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Sequential estimation of surface water mass changes 
from daily satellite gravimetry data
G. L. Ramillien · F. Frappart · S. Gratton · X. Vasseur

Abstract We propose a recursive Kalman filtering

approach to map regional spatio-temporal variations of ter-

restrial water mass over large continental areas, such as South

America. Instead of correcting hydrology model outputs by

the GRACE observations using a Kalman filter estimation

strategy, regional 2-by-2 degree water mass solutions are con-

structed by integration of daily potential differences deduced

from GRACE K-band range rate (KBRR) measurements.

Recovery of regional water mass anomaly averages obtained

by accumulation of information of daily noise-free simu-

lated GRACE data shows that convergence is relatively fast

and yields accurate solutions. In the case of cumulating real

GRACE KBRR data contaminated by observational noise,

the sequential method of step-by-step integration provides

estimates of water mass variation for the period 2004–2011

by considering a set of suitable a priori error uncertainty

parameters to stabilize the inversion. Spatial and temporal

averages of the Kalman filter solutions over river basin sur-

faces are consistent with the ones computed using global
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monthly/10-day GRACE solutions from official providers

CSR, GFZ and JPL. They are also highly correlated to in

situ records of river discharges (70–95 %), especially for the

Obidos station where the total outflow of the Amazon River is

measured. The sparse daily coverage of the GRACE satellite

tracks limits the time resolution of the regional Kalman filter

solutions, and thus the detection of short-term hydrological

events.

Keywords GRACE satellite gravimetry · Continental

hydrology · Kalman filtering · Regional solutions

1 Introduction

Launched in March 2002, the Gravity Recovery and Climate

Experiment (GRACE) mission has globally mapped the tem-

poral variations of the Earth’s gravity field at an unprece-

dented millimetre precision in terms of geoid height thanks

to the accurate inter-satellite measurements made by the on-

board K-band range (KBR) system (Tapley et al. 2004), and

by now for more than 12 years. Pre-processing of Level-1

GRACE data consists of removing the effects of known a

priori gravitational accelerations such as static gravity field,

atmosphere and ocean mass changes, pole and oceanic tides

from the measurements to produce Level-2 solutions that

consist of “reduced” Stokes coefficients (i.e., dimensionless

spherical harmonic coefficients of the geopotential—see the-

oretical aspects in Hofmann-Wellenhof and Moritz 2006)

up to degree 90, or equivalently, of spatial resolutions of

200–300 km (Bettadpur 2007; Fletchner 2007; Chambers

and Bonin 2012; Dahle et al. 2012). These global Level-2

solutions correspond to the gravity signatures of not mod-

elled surface mass variations such as sudden earthquakes and

continuous glacier melting, but mainly water mass transport



for detecting more localized hydrological events lasting a few

days.

Previously, Kurtenbach et al. (2009, 2012) and Sabaka et

al. (2010) have proposed a recursive Kalman filter scheme for

estimating daily Level-1B GRACE data taking into account

statistical information on process dynamics and noise from

geophysical models to gain in temporal resolution. Kurten-

bach et al. (2009) have applied a Kalman filtering after hav-

ing removed annual and semi-annual parts to obtain gravity

variation time series of Stokes coefficients at daily intervals.

These corrections have enabled them to consider a stationary

isotropic process noise in time and space to derive an expo-

nential covariance function of a first-order Markov process.

In describing this process noise, Kurtenbach et al. (2009)

have used a priori time and space covariances on Stokes coef-

ficients. Unfortunately, daily spherical harmonics solutions

remain smooth in space, due to the poor geographical cover-

age of the daily satellite tracks.

In this article, no a priori model is corrected by the GRACE

observations, but the estimate is built iteratively by cumulat-

ing information of daily GRACE satellite tracks. As there

are no daily GRACE satellite data to cover the surface of

the Earth efficiently, we demonstrate that estimating regional

time-cumulated solutions by the successive injection of daily

GRACE tracks is achievable. The progressive integration of

satellite observations has the advantage of avoiding inver-

sion of large systems of equations in the determination of

time-constant maps of water mass variation. The sequential

method we propose is inspired from previous methods. How-

ever, our Kalman filter estimation is applied to regional solu-

tions instead of global Stokes coefficients. First, the method-

ology of the two stages of the Kalman filter estimation (i.e.,

projection and correction) is presented, and secondly, its

application for inverting simulated GRACE satellite data is

shown. Thirdly, both the analysis of the convergence and the

detection of short-term events are made by noise-free simula-

tions from hydrology model outputs. This method is applied

to invert along-track potential anomalies derived from real

GRACE KBRR measurements to recover multi-year series

of 2-by-2 degree solutions of water mass variations over

South America. In the following, we use the term “regional

averaged (or equivalently, cumulated) solutions computed

at successive daily time steps”, but this does not imply a

daily time resolution. Then, these estimates are confronted

to the official global monthly GRACE solutions provided by

CSR, GFZ and JPL (Release 5) filtered using the indepen-

dent component analysis approach (Frappart et al. 2011), and

10-day regional solutions from Ramillien et al. (2012), 10-

day global solutions from GRGS (Bruinsma et al. 2010), and

GLDAS-NOAH (Rodell et al. 2004) and WGHM (Hunger

and Döll 2008) outputs, as well as rapid events described

by river discharge observations for validation. The possi-

bility of detecting short-term water mass events is finally

over continental areas. North–south striping is particularly 
visible in the tropics where coverage of satellite tracks is 
poor due to (1) sparse GRACE track sampling in the lat-

itudinal direction, (2) propagation of errors of the a priori 
correcting model accelerations (Han et al. 2004; Thompson 
et al. 2004; Ray and Luthcke 2006) and (3) numerical corre-

lations generated while solving the undetermined systems of 
equations for high-degree Stokes coefficients (Swenson and 
Wahr 2006).

Short-term mass variability with periods from hours to 
days of ocean tides and atmosphere is removed using de-

aliasing techniques of correcting model outputs. While the 
atmosphere pressure fields from ECMWF allow a reason-

able de-aliasing of high frequency caused by non-tidal 
atmospheric mass changes, errors due to tide model appear in 
the GRACE solutions, especially from diurnal (S1) and semi-

diurnal (S2) tides (Han et al. 2004; Ray and Luthcke 2006; 
Forootan et al. 2014). Thompson et al. (2004) showed that 
the degree error increased by a factor ∼20 due to atmospheric 
aliasing, ∼10 due to ocean model and ∼3 due to continental 
hydrology, e.g., aliasing of the S2 tide has a strong impact on 
the determination of the C20 spherical harmonic coefficient 
of the geopotential (Seo et al. 2008). See, e.g., Guo et al.

(2010) to know about the reduction of atmosphere aliasing 
by Gaussian smoothing.

A regional approach alternative to the classical global 
one has been more recently proposed to improve geograph-

ical localization of patterns of water storage change. This 
energy integral method consists of recovering equivalent-

water thicknesses of juxtaposed 2-degree tiles from GRACE 
inter-satellite velocity residuals, by considering matrix reg-

ularization techniques for solving ill-posed problems, but 
without using spherical harmonics for representing water 
mass variations (see Ramillien et al. 2011, 2012). These 
multi-year series of 10-day regional solutions are compa-

rable to independent datasets, such as local water level in the 
Amazon Basin, and thus they provide realistic amplitudes of 
water mass change from seasonal to inter-annual timescales 
over South America.

So far, global and regional solutions have been produced 
as weekly, 10-day and monthly averages from GRACE data, 
leading to a loss of resolution in time. In other words, global 
or regional averaging suppresses events with a gravity sig-

nature of a few days and thus does not enable us to capture 
them. Moreover, determining the regional equivalent-water 
heights for each separate time interval would neglect the 
temporal correlation between successive independent inter-

vals imparted by the temporal dynamics of the water mass 
processes. While regional solutions computed as averages 
on constant 10-day intervals proved to be realistic snap-

shots of the surface water mass variability (Frappart et al. 
2013a, b; Seoane et al. 2013), the next challenge is to attempt 
to improve the resolution of these regional solutions in time



discussed and tested by simulating localized water mass

anomalies.

2 Datasets

2.1 Independent hydrological datasets

2.1.1 WGHM land water storage

The WaterGAP Global Hydrology model (WGHM) (Döll

et al. 2003; Hunger and Döll 2008) is a conceptual model

that simulates the water balance on continental areas at a

spatial resolution of 0.5◦. It describes the continental water

cycle using several water storage compartments that include

interception, soil water, snow, groundwater and surface water

(rivers, lakes and wetlands). We consider the sum of all these

contributions and called it Total Water Storage (TWS) to

be comparable to GRACE observations, as these latter data

correspond to the integrated continental hydrology change

without distinguishing each compartment. WGHM has been

widely used to analyse spatio-temporal variations of water

storage globally and for large river basins (Günter et al. 2007).

In this study, we use daily TWS grids from the model version

WGHM 2.1f described by Hunger and Döll (2008) to simu-

late the GRACE hydrology-related geopotential anomalies,

and recover the starting TWS variation grids, as accurately

as possible from these modelled geopotential anomaly tracks

over a region, to demonstrate the feasibility of the Kalman

filter approach for estimating TWS change from GRACE

observations.

2.1.2 GLDAS NOAH land water storage

The NOAH (NCEP, OSU, Air Force and Office of Hydrol-

ogy) land surface model (LSM) simulates surface energy and

water fluxes/budgets (including soil moisture) in response

to near-surface atmospheric forcing and depending on sur-

face conditions (e.g., vegetation state, soil texture and slope)

(Ek et al. 2003). The data used in this study are soil mois-

ture (SM) storage values from the NOAH LSM, with the

NOAH simulations being driven (parameterization and forc-

ing) by the Global Land Data Assimilation System (GLDAS)

(Rodell et al. 2004). These SM estimates from GLDAS-

NOAH version 2 have a spatial resolution of 1◦ and a tem-

poral resolution of 3 h. They are accessible via the Hydrol-

ogy Data Holdings page at the Goddard Earth Sciences Data

and Information Services Center, http://disc.sci.gsfc.nasa.

gov/hydrology/data-holdings. They were cumulated on the

four soil layers representative of the top 2 m of the soil from

the GLDAS-NOAH model and resampled at a daily timescale

over the time period 2003–2010.

2.1.3 Measurements of river discharge

Time series of daily water discharges from in situ gauges

located in Obidos (Amazon), Ciudad Bolivar (Orinoco),

Tucurui (Tocantins), and Chapeton (La Plata) are used

for comparisons to daily, 10-day and monthly anomalies

of GRACE-based TWS over 2003–2010. These in situ

records were downloaded for the period 2003–2010 from:

(1) the Venezuelian water agency (Instituto Nacional de

Meteorologia e Hidrologia—INAMEH) for Ciudad Bolivar

(63◦36′29′′W; 8◦26′20′′N); (2) the hydrological information

system Hidroweb (http://hidroweb.ana.gov.br/) of the Brazil-

ian water agency (Agência Nacional de Aguas—ANA) for

Obidos (55◦39′25′′W; 1◦55′23′′S), Manacapuru (60◦36′32′′

W; 3◦18′58′′S), Fazenda Vista Alegre (60◦01′34′′W; 4◦53′

53′′S), Porto Velho (63◦56′46′′W; 8◦47′59′′S) and Tucurui

(49◦40′59′′W; 3◦46′59′′S) gauges; and (3) the Argentinian

water agency (Instituto Nacional del Agua—INA) through

the online database Base de Datos Hidrológica Integrada

(BDHI—http://www.hidricosargentina.gov.ar/) for the

Chapeton station (60◦16′59′′W; 31◦34′26′′S).

2.1.4 Global GRACE solutions

Three processing centres including the Center for Space

Research (CSR), Austin, Texas, USA, the GeoForschungs-

Zentrum (GFZ), Potsdam, Germany and the Jet Propulsion

Laboratory (JPL), Pasadena, California, USA, and forming

the Science Data Center (SDC) are in charge of the processing

of the GRACE data and the production of Level-1 and Level-2

products. These products are distributed by the GFZ’s Inte-

grated System Data Center (ISDC—http://isdc.gfz-potsdam.

de) and the JPL’s Physical Oceanography Distributive Active

Data Center (PODAAC—http://podaac-www.jpl.nasa.gov).

Pre-processing of Level-1 GRACE data (i.e., positions and

velocities measured by GPS, accelerometer data and KBR

inter-satellite measurements) is routinely made by the SDC,

as well as monthly global GRACE gravity solutions (Level-

2). These latter solutions consist of time series of monthly

averages of Stokes coefficients (i.e., dimensionless spher-

ical harmonics coefficients of geopotential) developed up

to a degree between 50 and 120 that are adjusted from

along-track GRACE measurements. A dynamical approach,

based on the Newtonian formulation of the satellite’s equa-

tion of motion in an inertial reference frame, centred at the

Earth’s centre of mass combined with a dedicated modeling

of the gravitational and non-conservative forces acting on the

spacecraft, is used to compute the monthly GRACE solu-

tions. During the estimation process, atmospheric and ocean

barometric redistribution of mass variations are removed

from the GRACE coefficients using ECMWF and NCEP

reanalysis for atmospheric mass variations and ocean tides, as

well as global ocean circulation models (Bettadpur 2007;



Fletchner 2007). The GRACE coefficients are hence residu-

als that should include continental water storage change, and

also signals from other geophysical phenomena and errors

from correcting models and noise. The monthly GRACE

solutions differ from one official provider to another due

to the differences in the data processing, the choice of the

correcting models and the data selection for computing the

monthly averages.

A post-processing method based on independent com-

ponent analysis (ICA) was applied to the Level-2 GRACE

solutions from different official providers (i.e., CSR, GFZ,

JPL), after a 400-km Gaussian pre-filtering. The separa-

tion is based on the assumption of statistical independence

between the sources that compose the measured signals.

The estimated contributors to the observed gravity field are

forced not to be correlated numerically by imposing diagonal

cross-correlations. The efficiency of ICA for separating land

hydrology-related signals from noise by combining Level-

2 GRACE solutions has previously been demonstrated in

Frappart et al. (2010, 2011).

The GRGS-EIGEN GL04 models are derived from Level-

1 KBRR measurements and LAGEOS 1 and 2 data for

enhancement of lower harmonic degrees and using an empiri-

cal stabilization; thus, these solutions do not require any low-

pass filtering to get rid of striping (Lemoine et al. 2007; Bru-

insma et al. 2010). Corresponding 10-day and monthly grids

of TWS for the period 2003–2010 are available at: http://

grgs.obs-mip.fr.

2.2 GRACE-based residual potential differences

to be inverted

degree and order 160; (2) 3D body perturbations DE403 of

Sun, Moon and six planets (Standish et al. 1995); (3) solid

Earth tides of the IERS conventions 2003 (McCarthy and

Petit 2003); (4) solid Earth pole tide of the IERS conven-

tions; (5) oceanic tides FES2004 to degree and order 100

(LeProvost et al. 1994); (6) Desai model of the oceanic pole

tide (Desai 2002); (7) atmospheric pressure model ECMWF

3D grids per 6 h; and (8) oceanic response model MOG2D

(Carrère and Lyard 2003). These KBR Rate (KBRR) resid-

uals represent the gravitational effects of non-modelled phe-

nomena, and mainly the contribution of continental hydrol-

ogy. They are easily converted into variations of along-track

potential differences between the two GRACE satellites, fol-

lowing the energy integral method as proposed earlier by

Jekeli (1999), Han et al. (2006) and lately Ramillien et al.

(2011). Once corrected from known gravitational accelera-

tions, along-track Residual Differences of Potential (RDP)

mainly caused by hydrology variations in a selected conti-

nental region can reach ±0.1 m2/s2 within a precision of

∼10−3 m2/s2 (see Ramillien et al. 2011). These form the

initial data set for our Kalman filter approach.

3 Methodology

3.1 The forward problem

We suppose that the continental region consists of M juxta-

posed surface elements ( j = 1, . . . , M) of area S j located

at longitude λ j and latitude θ j , and characterized by an

equivalent-water height h j . The grid steps in longitude and

latitude are 1λ and 1θ respectively, in the case of a geo-

graphical grid. Let Ŵk be the N -by-M Newtonian matrix

that relates the equivalent uniform water height h j and the

GRACE-based potential differences Yi (i = 1, . . . , N ) for

each daily period of observation k. The coefficients of this

matrix are simply deduced from the inverses of the Carte-

sian distances ξ between the surface element heights Xk and

the successive positions of the GRACE satellites flying over

the considered region (see Ramillien et al. 2011). Then, the

observation equation can be written as:

Ŵk Xk = Yk + vk (1)

where vk is a zero-mean process noise usually drawn from a

zero-mean multivariate normal distribution with covariance

matrix Rk (i.e., vk ∼ N (0; Rk)). In the construction of the

Newtonian matrix Ŵk , developing the inverse of the distance

in sums of Legendre polynomials of n = 300−500 terms

enables us to introduce the elastic Love numbers kn , to take

compensation of surface water masses by elastic response of

the Earth’s surface into account (Ramillien et al. 2011).

Additional information has to be included to find a stable

mass variation estimate. In this study, we use a simple first-

The K-band range (KBR) is the key science instrument of 
GRACE which measures the dual one-way range change of 
the baseline between the two coplanar, low-altitude satellites, 
with a precision of ∼0.1 µm/s on velocity difference, or 
equivalently, 10 µm in terms of line-of-sight (LOS) distance 
after integration versus time (Bruinsma et al. 2010). The aver-

age distance between the two GRACE vehicles is ∼220 km. 
The Level-1B KBR data represent the more precise measure 
of gravity variations sensed by the GRACE satellite tandem 
with a 10−7 m/s accuracy, that gives access to surface water 
mass transfers. Coupled with the accurate 3-axis accelerom-

eters measuring the effects of non-conservative forces acting 
on the satellites (i.e., atmospheric drag and solar pressure) 
and a priori models for correcting atmosphere and ocean 
mass, oceanic and solid tides and polar tides, KBR rate resid-

uals are computed by least-squares dynamical orbit determi-

nation of 1-day-long and 5-second sampled tracks. A pri-

ori gravitational force models for numerical orbit integration 
of the GRACE satellites A and B prepared at the GRGS 
centre in Toulouse (Bruinsma et al. 2010) are: (1) a static 
gravity field model EIGEN-GRGS.RL02.MEAN-FIELD to



order Gauss–Markov process to model the evolution of the

current estimate Xk with time. More precisely, given k > 1,

we use the simple prediction equation:

Xk = Xk−1 + wk (2)

where wk is a zero-mean process noise usually drawn from a

zero-mean multivariate normal distribution with covariance

matrix Qk (i.e., wk ∼ N (0; Qk)) describing the errors of

the process. Although this dynamic is known to remain very

crude, promising results will be shown in Sect. 4. The authors

are well aware of the fact that this model can be improved

by introducing an evolution model that might consist in

exploiting outputs of hydrology models such as WGHM and

GLDAS. Following Kurtenbach et al. (2009), a more sophis-

ticated dynamical equation than Eq. 2 has been considered

through a linearized dynamic (i.e., a finite difference matrix

obtained from WGHM) that is described by the prediction

equation (Eq. 2). Unfortunately, the results were not sig-

nificantly different from the ones shown in Sects. 5 and 6.

These disappointing results may be due to the use of a lin-

earization technique or to the presence in the observations

of effects not taken into account by the model. As the New-

tonian operator Ŵk constructed from the relative Cartesian

distances and applied to the unknown parameters (i.e., the

equivalent-water heights) is completely linear (see Ramil-

lien et al. 2011, 2012), for a given set of a priori uncertainty

parameters, the Kalman filter estimate considering the entire

GRACE-based RDP dataset is the same as the one obtained

by summing all the separate Kalman filter estimates. This is

the case if the complete RDP series are decomposed into pure

dominant annual and semi-annual components plus any kind

of RDP sub-dataset. In particular, the problem of recovering

short-term hydrological events by tuning a priori uncertainty

parameters is tackled in Sect. 6 by several simulations.

3.2 The inverse problem: sequential estimation—the

Kalman filter equations

The observation equation (Eq. 1) and the prediction equation

(Eq. 2) directly fit into the Kalman filter equation settings.

The Kalman filter is a recursive estimator where one needs

the knowledge of the previous state and new measurements to

determine the actual state (Kalman 1960; Kalman and Bucy

1961; Evensen 2007). In our setting at iteration number k,

the state of the estimator is represented by two variables: the

current estimate Xk (i.e., the vector containing the equivalent-

water heights) and its error covariance matrix Pk (i.e., the

matrix of the uncertainties on the estimate).

The observations of the current state are used to correct the

predicted variables to obtain a more precise estimate. First,

the Kalman gain matrix is computed as:

Kk = PkŴ
T
k

[

Ŵk PkŴ
T
k + Rk

]−1
(3)

where Rk is the covariance of the measurements errors con-

sidered as independent (i.e., Rk = σ 2
d I , where σ 2

d is the error

variance on the RDP Yk , and I represents the identity matrix).

Secondly, the updated a posteriori state estimate is obtained

as:

X∗
k = Xk + Kk [Yk − Ŵk Xk] (4)

and the updated a posteriori error covariance matrix of the

state estimate is computed as:

P∗
k = [I − KkŴk] Pk (5)

At the end of this step, Xk+1 is deduced according to Eq. 2:

Xk+1 = X∗
k and the resulting covariance matrix to be used

at the next step is simply defined as:

Pk+1 = P∗
k + Qk (6)

Note that for independent potential difference observations

at time interval k, Qk is often chosen as the diagonal matrix:

Qk = σ 2
p I (7)

where σ 2
p is the a priori variance of process errors. The

Kalman gain appears as a measure of the relative uncertainty

of the measurements and the current state estimate, and it

can be “tuned” to achieve particular performance. When the

gain is high, it places more weight on the observations and

thus follows them more closely, whereas when it is low, the

Kalman filtering follows the model prediction, smoothing

noise out. In the extreme case of gain of zero, the measure-

ments are completely ignored.

4 Application

4.1 Inversion of potential differences simulated

from hydrology model outputs

4.1.1 Recovery of a piece-wise time-constant water mass

anomaly map

First, we need to validate the proposed sequential method

of estimation by recovering “static” 30-day averaged water

mass anomaly maps from GRACE-type potential differences

simulated using daily outputs from WGHM, over large conti-

nental areas. For this purpose, regular 2-by-2 degree grids of

equivalent-water heights over South America [90◦W–30◦W,

60◦S–20◦N] are averaged onto monthly periods from daily

WGHM outputs. GRACE-type ascending and descending

tracks of 5-second sampling are easily generated by the GINS

software from the satellite ephemeris data and for the region

of interest. Along-track potential differences are simply com-

puted at each satellite position using Eq. 1 without noise (i.e.,



vk = 0). The test consists of recovering, as precisely as pos-

sible, the static 30-day averaged water mass anomaly map by

applying the Kalman filter integration (Eqs. 2–7) of succes-

sive synthetic daily potential differences. The first guess is

assumed to contain no hydrological signals (i.e., Xk=0 = 0

for all elements of this vector for “cold start”), and in the case

of no starting cross-error covariances between equivalent-

water heights to recover, so we start with: Pk=0 = σ 2
m I .

Then, the solution is progressively built by accumulation of

information from the daily GRACE RDP tracks.

As illustrated on the top row of Fig. 1, the process of

estimation converges rapidly to a stable solution, which is

identical to the starting water mass anomaly after 30 days

of integration. Root mean square error is typically less than

10 mm after the first iteration, 1 mm after the fifth itera-

tion, 0.1 mm after the 10th iteration, and finally 0.01 mm of

equivalent-water height after a month of integration, com-

pared to amplitude of ±300 mm of the hydrological pat-

terns. Even short-wavelength details are revealed in the final

Kalman filter solution, confirming that this noise-free recov-

ery from simulated GRACE data is successful. A posteri-

ori uncertainties on the fitted equivalent-water heights (i.e.,

square root of the diagonal elements of Pk) decrease, fol-

lowing the north–south direction of the tracks during the first

iterations. Then they tend to be homogeneous on the whole

region at the end of the fit. They are finally less than 0.1 mm,

when the starting value is σm = 1 mm.

Different intervals (1, 2 or 5 days) of integration yield to

the same final solution in the case of recovering a noise-free

30-day constant map of water mass anomaly. Several combi-

nations of σd and σm have been tested on the simulated case

of recovery from 10−9 to 10−2 m2/s2, and 10 and 800 mm,

respectively. A priori uncertainty on observations σd acts as

a regularization parameter and makes the inversion of the

linear system for getting the Kalman gain (Eq. 3) possible.

Large values of this uncertainty parameter enable substantial

improvements of the solution at each integration step and thus

accelerate the convergence to the final estimate. On the con-

trary, the convergence is slow and the final estimate is smooth

when σm is low (Fig. 2). In this latter case, low values of this

parameter correspond to less weight of the GRACE obser-

vations in the Kalman gain K during the refreshing process

of the solution. The final errors of a constant-time (monthly)

map of water mass (i.e., difference between the estimate and

water heights, starting from 1 mm down to <0.05 mm (bottom row).

Final absolute error is around 0.01 mm after 30 steps (i.e., 30 days) of

integration. Note the residual edge effect on the Southern boundary due

to geographical truncation

Fig. 1 Recovery of monthly mass variations over South America 
for March 2005 from simulated along-track RDP. Units are mm of 
equivalent-water height. Estimated regional maps obtained by accumu-

lation of 1-day data that converge to a stable solution (top row), and 
the decreasing of the corresponding a posteriori uncertainties on the



Fig. 2 Convergence analysis of

the recovery using a priori

potential anomaly standard

deviation of σd = 10−9 m2/s2

(i.e., exact observations) and

different a priori parameter

uncertainties σm : 1 mm (circles),

10 mm (triangles), 100 mm

(squares), 500 mm (stars)

Fig. 3 Final error after

cumulating k = 30 days of

simulated RDP data when

recovering a time-constant

(monthly) water mass map from

daily RDP over South America

for σm = 1 mm (left) and

σm = 500 mm (right)

the reference WGHM water mass used for simulating RDP

data) remain particularly small (Fig. 3), especially if σm is

large (e.g., 500 mm), suggesting that the recovery is success-

ful.

4.1.2 Recovery of water mass change maps by daily updates

While the recovery of a water mass solution from RDP sim-

ulated from a 30-day constant WGHM map is successful

(see previous part), the next test is to estimate cumulated

solutions from RDP computed using daily-varying hydrol-

ogy. GRACE RDP tracks passing over South America are

simulated each day at 5-second sampled orbit positions and

from the WGHM (or GLDAS) total water storage (TWS)

outputs for the period 2005–2007, using Eq. 1 without noise

(i.e, vk = 0). Complete series of regional solutions of water

mass variation can be estimated by a Kalman filter inte-

gration strategy on daily sampling intervals and tuning a

priori error parameters. Figure 4 presents regional solution

when considering σd = 0.01 m2/s2 and σm = 200 mm,

and obtained by cumulating WGHM-simulated daily along-

track differences of potential. These solutions reveal realistic

seasonal amplitudes in the drainage basins of South Amer-

ica. Absolute errors are defined as the differences between

input and recovered 2-by-2 degree water mass grids for the

same day. In this case of considering very accurate RDP data

(i.e., σd very small) and in the absence of additional noise,

the main hydrological structures of ±300 mm of EWH are

retrieved and quite well located on the main river basins of

South America.



Fig. 4 Daily 2-by-2 degree

regional maps of TWS over

South America plotted at

monthly intervals [units: mm of

equivalent-water height (EWH)]

0.001 m2/s2 creates unrealistic meridian striping in these

maps that increases with the number of days integrated into

the current solution.

Tests of recovery of a “static” water mass grid, made in

the previous Sect. 4.1.1, show that σm controls the ampli-

tude of information by the RDP tracks each day. In the case

of recovering time-varying water mass maps with different

starting values of σm , the Kalman filter process progressively

converges to the same series of daily sampling step estimates

(Fig. 6), and the time taken by the integration to reach this

common solution (or “spin up”) from a cold start (i.e., no

starting information: Xk=0 = 0) is ∼3 months. This “spin-

up” is of 1 month for recovering a constant-time water mass

In particular, Fig. 5 shows the water mass time series for 
the surface element corresponding to Manaus (60◦01′32′′W, 
3◦08′06′′S), located in the centre of the Amazon basin. In 
our tests for Manaus tile and using model-simulated data, 
a priori error uncertainty ranges from σd = 10−6 m2/s2 

to σd = 0.1 m2/s2 while the parameter σm = 200 mm is 
constant during the Kalman filter integration. As in the case of 
recovery of a time-constant map, the error of recovery of sub-

monthly time-varying signals appears small when the RDP 
data are considered accurate (i.e., σd very small). However, 
this strong assumption permits the development of numerical 
instabilities. Representing the series of estimated water mass 
maps shows that using a priori error uncertainty σd less than



Fig. 5 Multi-year time series of

TWS for the surface tile number

357 centred over Manaus, that

are obtained by integration of

WGHM-simulated daily

GRACE RDP data for several a

priori error uncertainties, and a

constant a priori error

uncertainty on the parameters to

be retrieved (i.e., the

equivalent-water heights) first

guess is Xk=0 = 0 (i.e., “cold

start”)

Fig. 6 Multi-year time series

of TWS for the surface tile

number 357 (Manaus) obtained

for several a priori error

uncertainties on the process (i.e.,

σp) and the equivalent-water

heights (i.e., σm)

map, as the simulated RDP data are more consistent to each

other on the period of integration and reinforce the same “sta-

tic” surface distribution of water mass to be retrieved (see

Sect. 4.1.1). Considering daily WGHM-based water mass

variations, RDP data partly contain unexpected time-varying

signals that perturb the convergence of the integration process

and make the “spin up” longer. As for the a priori error σd on

the RDP observations, important values of a priori process

error σp (i.e., >50 mm) generate unrealistic meridian stripes

in the estimated water mass maps.

For approaching more realistic conditions of data acquisi-

tion, high-frequency random noise can be added to the model-

simulated GRACE RDP, but its effect is highly amplified

if considered real and accurate signals (e.g., when a ran-

dom noise of 0.001 m2/s2 amplitude is added in the sim-

ulated GRACE data, the daily Kalman filter solutions are

only slightly degraded but smoothed if σd = 0.01 m2/s2 or

∼10 % of hydrology-related RDP according to Ramillien et

al. 2011). Unfortunately, the recovery errors reach tens of

mm when the level of noise is greater than 0.01 m2/s2. To

cancel the effect of noise amplification in the inversion, we

found that the best compromise is to consider that σd and σm

are about 10−3−10−2 m2/s2 and 100–200 mm, respectively,

with value of a priori process error σp as small as possible.

4.2 Recovery of maps from real GRACE RDP

Inversion of real potential differences for continental hydrol-

ogy appears complicated because of contaminating instru-

mental noise, even if potential anomalies should be smooth

at satellite altitude as the result of upward continuation. In

return, downward continuation associated to the recovery of

surface water mass anomaly amplifies the high frequencies of

the signal, in particular noise of any kind. Moreover, impor-

tant errors from pre-treatment such as correcting by imperfect

models still remain in the orbit observations and aliased with

space and time (see Sect. 2.2). Another problem arises as

KBR rate residuals contain unrealistic long-term variations

at fractions of the satellite revolution period. The strategy

lately proposed by Ramillien et al. (2011, 2012) is to remove

a linear trend to each potential difference track crossing the

considered regions for each day before inversion, so that



a recovery of medium- and high-frequency regional water

mass variations is made, but at least without adding erro-

neous spatial long wavelengths. These missing wavelengths

are added back from GRGS global solutions to complete the

inverted signals afterwards.

2-by-2 degree water mass solutions after Kalman filter

integration of daily GRACE RDP over South America for

2004–2010 are displayed on Fig. 7a, b. Starting parame-

ters of Kalman filter estimation are σd = 0.005 m2/s2 and

σd = 0.01 m2/s2 Xk=0 = 0 (i.e., “cold start”), Pk=0 = σ 2
m I

with σm = 200 mm of equivalent-water height, and no a

priori process errors. When σd = 0.005 m2/s2, meridian

striping and edge effects rapidly dominate the Kalman filter

solutions after ∼1 year of integration of daily RDP tracks and

till the end of the total period (Fig. 7a). Increasing slightly this

a priori parameter up to 0.01 m2/s2 for an efficient regulariza-

tion enables us to avoid the development of such unrealistic

numerical instabilities in the time series of smoother solu-

tions (Fig. 7b) where seasonal amplitudes are comparable

to the ones of the global CSR solutions (Fig. 7c) (see also

Tables 1, 2). Besides, additional runs for testing different a

priori errors have been made to compute multi-year series of

regional Kalman filter solutions that show the seasonal alter-

nating of the large water mass amplitudes in the Amazon and

Orinoco river basins. Figure 8 illustrates the case of the time

series for the surface tile centred on Manaus. It reveals realis-

Fig. 7 Snapshots of 2-by-2

degree regional solutions of

TWS over South America

estimated from real GRACE

RDP data and assuming

σm = 200 mm and

σp = 10 mm, and plotted at

3-month intervals revealing the

dominant seasonal amplitudes

of water mass over South

America: Kalman filter

solutions for a priori error

uncertainty a σd = 0.005 m2/s2

and b σd = 0.01 m2/s2, and c

corresponding 400-km low-pass

filtered CSR solutions (monthly

averages) for the same periods

for comparison



Fig. 7 continued

tic seasonal oscillations of 300–600 mm of EWH, which are

clearly modulated by inter-annual variations. As expected,

smooth estimates versus time are obtained when considering

not precise GRACE RDP data (i.e., σd = 0.1 m2/s2), but we

found that values of σd lesser than 0.007 m2/s2 significantly

amplify the noise contained the real GRACE RDP. The time

series of these estimated Kalman filter maps will be validated

in Sect. 5.

4.3 Errors due to spatio-temporal aliasing

Figure 9 is a visualization of the extra information brought

by the GRACE satellite tracks computed as two successive

Kalman filter solutions. It shows that the Kalman filter esti-

mate is daily updated in the very close neighbourhood under

the satellite tracks—in a surface radius of about 600–800 km

(e.g., see the numerical tests made in Ramillien et al. 2012)—

just under the satellite tracks where the new information is

brought. While the covariance function of the RDP data is

smooth at satellite altitude (∼400 km), the one of the cor-

responding water mass (i.e., the source of anomaly) is also

much localized on the Earth’s surface due to downward con-

tinuation. This new along-track information represents a few

tens of mm of EWH. Consequently, nothing is refreshed else-

where, in areas which are not surveyed by the GRACE satel-

lite during the considered day. This partial sampling explains



Fig. 7 continued

Table 1 Root mean square of

the absolute differences between

daily Kalman filter solutions and

different TWS datasets for

spatial averages over the main

drainage basins of South

America [units: mm of

equivalent-water height (EWH)]

Amazon Paranà Orinoco Tocantins

WGHM 2005–2006–2007 (daily) 68.1 26.9 79.7 75.6

GLDAS NOAH 2005–2006–2007 (daily) 71.7 26.6 96.7 98.2

Regional solutions (Ramillien et al. 2012) (10-days) 18.2 22.7 62.6 42.2

GRGS (10-days) 27.5 26.6 70.7 61.7

Global CSR (monthly) 51.3 20.9 45.9 57.1

Global GFZ (monthly) 47.1 17.8 47.3 55.3

Global JPL (monthly) 51.0 19.8 47.2 54.9



Table 2 Linear correlations (%)

between time series of GRACE

solutions and of river discharge

variations measured different

stations

Root mean square (RMS) values

of the differences with Kalman

filter solutions are indicated

between parenthesis

Obidos

(Amazon)

Chapeton

(Paranà)

Ciudad Bolivar

(Orinoco)

Turucui

(Tocantins)

Kalman filter solutions

σd = 0.01 m2/s2 (daily) 92 (18.2) 68 (22.8) 78 (62.6) 81 (42.2)

Kalman filter solutions

σd = 0.001 m2/s2 (daily) 95 (29.6) 61 (31.3) 64 (91.3) 69 (52.5)

Regional solutions

(Ramillien et al. 2012) (10-days) 87 75 92 81

Global GRGS (10-days) 87 67 92 83

Global CSR (monthly) 85 74 93 85

Global GFZ (monthly) 86 75 92 91

Global JPL (monthly) 84 75 91 86

Fig. 8 Time series of TWS for

Manaus obtained by integration

of real daily GRACE RDP data

for several a priori error

uncertainties

that the reconstruction of a “static” map takes at least 10 days

of data before the Kalman integration has a sufficient spa-

tial coverage of the satellite tracks at the end (see previous

Sect. 4.1.1). It also explains residual errors of recovery in

the series of regional Kalman filter solutions, even if noise-

free model-simulated RDP data are inverted (e.g., differences

with model TWS values in Fig. 5), since off-track small and

rapid hydrological features cannot be recovered, or partly

retrieved, alternatively their signatures remain in the follow-

ing Kalman filter solutions. Detection of sudden and local-

ized hydrological events by tuning a priori error uncertainties

and considering different cases of data coverage is explored

with synthetic RDP data in the discussion of Sect. 6.

5 Validation of the Kalman filter solutions

Validation consists of confronting regional estimates of TWS

obtained by integration of Kalman filter to existing GRACE-

based products and independent datasets. For this purpose,

we consider different sources of information presented in

Sect. 2: daily WGHM and GLDAS land waters outputs,

monthly global GRACE solutions computed by the offi-

cial providers CSR, GFZ and JPL, as well as local records

of river discharge. Comparisons with the 10-day regional

solution of water mass variation over South America lately

proposed by Ramillien et al. (2012) have been also per-

formed. Global Release 5 monthly solutions from CSR,

JPL and GFZ have been low-pass filtered using a classi-

cal 400-km Gaussian filter (Wahr et al. 1998) and an ICA

approach (Frappart et al. 2010, 2011) to reduce striping. To

make the sampling of Kalman filter solutions comparable

with the other GRACE solutions in space and time, they

have been averaged over both the 10-day and monthly inter-

vals, and over the largest drainage basins of South America:

Amazon (∼6 millions of km2), Paranà (∼2.6 millions of

km2), Orinoco (∼1 million of km2) and Tocantins (∼0.8

million of km2).

Statistical results of the comparisons of averages are sum-

marized in Table 1. It shows that the Kalman filter solutions

are statistically closer to the 10-day regional solutions from

Ramillien et al. (2011) than the monthly global solutions.



Fig. 9 Maps of the differences

between successive Kalman

filter solutions and the coverage

of the corresponding GRACE

satellite tracks used for the daily

refreshing

GLDAS-NOAH outputs at daily timescale. Significant time

shifts and large differences of amplitude can be observed

between GRACE-based and simulated TWS, especially on

the Amazon, Orinoco and Tocantins basins. In these basins,

a large part of the hydrological signal comes from slow reser-

voirs as floodplains (see Frappart et al. 2012 in the case of the

Amazon) and groundwater (see Chen et al. 2010 in the case

of the La Plata basin, Gleeson et al. 2012 and Frappart et al.

2013b for their signatures in 10-day regional solutions) that

are either not or not well modelled. As a consequence, sig-

nificant differences and time-lags are likely to occur between

model outputs and GRACE estimates (Alkama et al. 2010)

(not shown here). Larger differences in amplitude and phase

Because of lower seasonal hydrological dynamics, there is 
less difference for the Paranà basin (i.e., <27 mm of EWH 
RMS) and much difference for the Tocantins river (i.e., up to 
98 mm of EWH RMS). Figure 10 shows a superposition of 
the monthly averages of the Kalman filter solutions and the 
global GRACE solutions. This proves that the Kalman fil-

ter method succeeds in recovering amplitudes and phases of 
TWS. Indeed, they are consistent to the ones of 10-day and 
monthly global GRACE solutions (for instance, see Frap-

part et al. 2013a, b), when they are averaged over large areas. 
In the comparison, RMS differences are more important for 
the two hydrological models. Figure 11 presents the TWS 
time series of the Kalman filter solutions and of WGHM 
and



Fig. 10 Time series of TWS

for the largest drainage basins of

South America obtained by

averaging monthly CSR (blue),

GFZ (red), JPL (green) and

daily Kalman filter solutions

(black)

are observed with GLDAS outputs, as this model (NOAH),

contrary to WGHM, does not consider neither surface storage

(water stored in the rivers and the floodplains) nor the routing

of the surface runoff into the river network which contributes

to surface storage in the downstream grid points. The con-

tribution of surface storage to TWS represents 40–50 % in

the Amazon basin (see Han et al. 2009, 2010; Frappart et

al. 2012; Paiva et al. 2013). So incorporation of total runoff

outputs is likely to reconcile the GLDAS TWS variations to

the GRACE-based amplitudes.

Comparisons were also achieved between 10-day and

monthly GRACE and daily river discharges in the four

largest drainage basins of South America (i.e., Amazon,

La Plata, Orinoco and Tocantins). They are presented in

Fig. 12 and Table 2. An overall good agreement is found

between GRACE-derived TWS and river discharge varia-

tions for all the basins (linear correlation greater than 70 %

for the Kalman filter solutions for zero time-lag). Except in

the case of Amazon basin where the values of correlation

with discharge records reach 95 % for regional Kalman fil-

ter solutions, important linear correlations of 80–90 % are

found at monthly and 10-day timescales. As TWS is the

sum of the contributions all the hydrological reservoirs in

a soil column (i.e., surface, soil moisture and groundwa-

ter storages), the rapid fluctuations of the discharge at daily

timescale have a small impact on the TWS that contains slow



Fig. 11 Time series of TWS

over the largest drainage basins

of South America computed

using WGHM model (dashed

line) and GLDAS model (dots)

outputs, as well as daily Kalman

filter solutions (solid line)

Recovery from real GRACE-derived RDP confirms the low

predicted seasonal amplitudes and time shifts with river dis-

charge variations if σd is high (Fig. 12): the a priori error

matrix R dominates the other terms of Eq. 3, so the Kalman

gain K is small and minimizes the weights of the input RDP

data. Consequently, the current solution is constructed very

slowly versus time, is not refreshed efficiently by the daily

RDP data, and thus existing water mass structures in this

solution are more persistent, creating delay, in other words

time shifting. As the satellite tracks bring local informa-

tion (Fig. 9), this impossibility of catching any information

versus time has an important impact on spatial averaging

over relatively small Orinoco and Tocantins River basins

(see Fig. 10).

changes in groundwater and other residual signals (e.g., from 
atmosphere and oceans mass corrections). This is why the 
correlations are slightly lower at daily timescale.

As they are sensitive to the input a priori error uncertainty 
parameters, the amplitudes of the regional Kalman filter solu-

tions can be overestimated (e.g., if the RDP data are optimisti-

cally considered too accurate: σd < 0.001 m2/s2) or under-

estimated (see Fig. 13 for comparison of the energy spectra of 
solutions from daily WGHM-simulated RDP data, in particu-

lar for the smoothing parameter σd = 0.01 m2/s2). This sen-

sitivity also explains important time shifts, as it is shown by 
previous results obtained with simulated RDP data (Figs. 5, 
6), when the a priori error uncertainty of the observations is 
high and gives smooth estimates (i.e., σd > 0.01 m2/s2).



Fig. 12 River discharge variations (grey) measured at different in situ

stations: a Obidos (Amazon), b Chapeton (Paranà), c Ciudad Boli-

var (Orinoco) and d Tucurui (Tocantins), as well as time series of

daily Kalman filter solutions: σd = 0.1 m2/s2 (dashed line) and

σd = 0.01 m2/s2 (solid line) when σm = 200 mm



Fig. 13 Energy spectra of the

time series (2004–2011) of the

regional day-step solutions for

different a priori uncertainty

parameters and of reference

hydrology model for the

2-degree tile centred over the

city of Manaus

6.1 Searching for the best a priori parameters for inverting

error-free RDP data

Tests on Kalman-type filtering of simulated error-free

GRACE data show a quite rapid convergence from zero first

guesses of surface mass density (i.e., an exact solution is

found after a few days of data integration, as presented in

Fig. 1 for South America). However, inversion of real along-

track potential difference data remains difficult because of

the presence of high-frequency noise and correcting model

errors, effects of which have to be canceled in the inver-

sion, or at least minimized. Thus, even if the convergence

is fast to recover a 30-day constant map of equivalent-water

heights, suitable a priori input values have to be chosen to

build the Kalman gain (i.e., Eq. 3). The choice of parameters

for constructing the Kalman gain is necessary to obtain the

lower errors and to stabilize the final estimate to cope with

noise and outliers in the real GRACE-derived RDP. Inversion

of noise-free model-simulated RDP confirms that errors of

recovery over South America are less than 1 mm of EWH

RMS when using suitable a priori error parameters. In the

presence of noise, these aliasing errors represent a few mm

of EWH, as already shown by Encarnação et al. (2009). Con-

sidering large a priori uncertainties on potential observations

(e.g., σd > 10−2 m2/s2) leads to recovery errors greater than

2 mm RMS in terms of equivalent-water height, as smoothing

is important. Besides, considering artificially very accurate

observations (e.g., σd < 10−4 m2/s2) makes the Kalman

gain, and thus the cumulated solution at step number k very

unstable. The problem of instability is also due to the sparse

sampling of the GRACE satellite tracks whose spatial cover-

age is not sufficient to access cumulated solutions with a daily

6 Discussion

While the long periods of water mass variations (>1 month) 
can be well recovered (see the previous section), we pro-

pose in the following discussion to perform numerical tests 
for exploring the ability of our sequential integration of daily 
WGHM-simulated RDP in recovering sub-monthly and geo-

graphically localized water mass variations. For this purpose, 
we model the spatio-temporal characteristics of a water mass 
anomaly as a time and space Gaussian-type varying function 
of length of a few days and placed at the centre of a 2-by-2 
degree grid. Then, we simulate RDP using Eq. 1 from this 
error-free water mass variation model but with no use of 
propagated errors since no error information is really avail-

able. The challenge is to detect both the geographical loca-

tion and the magnitude of such a time and space located 
anomaly by tuning input parameters, mainly the satellite 
track density (i.e., number of days of observation) and the 
a priori uncertainties. Once a set of these parameters are 
chosen and the error covariance matrices constructed, the 
process of integration is run (Eqs. 2–7). The errors of recov-

ery are estimated at each step of integration as the differ-

ences between the current Kalman-cumulated solutions and 
the daily reference model maps. Note that the solutions may 
be biased towards the reference dataset. The sensitiveness of 
the input a priori uncertainty parameters and the impact of 
critical satellite track coverage are examined through differ-

ent values of these a priori parameters. This trial-and-error 
approach helps us finding the best combination of parame-

ters for the detection of the modelled water mass event, if 
the minimum RMS value of the recovery error is used as a 
criterion.



Fig. 14 Maximum error of

recovery versus a priori

parameter σm after 30 days of

Kalman filter integration in the

case of a simulated 200-mm

amplitude water mass anomaly

centred at time k = 15, and

assuming an a priori error

uncertainty of the observations

of 0.001 m2/s2

Fig. 15 Maximum error of

recovery versus a priori

parameter σm after 30 days of

Kalman filter integration in the

case of a simulated 1,200-mm

amplitude water mass anomaly

centred at time k = 15, and

assuming an a priori uncertainty

of the observations of

0.001 m2/s2

resolution. For these limitations of not using accurate RDP

data, we deemed that using σd = 10−2−10−3 m2/s2, which

corresponds to the level of noise of the GRACE-based poten-

tial differences, represents a good compromise (see Ramil-

lien et al. 2011, 2012).

Several simulations have revealed that the error of recov-

ery increases with a priori model uncertainty σm as well as

the duration of the water mass anomaly (Figs. 14, 15). This

recovery error is ten times more important for water mass

amplitude of 1,200 mm than considering a 200-mm water



Fig. 16 Geographical

variability of the error of

recovery versus iteration

number to the final estimate.

Total integration period is

30 days. The true water mass

solution is Gaussian and centred

at t = 15 days, with amplitudes

of 50 mm (duration: triangles:

1 day, stars: 5 day) and 500 mm

(durations: squares: 1 day,

circles: 5 days)

numerical instabilities in the inversion, is the aliasing of fast-

moving water mass events at periods shorter than the total

integration period.

As the method cumulates all the hydrological signals,

including the very short-term ones that can occur during

the integration process, the final average corresponds to a

mixing of events. We consider a synthetic Gaussian water

mass anomaly located at the center of the region with vary-

ing amplitude from 50 to 500 mm of EWH, radius from 200

to 1200 km, and duration lasting from 1 to 5 days. Along-

track RDP have been simulated from this reference model

of water mass anomaly using Eq. 1, and used as input to

build iteratively a Kalman filter solution. The error of recov-

ery is then evaluated as the difference between the computed

Kalman-based and reference water mass anomalies. These

errors versus the number of days of integration are repre-

sented in Fig. 16. Persistent errors clearly appear after the

water mass anomaly maximum occurring at day #15, and we

note that they are not attenuated afterwards, even in the case

of a sudden event. This error of aliasing increases drastically

with amplitude of the water mass anomaly, by a factor 9 from

50 to 500 mm. In the particular case of water mass anom-

alies centred over the integration period, the final aliasing

error should tend to zero after 30 days of integration. As it

is presently built, the scheme keeps any water mass change

“in memory” up to the final water mass estimate which is

equivalent to an average of cumulated signals over the total

period of integration. Due to the poor daily distribution of

the GRACE satellite tracks, it is clear that the process can-

not update the solution efficiently enough. Fortunately, in

the case of long period of integration, high-frequency and

mass anomaly. It reaches low values when a priori model 
uncertainty σm ranges from 10 to 50 mm. In this domain of 
small model uncertainty, the Kalman filter strategy provides 
less error than least-squares integration of one day of sparse 
RDP data, since its advantage is, by construction, to inherit 
(or cumulate) information from the previous stage k − 1 to 
build an averaged solution at the following stage k.

Obviously, the error of recovery in our final cumulated 
solution is lower when the data coverage at each stage is 
twice, indicating that the Kalman filtering is well adapted 
to estimate time-constant water mass map by progressive 
integration of RDP. Unfortunately, it is a particular case as 
hydrological signals surely vary in time from a day to another. 
This suggests that these unavoidable variations of water mass 
during the total period of integration (e.g., ∼30 days) create 
errors of time aliasing by accumulation of rapid successive 
hydrological events. While considering constant monthly 
intervals produces no noticeable aliasing error for averages 
over large surfaces, quantification of time aliasing errors pro-

posed by Encarnação et al. (2009) shows that GRACE satel-

lite orbit configuration permits an optimal detection of hydro-

logical events of at least 11–15 days, like in the case of the 
3,300- to 4,400-km-wide Zambezi river basin.

6.2 Aliasing effects polluting the final estimate

According to the previous results, even if GRACE observa-

tions contain time-varying hydrological signals, the proposed 
method provides estimations of water mass anomaly that are 
considered constant over 10–30 days. Hence, the main source 
of error, excepting the presence of spurious noise that creates



Fig. 17 Same as Fig. 16, but

the total integration period is

1 day, instead of 30 days, to gain

in temporal resolution and avoid

persistent signals

Fig. 18 Same as Fig. 17 (i.e.,

integration of one day data), but

with a twice-denser coverage

(i.e., 2-day steps) of the GRACE

satellite tracks at each iteration

zero-mean noise should cancel out, and thus have a reduced

impact on the final cumulated solution.

6.3 Reduction of aliasing error

Without including time correlations (or constraints) through

hydrology model outputs, decreasing the period of integra-

tion is the only way of gaining in temporal resolution. As

illustrated in Fig. 17, in the case of integration of daily RDP,

the persistency of aliasing error is reduced after the maximum

of anomaly is reached at k = 15. However, when the integra-

tion is made over 30 days (see Fig. 16), the amplitude of error

is slightly less than independent daily integrations, thanks to

heritage of useful information from the previous iteration

to the next one. Obviously, coverage of the daily GRACE

tracks made artificially denser would make the aliasing error

decrease significantly, as presented in Fig. 18.

According to the uncertainty principle, it is not possible

to benefit from temporal and spatial resolutions at the same

time, as previously mentioned by Freeden and Schreiner

(2009), or equivalently, any representation cannot provide

a precise localization of a particular event in both space and

time. This is well illustrated by the previous results of Kurten-

bach et al. (2009, 2012) who have used a similar Kalman filter



Fig. 19 Linear correlation

between sub-monthly time

averages of the regional Kalman

filter solutions and the river

discharge variations measured at

four in situ stations versus the

time interval used for averaging

these two datasets

These long time series of daily-step Kalman filter solutions

have been validated by comparing them to GRACE-based

and independent datasets (i.e., model outputs and in situ dis-

charge observations). The seasonal amplitudes of TWS and

their inter-annual modulations are well restored on the daily

sampling solutions compared with regional/global GRACE

solutions and model outputs. High correlations (>0.7) were

found between daily TWS and in situ discharge data in the

four largest drainage basins of South America, but were

generally lower than these obtained at 10-day or monthly

averages.

While long periods of the hydrological variations are well

recovered by the sequential accumulation (e.g., by choos-

ing suitable high values for σm to allow strong seasonal sig-

nals to be easily retrieved), the construction of sub-monthly

hydrological events remains problematic because of the poor

per-day coverage of the GRACE satellite tracks. According

to the simulations we made, the refreshing process is effi-

cient for accumulation of RDP information of 10–15 days,

but fails to reach the daily resolution of the Kalman filter

solutions and even a resolution of a few days. The detec-

tion of sub-monthly events can be slightly improved by tun-

ing a priori error uncertainty parameters; however, the spa-

tial distribution of the satellite tracks is the most limiting

factor.
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