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Abstract. Ontology matching is the process of finding a set of corre-
spondences between the entities of two or more ontologies representing a
similar domain. POMap++ is an ontology matching system associating
ontology partitioning to the machine learning techniques. This associ-
ation delivers a local matching learning. POMap++ provides an auto-
mated local matching learning for the biomedical tracks. For the non-
biomedical tracks we employ the version of POMap 2017. In this paper,
we present POMap++ as well as the obtained results for the Ontology
Alignment Evaluation Initiative of 2018.

Keywords: Semantic web, Ontology Matching, Ontology partitioning,
Machine learning

1 Presentation of the system

Ontologies are the backbone of the semantic web. They enable sharing, reusing
and accessing the knowledge resources [9]. Biomedical ontologies are domain-
specific knowledge bases widely employed in biology and medicine. These ontolo-
gies have been separately developed by different experts using different termi-
nologies and modeling techniques. The integration of these data sources requires
ontology matching tools. Ontology matching is the identification process corre-
spondences between the entities of different ontologies. The alignment process is
quite challenging in terms of the complexity of the existing biomedical ontolo-
gies. POMap++ divide a biomedical ontology alignment to a set of sub-matching
tasks called partitions. We align each sub-matching task using its local adequate
settings. We automatically determine the local matching settings by generating
a specific machine learning model for each sub-matching task. This automated
tuning process of local matching parameters aims to improve the overall match-
ing quality of a large ontology matching task. We employed POMap-++ for
the biomedical matching tasks and POMap [3] for the non-biomedical matching
tasks. In the following section, we provide a detailed description of POMap++-.



1.1 State, purpose, general statement

1.2 Specific techniques used

The workflow of POMap++ for our second participation in the OAEI comprises
four main steps, as flagged by the figure 1: Input ontologies indexing and load-
ing, input ontologies partitioning, local matching learning and output alignment
generation. The first and the last step are the same as in the last version of
POMap [3]. In the second step, we define the pair of similar partitions between
the two input ontologies. In the third step, we apply machine learning techniques
in order to align every identified pair of similar partitions. In the following, we
detail each of the four steps.
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Fig. 1. The architecture of POMap++.

Step 1: Input ontologies indexing and loading

The first step of the ontology indexation and loading is the pre-processing
task. We pre-process the annotations of the two input ontologies by applying the
Porter stemming [8] as well as the stop word removal process. We also remove
the special characters. These indexes are stored along with the structure of
the input ontologies. The structural indexing is responsible for representing the
relationships between entities. Then, during the third task, the indexed data
structures are loaded into the next step of POMap++-.

Step 2: Input ontologies partitioning

We divide an ontology into a set of partitions using the hierarchical agglomer-
ative clustering [5] approach. This approach does not take as input the required
number of partitions. The hierarchical agglomerative clustering algorithm re-
ceives as input structural similarity scores between all the entities of an input



ontology. We compute the structural similarity between the entities of a single
ontology according to the following Definition. The Definition 1 is inspired by
Wu and Palmer [10] similarity measure.

Definition 1 (Structural similarity between entities). We compute the
structural similarity between all the entities in one ontology according to the
Equation 1. For a given two entities e; ; and e;, of an ontology O;, lca is their
lowest common ancestor. Dist(e; ;,lca) represents the shortest distance between
ei.x and lca in terms of number of edges. Dist(e; ,,lca) denote the distance be-
tween e; , and lca. Dist(r;,lca) is the distance between the root r; and lca.

Dist(r,lea) x 2

StreSim(eie, €i,y) = - - .
reSim(eia, €iv) Dist(e,z,lca) + Dist(ei,y,lca) + Dist(ri,lca) x 2

(1)

Step 3: Local Matching learning

Due to the high complexity of biomedical ontologies, no single syntactic simi-
larity measure can effectively all the syntactic heterogeneity of a matching task.
Therefore, for each local matching task, we construct its specific machine learn-
ing model. The training set of every local learning model is not based on any
reference alignments. We automatically construct a supervised training set for
each local matching task of the set of local matchings. These training sets serve
as the input for each local machine learning model. After identifying the par-
titions for each ontology, we find the set of similar partitions between the two
input ontologies using a set of anchors. The existing works retrieve labeled data
either from the reference alignment or by creating it manually. However, the
reference alignment commonly does not exist. We derive each local training set
by cross-searching the entities of a local matching with the existing biomedical
knowledge bases like Uberon. Since we are dealing with biomedical ontologies,
anchors are extracted by cross-searching the input ontologies with the available
external biomedical knowledge bases (KB) such as the Unified Medical Lan-
guage System (UMLS) Metathesaurus [1], Medical Subject Headings (MeSH)
[4], Uberon [6] and BioPortal [7]. For instance, UMLS integrates more than 160
biomedical ontologies. In our case, we cross-search the two input ontologies with
the Uberon ontology to derive the set anchors. We employ the-state-of-the art
syntactic similarity measures® as features. The labeled data of the training set
is usually hard to acquire. We apply the wrapper feature selection [2] method
over the resulted local training sets. This technique selects the subset of the
most effective and suitable features for each local training set. Therefore, each
local matching task has its specific similarity measures. Then, we build a local
machine learning model for each local matching task. The entities of each local
matching task are classified using their specific machine learning model. This
local learning model aligns the input entities based on the adequate matching
parameters.

Step 4: Output alignment generation

3 https://git.io/fNvqt



The generated correspondences for every local matching task Im;; , are uni-
fied to generate the final alignment file for the whole ontology matching task.
The alignment file is compared to the reference alignment to evaluate the overall
result accuracy.

2 Results

2.1 Anatomy

The Anatomy track consists of finding the alignments between the Adult Mouse
Anatomy and the NCI Thesaurus describing the human anatomy. The evaluation
was run on a server coupled with 3.46 GHz (6 cores) and 8GB of RAM. Table 1
draws the performance of POMap-++ compared to the five top matching systems.
Our matching system achieved the third best result for this dataset with an F-
measure of 89.7%, which is very close to the top results. The remaining challenge
is to speed up the execution time by applying more optimizations. We also target
the improvement of precision value for our next participation in the OAEI.

2.2 Disease and Phenotype

This track is based on a real use case in order to find alignments between disease
and phenotype ontologies. Specifically, the selected ontologies are the Human
Phenotype Ontology (HPO), the Mammalian Phenotype Ontology (MP), the
Human Disease Ontology (DOID) and the Orphanet and Rare Diseases Ontol-
ogy(ORDO). The evaluation was run on an Ubuntu Laptop with an Intel Core
i9-8950UK CPU @ 2.90GHz x 12 coupled with 25Gb RAM. POMap++ suc-
ceeded to complete tow tasks HP-MP and DOID-ORDO. POMap produced 1502
mappings in the HP-MP task associated with 214 unique mappings. Among the
eight matching systems, POMap++ achieved the fifth highest F-measure with
an F-Measure of 69.9%. In the DOID-ORDO task, POMap generated 2563 map-
pings with 174 unique ones. For this task, POMap++ obtained an F-Measure
of 84.5% being the third best result for this track.

2.3 LargeBio

This tracks aims to find the alignment between three large ontologies: Founda-
tional Model of Anatomy (FMA), SNOMED CT, and the National Cancer Insti-
tute Thesaurus (NCI). Among six matching tasks between these three ontologies,
POMap—++ succeeded to perform the matching between FMA-NCI (small frag-
ments) and FMA-SNOMED (small fragments) with an F-Measure respectively of
88.9% and 40.4%. For the other tasks of the large biomedical track, POMap++
exceeded the defined timeout.
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Conclusion

The obtained results of POMap++ are promising especially for disease and
phenotype as well as the anatomy track in which we ranked as the third top
performing matching system. However, we did not opt to perform the local
matching using structural-level features. Consequently, we are planning to add
structural-level feature to the local matching process.
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