be Gaussian lead-

ing to a least square data fidelity term ||YI − XI ||2F . Note that

microscopy images acquired with low beam energy generally

suffer from a mixed Gaussian-Poisson noise. In this case, the

proposed method can be adapted by defining the data fidelity

term accordingly or by resorting to a variance stabilizing trans-

formation.

C. A Priori Information and Regularization

As explained previously, recovering the full spectrum-image

X from the measurements YI is an ill-posed problem, thus

requiring appropriate regularizations. This work exploits two

different kinds of intrinsic information shared by EELS data,

namely spatial smoothness and spectral low-rankness, discussed

in what follows.

1) Spatial Regularizations: Classical spatial regularizations

used in image restoration usually rely on the image gradient

XD, where D is the spatial discrete gradient operator applied

in each channel independently. This gradient can be minimized

with respect to (w.r.t.) its ℓ2-norm to promote smoothly vary-

ing image or w.r.t. its ℓ1-norm when considering total variation

(TV) to preserve piecewise-constant content. More elaborated

regularizations minimize higher order derivation such as the

total-generalized variation (TGV) [27], [28] which promotes

piecewise-smooth contents. When dealing with multi-band im-

ages, spatial regularizations can be extended to promote specific

behavior across channels, as the vector TV [29] or the more

recent collaborative TV [30]. In the applicative context consid-

ered in this work, the EELS images are expected to be spatially

smooth since the target spatial resolution is relatively low com-

pared to the atomic resolution. Besides, acquisition distortions,

(both in terms of specimen drift and probe displacement) are

assumed to be negligible with respect to the size of the pixel

for the samples used in this paper, which may not be true for

atomic-scale images. Hence, possible spatial high frequencies

amplified by these distortions are not visible for the considered

images and the smoothness hypothesis can still be assumed. As a

consequence, the energy of the spatial gradient, which enforces

spatial smoothness in each band, will be considered. Note that

the proposed regularization is well suited for low-resolution

images, but it is not the most appropriate for high-resolution

atomic-scale images.

2) Spectral Regularizations: Multiband images encountered

in numerous imaging modalities are known to be highly spec-

trally correlated and, in most cases, obey a low-rank property. A

physically-motivated instance of this property arises when ana-

lyzing multi-band images under the unmixing paradigm, which

assumes that each measured pixel spectrum can be approximated

by a mixture of elementary spectra [31]–[33]. However, pro-

moting the low-rank structure of the spectrum-image X would

need to minimize the rank of X, which is a NP-hard problem.

One alternative consists in penalizing its nuclear norm ‖X‖∗,
defined as the ℓ1-norm of its singular values. This popular con-

vex relaxation leads to a tractable convex problem [34].

This work will also consider an alternative spectral regular-

ization based on a subspace constrained formulation. Similarly

to the strategy already followed in [35] and [36] for multi-band

image fusion, the main idea is to estimate beforehand the linear



subspace where the pixels of the spectrum-image live, and to re-

construct the whole image in this subspace. More precisely, the

subspace of interest is first estimated by conducting a principal

component analysis (PCA) of the observed measurement. Then,

the minimization problem (1) is reformulated for the projection

of the spectrum-image onto the first principal components. The

variances of the principal components are additionally exploited

to define an appropriate weighted spectral regularization.

III. PROPOSED METHODS

The spatial and spectral regularizations described previously

lead to two different variational formulations for the EELS im-

age reconstruction problem, which are detailed in the present

section.

A. The Smoothed Nuclear Norm Approach

Given the forward model discussed in Section II-B and the

expected spatial and spectral characteristics of the reconstructed

EELS spectrum-image detailed in Section II-C, the first recon-

struction method consists in solving the following optimization

problem

X̂ = argmin
X∈RM ×P

1

2
‖YI − XI‖2

F +
λS2N

2
||XD||2F

+ µS2N ||X||∗ (2)

where D is the spatial discrete gradient operator applied in each

channel independently. This optimization problem, referred to

as Smoothed Nuclear Norm (S2N), relies on two hyperparam-

eters λS2N and µS2N which adjust the weights of the spatial

and spectral regularizations, respectively. The choice of these

hyperparameters is discussed in Appendix A.

B. The Smoothed SubSpace Approach

To promote the low-rank property of the reconstructed EELS

spectrum-image, the S2N approach introduced in the previous

paragraph relies on a soft penalization induced by its nuclear

norm. Conversely, the Smoothed SubSpace (3S) approach de-

scribed in what follows imposes this property through a hard

constraint. More precisely, the image to be recovered is as-

sumed to write X = HS where H is a M ×M orthonor-

mal matrix defining the data principal component basis and

S = [s1 , . . . , sP ] is a M × P matrix which gathers the repre-

sentation coefficients of the spectrum-pixels in this basis. In

this work, the basis H is supposed to be estimated beforehand

by conducting a principal component analysis (PCA) of the

observed pixels YI . Note that, as discussed in Section I, a par-

tial spatial sampling of the scene results in a higher SNR than

the one obtained with a conventional sampling. Thus, the first

principal components of highest energy are expected to span a

reliable estimate of the actual signal subspace (assumed to be

of dimension Rtrue).

Given this decomposition, the reconstruction of the spectrum-

image X can be formulated directly into the principal compo-

nent basis and boils down to estimating the M × P coefficient

matrix S. Thus the quadratic data-fitting term ‖YI − XI‖2
F

already used in the S2N criterion (2) can be replaced by

‖YI − HSI‖2
F or equivalently, since H is orthogonal, by

∥
∥H

T
YI − SI

∥
∥2

F
. Similarly, the spatial smoothness promoting

term ‖XD‖2
F in (2) can be rewritten with respect to the repre-

sentation vectors ‖SD‖2
F .

Moreover, when the eigenvectors h1 , . . . ,hM identified by

PCA and composing the columns of H are ordered with re-

spect to eigenvalues sorted in decreasing order, the correspond-

ing representation vectors S1,:, . . . ,SM,: are expected to be

of decreasing energy magnitudes, where Sm,: stands for the

mth row of S. In particular, if the pixel spectra lie into a

subspace of dimension Rtrue with Rtrue ≤M , the squared

norm ‖Sm,:‖2
2 of the irrelevant representation vectors is ex-

pected to be close to 0 form ≥ Rtrue . This suggests a weighted

penalization of the form
∑M

m=1 wm ‖Sm,:‖2
2 with increasing

weights (wm )m=1,...,M . The design of the weights discussed in

Appendix B proposeswm to be infinity form ≥ R+ 1 whereR
is an estimate of the actual dimensionRtrue (R ≤M ). This rule

systematically implies Sm,: to be the null vector form ≥ R+ 1.

In other words, the 3S optimization problem can be equivalently

written with respect to a R× P matrix S1:R,: .

Finally, the proposed 3S approach consists in solving the

following optimization problem

Ŝ = arg min
S∈RR ×P

1

2R
‖SD‖2

F +
µ3S

2

R∑

m=1

wm ‖Sm,:‖2
2

s.t.
1

R

∥
∥H

T
1:RYI(n) − SI(n)

∥
∥

2

2
≤ σ̂2 , ∀n ∈ [[1, N ]] (3)

where µ3S is a parameter adjusting the relative impact of the

spatial and spectral regularizations and H1:R stands for the

M ×R matrix composed of the first R columns of H. In (3),

the data-fitting termL(·,YI) in (1) is converted into a constraint,

since the squared Euclidean distance between the observations

and the solution is expected to be bounded by the noise variance

σ2 .

In practice, as detailed in Appendices B and C, an estimate

σ̂2 of the noise variance σ2 and an estimate R of Rtrue can

be derived from an eigen-analysis of the empirical covariance

matrix of the observations. The reconstructed image is finally

defined as1
X̂ = H1:RS1:R,: . The advantages of formulating

the reconstruction task as described above are twofold. First, it

explicitly imposes a low-rank decomposition of the spectrum-

image to be recovered. Second, as discussed in the following

implementation section, it reduces the computational cost of

the resulting minimization algorithm since R is expected to be

significantly lower than M .

IV. IMPLEMENTATION

This section describes the algorithmic implementations de-

rived to solve the optimization problems (2) and (3). Both rely

on the fast iterative shrinkage thresholding algorithm (FISTA)

[37] briefly recalled in the following paragraph.

1To lighten the writing, despite a slight abuse of notations, the underscripts
·1:R , : and ·1:R will be omitted in the sequel of the paper.



A. FISTA General Framework

FISTA solves the generic optimization problem of the form

x̂ = arg min
x
f(x) + g(x) (4)

where

1) f : R
p → R is a convex function, continuously differen-

tiable with Lf -Lipschitz continuous gradient,

2) g : R
p → R is a convex possibly nonsmooth function.

For any L > Lf , the FISTA algorithm given in Algorithm 1

converges toward a solution of (4). The specific instances of

FISTA for the problems (2) and (3) under consideration are

presented in the following subsections.

B. Application to S2N

To solve (2), the S2N method consists in adopting the follow-

ing decomposition

f(X) =
1

2
‖YI − XI‖2

F +
λS2N

2
‖XD‖2

F (5)

g(X) = µS2N ‖X‖∗ . (6)

The corresponding gradient of f(·) required in Step 3 of

Algorithm 1 is given by

∇f(X) = (XI − YI) − λS2NX∆ (7)

where ∆ = −DD
T is the discrete spatial Laplacian operator.

An upper bound of Lf is given by

‖∇f(X1) −∇f(X2)‖F

= ‖(X1I − X2I) − λS2N(X1 − X2)∆‖F

≤ (1 + λS2N ‖∆‖
︸ ︷︷ ︸

L

) ‖X1 − X2‖F

where ‖∆‖ stands for the spectral norm of the discrete Lapla-

cian, which is 8 in dimension 2. The Lipschitz constant upper

bound is then L = 1 + 8λS2N .

Besides, by denoting X = UΣV
T the singular value de-

composition of X, where Σ = diag(µi), the proximal operator

associated with g(·) is [38]:

proxg (X) = UΣ̄V
T , (8)

where Σ̄ = diag(µ̄i) contains the soft-thresholded singular val-

ues with threshold µS2N , i.e.,

µ̄i = sgn(µi)(µi − µS2N)1µ i>µS 2 N
(µi) (9)

TABLE I
COMPUTATIONAL COMPLEXITY OF S2N AND 3S

Best scores appear in bold.

where sgn is the sign function and where 1 is the indicator

function.

C. Application to 3S

When tackling the problem (3), the proposed 3S algorithm

relies on the following decomposition

f(S) =
1

2R
‖SD‖2

F +
µ3S

2

R∑

m=1

wm ‖Sm,:‖2
2 (10)

g(S) =

N∑

n=1

ιB(HT YI(n ) ,
√
Rσ̂ )(SI(n)) (11)

where

ιA(x) =

{
0, if x ∈ A
+∞, if x /∈ A (12)

is the indicator function related to set A and B(x0 , r) is the

closed ℓ2-ball of center x0 and radius r. The gradient of f(·) is

∇f(S) = − 1

R
S∆ + µ3SWS (13)

where W = diag {w1 , . . . , wR} is the diagonal matrix con-

taining the weights. Similar computations as the ones con-

ducted for S2N lead to the upper bound of the Lipschitz con-

stant L = 8 + µ3S maxm {wm}. Moreover, as shown by (11),

the function g(·) is separable with respect to the pixel in-

dexes n ∈ [[1, N ]]. Hence, the proximal operator associated with

g(·) consists in projecting SI(n) on B(HT
YI(n) ,

√
Rσ̂) for all

n ∈ [[1, N ]].

D. Algorithm Complexity

This paragraph discusses the computational complexity of the

S2N and 3S algorithms. When analyzing the generic algorithmic

scheme of FISTA in Algorithm 1, the complexity of the two steps

in lines 3 to 6 is needed for both approaches.

First, lines 4 and 6 are clearly of asymptotic orderO(1). Then,

concerning line 5, which consists only in matrix addition, the

complexity is of O(MP ) and O(RP ) for S2N and 3S, respec-

tively. Line 3 consists in a gradient descent step, followed by a

proximity mapping. The detail is shown in Table I. This study

shows that S2N is computationally heavier than 3S mainly be-



cause S2N requires an SVD at each iteration, while 3S operates

on a matrix of lower dimension since R ≤M .

In addition to the complexity study lead above, the execution

times required to reconstruct the real spectrum-image used in

Section VI are given in Table I for an implementation on a desk-

top computer equipped with an Intel Xeon CPU with 3.70 GHz

frequency and 15.6Go RAM. These results show that 3S is

around 1, 300 times faster than S2N when reconstructing this

spectrum-image, for which MP 2 ≈ 109 and RP ≈ 3 × 105 .

V. SIMULATION RESULTS

A. Synthetic Datasets

The performances of the proposed methods are assessed

thanks to experiments conducted on synthetic spectrum-images.

More precisely, the proposed methods are applied to the full

spectrum-image Y ∈ R
M×P which is generated according to

Y = X + E (14)

where X is the noise-free spectrum image and E is a noise

matrix. To mimic realistic EELS acquisitions, the noise-free

image has been decomposed as X = MA, following the so-

called linear mixing model that can be used to describe the

spatial mapping of materials within an observed sample [39].

The M ×Nc matrix M = [m1 , . . . ,mN c
] gathers Nc spectra

associated with distinct materials (referred to as endmembers)

and A = [a1 , . . . ,aP ] is a Nc × P matrix which stands for the

spatial distribution of the materials in the pixels (referred to as

abundances).

Choice of the endmember matrix M: As it is complicated

to simulate whole EELS spectra with different edges and a

fine structure for each edge, representative endmember spectra

m1 , . . . ,mN c
were directly extracted from a real data set al-

ready considered for its medical interest: a section of kidney

(biological tissue) embedded in resin and containing calcifica-

tions [40]. For such complex biological samples, the number of

endmembers Nc has to be adjusted on each data set and is typi-

cally between 3 and 5. Here, the number of extracted endmem-

bers is chosen as Nc = 4. Endmember extraction is conducted

using the vertex component analysis (VCA), a popular algorithm

designed for remote sensing hyperspectral images [41], that is

now frequently used by the EELS community. The spectra are

shown in Fig. 3 where four particular energy thresholds reveal

the presence of chemical elements: carbon (K-edge at 285 eV),

calcium (L2,3-edge composed of a double peak around 350 eV),

nitrogen (K-edge at 400 eV) and oxygen (K-edge at 530 eV).

These components do not correspond to well defined chemicals

compounds. Nevertheless, for simplicity, in the following, the

endmembers will be related to particular materials and designed

as calcification (with Ca L2,3 -edge), resin, organic 1 (with N-K
edge) and organic 2. The number of bands (corresponding to

energy channels of the spectrometer) is M = 1337.

Choice of the abundance matrix A: The coefficient akp gives

the proportion of the kth endmember in the pth pixel. To ensure

a comprehensive additive description of the spectrum-image in

terms of the Nc materials introduced above, these coefficients

are assumed to be nonnegative and subject to sum-to-one con-

Fig. 3. The Nc = 4 endmember spectra represented as amplitude vs. en-
ergy loss (in eV). The following characteristic thresholds are depicted: carbon
(285 eV), calcium (350 eV), nitrogen (400 eV) and oxygen (530 eV).

Fig. 4. The abundance maps used to generate the synthetic data. A zero-valued
(resp. one-valued) abundance coefficient appear in black (resp. white), which
corresponds to the absence (resp. presence) of the corresponding endmember.
(a) Resin (b) Organic 1 (c) Organic 2 (d) Calcification.

straint for each pixel, i.e.,

akp ≥ 0, ∀p ∈ [[1, P ]],∀k ∈ [[1, Nc ]], (15)

N c∑

k=1

akp = 1, ∀p ∈ [[1, P ]]. (16)

According to these constraints, four abundance maps Ak,: =
[ak1 , . . . , akP ] (k ∈ [[1, Nc ]]) represented in Fig. 4 have been

designed to define the spatial distribution of the different mate-

rials in the sample. In these experiments, the spatial maps are of

size 100 × 100 pixels, which corresponds to P = 10000.

Generation of the noise matrix E: The components of the

noise matrix E are independently and identically randomly gen-

erated according to a centered Gaussian distribution. The noise

variance has been adjusted to reach realistic signal-to-noise ra-

tios (SNRs) that will be specified later.

B. Performance w.r.t. the Regularization Parameters

We first evaluate the impact of the regularization parameters

(λS2N , µS2N ) and µ3S on the quality of the spectrum-image

reconstructed by the two proposed algorithms 3S and S2N for



Fig. 5. S2N NMSE as a function of (λS2N , µS2N ). The white marker locates
to the parameters (λ∗S2N , µ

∗
S2N ) tuned following the procedure described in

Appendix A. The vertical and horizontal lines correspond to the intermediate
values λS2N = λ

◦
S2N and µS2N = µ◦

S2N retrieved during this procedure. The

black marker shows the optimal parameter set (λopt
S2N , µ

opt
S2N ) leading to the

minimal MSE value on the grid.

TABLE II
S2N AND 3S NMSE FOR PARTICULAR VALUES OF THE

REGULARIZATION PARAMETERS

Best scores appear in bold.

a noise level of SNR = 25 dB and a sampled pixel ratio r =
N/P = 0.2. The considered figure-of-merit is the normalized

mean square error (NMSE)

NMSE(X, X̂) =
||X̂ − X||2F

||X||2F
(17)

associated with the reconstructed image X̂ obtained for various

parameter values.

Fig. 5 depicts the performance results of the S2N algorithm

as a function of the regularization parameters (λS2N , µS2N) on

a given grid. In addition, some specific values are reported in

Table II. In particular, the minimum NMSE obtained on the grid

is located with a black dot whereas the parameter values ob-

tained by the method described in Appendix A is given with a

white dot. The vertical and horizontal lines corresponds to the in-

termediate values λ
◦
S2N and µ◦

S2N obtained during the procedure

by independently adjusting the spatial or spectral regularizations

while removing the other. As expected, this figure shows that the

optimal NMSE is reached for non-zero values for both parame-

ters, demonstrating that both spatial and spectral regularizations

are needed. Indeed, extreme values of λS2N give too smooth

images or too rough images. Similarly, high values of µS2N

lead to trivial rank-one images whereas a too low value does

not spectrally regularize the image. Moreover the intermediate

Fig. 6. Performance of S2N and 3S in term of NMSE as functions of the
pixel ratio r and noise level. Colored filling corresponds to standard deviation
interval.

λ
◦
S2N and µ◦

S2N values recovered by adjusting the regularization

separately tend to over-estimate each regularization compared

to the optimal ones. This behavior was expected, and scaling

these values as explained in Appendix A leads to a reasonably

efficient tuning. Note however that even though those values are

close to the optimal ones, the NMSE values reported in Table II

show that the corresponding NMSE is about twice worse: the

algorithm seems quite sensitive to the parameters.

Thanks to its constrained formulation, the 3S algorithm re-

quires to adjust only one regularization parameter, namely µ3S ,

which balances the relative contributions of the spectral and

spatial regularizations. When µ3S is too small (resp. large), the

spatial regularization becomes preponderant (resp. negligible),

which leads to an over- (resp. under-) smoothed image. Exper-

iments (not reported in this paper for brevity) have shown that

the 3S is not very sensitive to the tuning of the hyperparame-

ter and that choosing µ3S = 1 consistently leads to satisfactory

results (the corresponding NMSE is reported in Table II). This

value will be subsequently used in the experiments reported in

this section.

C. Performance w.r.t. Noise Level and Sampling Ratio

Then, the two algorithms have been evaluated for various

noise levels and pixel ratios r. The NMSE have been averaged

over 10 Monte Carlo simulations, for each of which an inde-

pendent noise matrix E has been drawn while the sampled pixel

mask I has been kept fixed. The results are shown in Fig. 6.

According to this figure, 3S seems to give good reconstruction

results, with smaller NMSE and smaller variances. Conversely,

S2N produces higher NMSE (nearly ten times greater than those

obtained by 3S) and higher variances, especially for low SNR

values. This difference between both algorithms may have two

main explanations. First, as seen previously, the parameters of

S2N seem more difficult to be tuned. Second, the nuclear norm

used in S2N is known to be a biased proxy for the rank, thus

reducing the performance of the reconstruction.



D. Reconstruction vs. Denoising w.r.t. an Unmixing Task

Typical acquisition conditions (referred to as protocol P0)

are defined by a sequential sampling (r = 1) with an acquisition

time of ∆t = 10 ms per pixel. As explained in Section I, organic

samples are easily deteriorated by the electron radiation during

the acquisition process. To overcome this issue, the total electron

dose should be reduced by adjusting either the ratio r of visited

locations or the time spent ∆t to acquire the spectrum in each

spatial location. Two sampling strategies have been envisioned

to try to reduce sample damage at a given beam current.

The first protocol, denoted P1 , consists in acquiring the spec-

tra in all the spatial locations (r = 1), but reducing the acquisi-

tion time ∆t = 2 ms for each pixel. The resulting decrease of

the signal-to-noise ratio (SNR) can be mitigated by a subsequent

denoising step. The second acquisition strategy P2 , which moti-

vated the proposed work, consists in acquiring a subset of pixel

spectra (i.e., r ≤ 1) with a same acquisition time ∆t = 10 ms

(i.e., higher SNR). To compare these two acquisition protocols,

two distinct datasets have been generated, corresponding to the

same total beam energy E
1) Protocol P1 : ∆t = 2 ms, r = 1,

2) Protocol P2 : ∆t = 10 ms, r = 0.2.

For each protocol, the noise levels have been adjusted to reach

realistic SNR encountered in typical acquisitions for these expo-

sition time ∆t: SNR = 19 dB and SNR = 25 dB for Protocols

P1 and P2 , respectively.

To evaluate the interest of the partial sampling paradigm, the

exploitability of the reconstructed images after an acquisition

process according to the protocol P2 is compared with the ex-

ploitability of the full image acquired under the experimental

protocol P1 with respect to the ground truth image (referred to

as oracle in what follows). Moreover, denoised version of the

image acquired according to Protocol P1 are also considered,

where the denoising algorithms are PCA+NL-means, S2N and

3S. Here, PCA+NL-means consists in the succession of two

steps: a thresholded PCA, which consists in projecting the data

in the subspace defined by the RPCA most powerful PCA di-

rections (acting as a spectral denoising step) followed by 3D

NL-means [42] applied to the PCA-denoised image (acting as

a joint spatial and spectral denoising step). The subspace di-

mension RPCA was chosen to be slightly higher than R to

prevent PCA from removing relevant information (for the syn-

thetic dataset where Rtrue = 3, RPCA has been set to 10). Note

that alternative denoising algorithms can be considered, such as

the FastHyDe algorithm specifically dedicated to hyperspectral

images [43]. As a consequence, 7 spectrum-images will be com-

pared here:

1) Oracle: the noise-free synthetic data,

2) the images based on the fully acquired spectrum-image

using protocol P1 (referred to as Full2ms) which are

the Full2ms image and the denoised versions using the

PCA+NL-means, S2N and 3S algorithms,

3) the images based on the partially acquired spectrum-

image using protocol P2 and reconstructed using S2N

and 3S.

TABLE III
RECONSTRUCTION AND UNMIXING PERFORMANCE

Best scores appear in bold.

These spectrum-images will be referred to as Protocol-

algorithm in the following (e.g., P2-3S is the 3S reconstruction

of the spectrum-images acquired using the protocol P2).

The exploitability of these 7 images is evaluated with respect

to a conventional task frequently conducted when analyzing

EELS spectrum-image. Indeed, since experimentalists are rather

interested by the composition of the sample, they resort to vari-

ous unmixing techniques elaborated to recover both endmember

spectra and abundance maps of interesting components from

the spectrum-image [39]. Therefore, on each spectrum-image,

the spectra mk , k ∈ [[1, . . . , Nc ]], have been recovered using

the SISAL algorithm [44] applied on the acquired data under

Protocols P1 or P2 . The quality of the estimated endmember

matrix M̂ is evaluated using the average spectral angle distance

(aSAD) defined by [45], [46]

aSAD(M, M̂) =
1

Nc

N c∑

k=1

acos

( 〈mk , m̂k 〉
||mk ||2 × ||m̂k ||2

)

. (18)

The aSAD gives a small value when both actual and estimated

spectra are approximately equal or collinear, while different

spectra shapes will produce a high aSAD.

Based on the endmember estimates, the abundance maps A

are estimated from the compared images using the SUNSAL

algorithm [47]. The relevance of the estimated abundance maps

is evaluated by computing the corresponding NMSE(A, Â) as

defined by (17).

In addition to this quantitative assessment in terms of un-

mixing performance, a qualitative evaluation is conducted by

visual inspection of the reconstructed images. Synthetic red-

green-blue compositions of the images of interest are gener-

ated by selecting 3 specific bands (energy channels) associated

with the presence of chemical elements: bred = 236 (carbon),

bgreen = 346 (calcium) and bblue = 709 (oxygen). To ensure

fair comparisons between the images, the channels are indepen-

dently scaled with respect to a dynamic range common for all

the images.

The quantitative results are reported in Table III while the re-

constructed images and estimated abundance maps are depicted

in Fig. 7. Note that the unmixing results obtained from the six

acquired, denoised and reconstructed images are also compared



Fig. 7. Row 1: colored composition of the oracle, acquired (Full2ms), denoised (protocol P1 ) and reconstructed (protocol P2 ) spectrum-images. Rows 2-5: the
abundance maps estimated by SUNSAL on the corresponding spectrum-images.

with those that would be obtained directly on the ground truth

image X. These oracle estimates give the most optimistic per-

formance that could be reached when unmixing the denoised

or reconstructed images. Note also that the Oracle NMSE is

zero as the Oracle image is exactly the ground truth image X,

whereas the Oracle aSAD(M, M̂) and NMSE(A, Â) are non-

zero since the unmixing algorithms do not recover exactly the

endmember and abundance maps used to generate X.

One can first observe that denoising the image acquired fol-

lowing Protocol P1 leads to significant lower NMSE for the

spectrum-image than those obtained by reconstructing the im-

age acquired following Protocol P2 (except for P1-S2N which

gives worse results thanP2-3S). The proposed reconstruction al-

gorithms applied after partial sampling seem to be less efficient,

despite higher SNR during the acquisition process. However,

the performance w.r.t. the unmixing task is in favor of Protocol

P2 . Indeed, the endmember spectra are better recovered in the

image acquired with longer exposition time than in the image ac-

quired with shorter acquisition time, even after a denoising step.

This finding was quite expected for the recovered endmember

spectra, since the observed pixels within partial sampling have a

higher SNR. Thus the SISAL extraction endmember algorithm

can exploit more reliable measured pixel spectra to estimate the

material spectral signatures. Moreover, the abundance maps esti-

mated on the image reconstructed by the proposed 3S algorithm

achieves a lower NMSE, demonstrating that this reconstructed

image can be reliably exploited to spatially map the materials

in the spectrum-image.

Qualitatively, visual inspection of the abundance maps de-

picted in Fig. 7 shows that the reconstruction techniques produce

rougher maps, with some holes corresponding to non-sampled

areas. But there is less mixing between the different components,

e.g., in particular for Organic 1 and Organic 2 maps recovered

on the image reconstructed by 3S. To summarize, for the same

amount of beam energy, partial sampling seems to enable better

endmember extraction and spectrum detail recovery than de-

noising, even though thin spatial structures (such as Organic 2

in our example) may be spatially mapped with less accuracy.

Finally, one can observe that using the S2N and 3S algorithms

as denoising procedures give errors comparable to PCA+NLm

(except for the NMSE of P1-S2N). Yet, P1-3S unmixing results

are significantly worse than P1 − PCA + NLm.

VI. A REAL-DATA EXAMPLE

In this section, the proposed reconstruction methods are ap-

plied to a real sample whose gray-scale HAADF image is given

in Fig. 8. This sample is a biological tissue containing particles

made of calcium phosphate. The sample was chemically fixed,

dehydrated and embedded in an epoxy resin. Ultrathin sections

were then prepared. Elements analyzed are listed in the previous

subsection V-A, i.e., carbon, calcium, nitrogen and oxygen. This

sample has been acquired by the STEM VG HB 501 microscope

equipped with a partial sampling implementation.

In the experimental setup, three distinct protocols are consid-

ered to image the sample:

1) Protocol P0 : ∆t = 10 ms, r = 1,



Fig. 8. The HAADF images of the sample zone. (a) 51 × 51 region of
interest (b).

Fig. 9. Colored compositions of the real spectrum-images.

2) Protocol P1 : ∆t = 2 ms, r = 1,

3) Protocol P2 : ∆t = 10 ms, r = 0.2,.

Protocol P0 corresponds to usual acquisition parameters for

this type of samples. The spectrum-images associated to proto-

cols P0 to P2 are respectively called Full2ms, Full10ms and Par-

tial. Following the notation Prototocol-Algorithm used in the

previous section, the spectrum-images that will be compared

here are

1) the fully sampled images P0-Full10ms and P1-Full2ms,

2) the denoised image P1-PCA+NLm,

3) the reconstructed images P2-S2N and P2-3S.

The acquired image size is with 51 × 51 pixels and synthetic

colored compositions of these images are represented in Fig. 9

where P1-Full2ms is used as a reference image to define the

color dynamics. Concerning the S2N and the 3S parameters,

the S2N regularization parameter was chosen using the proce-

dure detailed in Appendix A while the 3S µ3S parameter has

been hand tuned to find a trade-off between spatial and spectral

smoothness.

As in the previous section, to evaluate the performances of the

proposed methods, these images are unmixed using SISAL to

extract the signatures of the materials and SUNSAL to estimate

the corresponding abundance maps. The maps are depicted in

Fig. 10 while the endmember signatures are given in Fig. 11.

A number of Nc = 5 components has been chosen but only

Fig. 10. Abundance maps estimated by SUNSAL.

the three most significant are displayed. Visually, acquiring and

then denoising the image following protocol P1 seems to give

the best results since the spectrum-image and the abundance

maps show better spatial resolution, revealing for instance de-

tails in the calcification area. On the contrary, partial sampling

schemes reveal high-intensity peaks in the spectrum-images and

abundance maps, which lowers the spatial resolution. However

the spectral features are better recovered with the partial sam-

pling acquisition with ∆t = 10 ms (i.e., under Protocol P2)

and reconstruction algorithm 3S. Indeed, the splitting on the Ca

L2,3 edge is clearly visible on the spectra ♯2 extracted from the

reconstructed spectrum-images after protocol P2 (see zoomed

areas in Fig. 11). These edges are also visible for the P2-S2N

spectrum ♯2, but the third spectrum gives unsatisfactory results,

which may come from bad parameter choice or bias caused by

the nuclear norm. However, this L2,3 splitting is not resolved

for the spectrum ♯2 extracted from the denoised image after

protocol P1 . Though it should be noted that in this case, the low

number of pixels (51 × 51) compared to the simulated data set

in Section V (100 × 100) makes the extraction of components

by SISAL less efficient. Hence, the choice of the acquisition

strategy must result of a trade-off between the required spatial

and spectral resolutions.



Fig. 11. Three (out of five) endmember spectra estimated by SISAL after unmixing. The axes are amplitude vs. energy loss (in eV).

VII. CONCLUSION

In this paper, we introduced new acquisition and reconstruc-

tion techniques to better preserve sensitive materials in trans-

mission electron microscopy. The proposed methods are based

on a partial acquisition of an EELS spectrum-image followed by

reconstruction using a priori information. Two algorithms were

proposed to conduct the reconstruction task and experiments

compared this approach with a standard acquisition scheme.

The results showed that the 3S algorithm performs better than

S2N both in terms of quality of the reconstruction and compu-

tation time.

When comparing with a standard (full) acquisition followed

by denoising, the partial sampling scheme coupled with 3S re-

construction showed better spectra estimation, while some spa-

tial details seemed deteriorated. Note that there are other benefits

of partial sampling, including a better distribution of the energy

within the sample, and the ability of reconstructing dynamic

(temporal) sequences. This opens new perspectives towards fast

or dynamic STEM-EELS imaging.

APPENDIX A

TUNING THE S2N REGULARIZATION PARAMETERS

This paragraph discusses the choice of the regularization pa-

rameters λS2N and µS2N adjusting the spatial and spectral regu-

larizations in the S2N objective function (2). To properly adjust

the pair of parameters2 (λ, µ), and by denoting Ym,I(n) themth

component of the spectra YI(n) measured at the spatial position

indexed by I(n), the proposed strategy relies on the assumption

E
[(

Ym,I(n) − Xm,I(n)

)2
]

= σ2 (19)

which relates the noise variance and the expected reconstruction

error in each energy band and for each pixel. Based on this as-

sumption, choosing the optimal solution X̂
opt , X̂ (λopt, µopt)

2To lighten the notations, the subscripts S2N are omitted in the sequel of this
section.

among the set of solutions
{

X̂(λ, µ)
}

λ,µ
would consist in solv-

ing the problem
(
λ

opt, µopt
)
∈ argmin

(λ,µ)∈R2
+

J (λ, µ) (20)

with

J (λ, µ) ,

(
1

NM

∥
∥
∥YI − X̂I(λ, µ)

∥
∥
∥

2

F
− σ̂2

)2

(21)

where σ̂2 is an estimate of the noise variance (see Section III-B).

To overcome the inextricability of this problem, the regulariza-

tion parameters (λ, µ) are set as
{

λ
∗ = c◦λ◦

µ∗ = c◦µ◦

where λ
◦, µ◦ and c∗ are successively estimated by solving

λ
◦ ∈ argmin

λ∈Gλ

J (λ, 0) (22)

µ◦ ∈ argmin
µ∈Gµ

J (0, µ) (23)

c◦ ∈ argmin
c∈Gc

J (cλ◦, cµ◦) (24)

on the respective search gridsGλ,Gµ andGc dynamically adapted

by dichotomy processes. The first two steps (22) and (23) adjust

independently the weights of the spatial and spectral regulariza-

tions in the S2N cost function (2) respectively. The third step

(24) aims at rescaling the parameters λ
◦ and µ◦ to reduce the

impact of considering the spatial and spectral regularizations

jointly while preserving their respective proportions in (2).

APPENDIX B

ESTIMATING THE WEIGHTS AND THE SUBSPACE

DIMENSION IN 3S

As mentioned earlier, the vectors h1 , . . . ,hR spanning

the subspace of interest are assumed to be sorted with re-



spect to their corresponding eigenvalues d2
1 ≥ d2

2 ≥ · · · ≥ d2
M

of decreasing magnitude. In particular, the latest directions are

likely associated with noise. The representation vectors Sm,:

(m = 1, . . . ,M ) are thus also expected to be less relevant when

m increases. The choice of the weights wm (m = 1, . . . ,M ) is

driven by this finding, by interpreting them within a Bayesian

framework. More precisely, let assume that the measurement

matrix Y in case of full spatial sampling can be related to the

unknown spectrum-image X through the standard denoising

model

Y = X + E (25)

where E is a M ×N noise matrix. This measurement equation

can be reformulated in the signal subspace as

H
T
Y = S + N (26)

with N , H
T
E. In (26), N =

[
N
T
1,:, . . . ,N

T
M ,:

]T
denotes a

perturbation matrix whose rows Nm,: (m = 1, . . . ,M ) are as-

sumed to be independent and identically distributed (i.i.d.)

according to the normal distribution

Nm,: ∼ N
(
0N , σ

2
IN

)
. (27)

The rows Sm,: (m = 1, . . . ,M ) of S are assumed to be i.i.d.

and are assigned the following conjugate Gaussian prior

Sm,: ∼ N
(
0N , η

2
mIN

)
. (28)

Computing the maximum a posteriori (MAP) estimator of S

consists in solving

min
S

‖HT
Y − S‖2

F +
M∑

m=1

σ2

η2
m

‖Sm,:‖2
2 . (29)

By comparing the 3S problem (3) and the MAP formulation

(29), a natural choice for the weights wm is

wm =
σ2

η2
m

. (30)

However, in practice the variance η2
m of the components Sm,:

(m = 1, . . . ,M ) are unknown. To adjust these hyperparameters,

one solution consists in resorting to an empirical Bayesian ap-

proach by conducting a covariance analysis of the linear model

(26), which straightforwardly leads to

d2
m = η2

m + σ2 (31)

where d2
m (m = 1, . . . ,M ) can be approximated by the sample

eigenvalues d̂2
m estimated by PCA after the correction detailed

in Appendix C. Finally, after defining the estimate σ̂2 of σ2

as the corrected eigenvalue d̂2
m of lowest magnitude (whose

multiplicity order could be more than one), the weights are

chosen as

wm =
σ̂2

d̂2
m − σ̂2

(32)

An illustration of the dependence between d̂2
m and wm is de-

picted in Fig. 12. It is worth noting that, in the applicative context

considered in this paper, the number of channels M is usually

of the same order of magnitude as N . Thus the PCA conducted

to estimate the eigenvalues d1 , . . . , dM may suffer from sample

Fig. 12. A representation of the corrected eigenvalues (blue line) and the
associated weights (in red). A real data spectrum image has been used here.
Weights of index superior to 112 are infinity due to the equality between σ̂

and d̂2
M .

starvation and provide unreliable estimates. To improve this esti-

mation, a correction of the PCA eigenvalue estimates is detailed

in Appendix C.

Moreover, the rule (32) also suggests to define an estimate R
of the signal subspace dimension Rtrue as the maximum index

m such that d̂2
m+1 > σ̂2 . For m = R+ 1, . . . ,M , the weights

are set as wm = ∞ since the corresponding representation vec-

tors are expected to be composed of noise only. Hence, these

components Sm,: (m = R+ 1, . . . ,M ) are enforced to be null

and the 3S optimization problem (3) can be reformulated to be

minimized with respect to a R× P matrix.

APPENDIX C

CORRECTING THE EIGENVALUES ESTIMATED BY PCA

The rule detailed in Appendix B to adjust the 3S weights

requires an estimation of the variances d2
1 , . . . , d

2
M of the signal

components in the basis spanned by H. When H is identified

by PCA, this estimation is classically performed by conducting

an eigen-decomposition of the sample covariance matrix of the

observed pixel spectra, i.e.,

Σ̂ =
1

N
YIY

T
I = HGH

T (33)

where G = diag(d̃2
1 , . . . , d̃

2
M ). Note here that the sample eigen-

values are sorted in a decreasing order and are positive, i.e.,

d̃2
1 ≥ d̃2

2 ≥ · · · ≥ d̃2
M ≥ 0. The main drawback of this simple

estimator is the fact that it is designed to provide good estimate

when the sample size N is sufficiently high compared to the

observation dimension M . However, this is not the case in the

considered applicative context since N is of the same order of

magnitude as M . Various strategies have been proposed in the

literature to improve eigenvalue estimation. To correct the sam-

ple eigenvalues, one alternative consists in resorting to the Stein

estimator defined as [48]

d̂2
m =

d̃2
m

1 + 1
N

∑M
j=1
j 6=m

d̃2
m + d̃2

j

d̃2
m −d̃2

j

. (34)

However, this estimator does not ensure the non-increasing

property and some corrected eigenvalues d̂2
m (m = 1, . . . ,M )



can be negative. To alleviate this issue, an isotonic regression

has been proposed in [49] as a post-processing step. This pro-

cedure usually returns a set of corrected eigenvalues with as-

sociated multiplicity orders. Moreover, an estimate σ̂2 of the

noise variance σ2 required in the weight definition (32) can be

chosen as the corrected eigenvalues of lowest magnitude, whose

multiplicity order is expected to be M −R.
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Paris-Sud, Orsay, France. Since 1981, he has been
an Engineer with the Laboratoire de Physique des
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