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Abstract. Various methods have been proposed to express and solve maximum 
likelihood problems with incomplete data. In some of these approaches, the idea is that 
incompleteness makes the likelihood func-tion imprecise. Two proposals can be found to 
cope with this situation: maximize the maximal likelihood induced by precise datasets 
compat-ible with the incomplete observations, or maximize the minimal such 
likelihood. These approaches prove to be extremist, the maximax ap-proach having a 
tendency to disambiguate the data, while the maximin approach favors uniform 
distributions. In this paper we propose an al-ternative approach consisting in minimax 
relative regret criterion with respect to maximal likelihood solutions obtained for all 
precise datasets compatible with the coarse data. It uses relative likelihood and seems 
to achieve a trade-off between the maximax and the maximin methods.

1 Introduction

Maximum likelihood is a standard approach to finding a probabilistic model
based on data. It maximizes the probability of obtaining the observations (sup-
posed to belong to a set of mutually exclusive outcomes) [3]. When observations
are coarse and may overlap, it is not clear how to define the likelihood function:
several options exist, according to whether we take into account the measure-
ment process governing the incompleteness or not. In this paper, we focus on
optimizing the likelihood function that we should have observed, had obser-
vations been precise. Due to incomplete observations, this likelihood function
is imprecise, since there are several possible precise datasets compatible with
the coarse observations. Two approaches have been proposed: one considers an
optimistic point of view aiming to disambiguate the data, by maximizing the
maximum likelihood value across candidate datasets [5]. Another more cautious
one tries to maximize the minimum likelihood value across candidate datasets
thus adopting a robust optimization approach [6]. Both approaches have their
weaknesses and can be criticized as being extreme ones, yielding either too de-
terministic or too dispersed distribution functions.

In this paper we propose an alternative criterion that tries to define a trade-off
between the two previous approaches, and can be seen as minimizing a maxi-
mal regret criterion. We provide the results of some preliminary investigations



of this approach, first by considering examples in the discrete setting, such as
ill-observed coin flipping. Optimizing this criterion seems to pose challenging
computational problems.

2 Definition of the problem

We consider the setting of a random experiment where a variable X is incom-
pletely observed via a measurement device providing values of a variable Y ,
namely [1]:

– X : Ω → X represents the outcome of a certain random experiment. In the
finite case we assume X = {a1, . . . , am}.

– Y : Ω → Y ⊆ ℘(X ) that models the reports of the measurement device,
where Y = {A1, . . . , Ar}, ℘(X ) is the set of subsets of X , and Ai ⊆ X .

The information about the joint probability distribution P (X, Y ) on X × Y of
the random vector (X, Y ) can be obtained by modeling the random variable
X (P (X)) and its measurement process (P (Y |X)). However, in this paper, we
shall just ignore the measurement process and try to figure out what is the best
choice for P (X) based on the available data. In general, this probability function
depends on a model parameter θ, and we write it P (X|θ).

Let y = (G1, . . . GN ) be a sample of coarse observations, where Gj ∈ Y
denote the results of observing X through the measurement device Y = Gj

means that xj ∈ Gj , where xj is the jth (unobserved) outcome of in the sample
x = (x1, . . . xN ) of the random process governing X. Let X y be the set of samples
of X compatible with y. We may consider three different likelihood functions
depending on whether we refer to [1]:

1. the observed sample in Y: P (y|θ) =
∏N

i=1 p(yi|θ).

2. the hidden sample in X : P (x|θ) =
∏N

i=1 p(xi|θ).

3. the complete sample in Z = X × Y: Lz(θ) =
∏N

i=1 p(zi|θ), where zi =
(xi, Gi), z = ((x1, G1), . . . (xN , GN )), xj ∈ Gj , ∀j = 1, . . . , N .

In the following we focus on the likelihood function based on the hidden
sample x. Clearly this likelihood function is ill-known and belongs to the set
{P (x|θ) : x ∈ X y}. There are two strategies of likelihood maximization, based
on a sequence of imprecise observations y = (y1, . . . , yN ) ∈ YN :

1. The maximax strategy : it aims at finding (x∗, θ∗) that maximizes Λ(θ) =
maxx∈X y P (x|θ).

2. The maximin strategy : it aims at finding θ∗ ∈ Θ that maximizes Λ(θ) =
minx∈X y P (x|θ).

The above setting for inference with incomplete data differs from the older,
more standard approach by Heijan and Rubin [8], which relies on an extensive
use of partitions and a different view of the measurement process: an observation
Gj is viewed the unique element, such that xj ∈ Gj , of a partition of X that is



selected at random. Here we rather adopt the framework of Dempster [2] where
the defect in the measurement process is modelled by means of a multimapping
from the sample space to the outcome space X .

These optimization problems take the following form in the discrete case
where X is finite [7], assuming exchangeability. Let nk be the number of appear-
ances of value ak in the virtual sample x, and qj be the number of observations
of Aj in the observed sample y, and let nik be the number of times (ai, Ak) is
obtained in the complete sample z; we have that x ∈ X y if and only:



















(a)
∑r

k=1 nk =
∑r

j=1 qj = N

(b) nk =
∑r

j=1 nkj , ∀k = 1, . . . , m

(c) qj =
∑m

k=1 nkj , ∀j = 1, . . . , r.

(d) nkj = 0 if ak Ó∈ Aj , ∀k, j.

(1)

Let N y be the set of tuples n = (n1, . . . , nm) that are compatible with y,
namely they satisfy (1). The maximax, resp. maximin, strategy then takes the
following form, using log-likelihoods, and defining pθ

k = P (X = ak|θ):

maxp maxn

∑m

k=1 nk · log pθ
k

or

maxp minn

∑m

k=1 nk · log pθ
k

s.t. constraints (1) hold and

(e)
∑m

k=1 pθ
k = 1

(f) nk, njk ∈ N, pθ
k > 0, ∀k = 1, . . . , m,

In the finite case, when all discrete distributions are possible (θ = (p1, . . . pm−1)),
the set of probabilistic models is the credal set associated to the belief function
defined by the mass assignment m(Aj) = qj/N , for j = 1, . . . , r. Then the opti-
mal solution to the maximin likelihood problem is the distribution with maximal
entropy, namely the solution to: maxn −

∑m

k=1
nk

N
· log nk

N
under conditions (a,

b, c), and nk ∈ R
+, i.e. n in the convex hull of N y [7, 1].

In contrast, the optimal solution to the maximax likelihood problem (2) is the
solution with minimal entropy, namely the solution to: minn −

∑m

k=1
nk

N
· log nk

N

under conditions (a, b, c) [7, 1].
As a consequence the two approaches to handling incomplete observations

look somewhat extreme. On the one hand, the max-max approach tends to
strongly disambiguate the data, yielding Dirac distributions consistent with the
coarse data when they are feasible. If the measured quantity is deterministic in
nature, this is natural. However it becomes questionable if the measured quan-
tity is tainted with variability (like the ill-known overlapping observed outcomes
of tossing a die). On the other hand, the max-min approach yields distribu-
tions with high variances interpreting incomplete information as the result of
extreme randomness: the less information the larger the variance, which is not
fully satisfactory either.



3 A criterion based on a likelihood ratio trade-off

In this section we propose a new criterion which tries to maximize the confidence
level in the fact that the parameters are acceptable for all possible realizations. It
is well-known that the likelihood function represents the plausibility of parameter
θ in view of some precise results x of observing a variable X, in relative value
only. Namely the likelihood of θ is proportional to P (x|θ) but the proportionality
coefficient is arbitrary. We cannot evaluate the extent to which data x supports
θ more that data x

′ supports θ′ by comparing P (x|θ) and P ′(x′|θ′) We must

compare the likelihood ratio P (x|θ)
P (x|θ′) with P (x

′|θ)
P (x′|θ′) . In other words, only likelihood

ratios can be used to choose the right parameter value.
The new criterion we propose consists in comparing the likelihood ratios

P (x|θ)

P (x|θ̂x)
across observations x ∈ X y, where θ̂x is the maximum likelihood estimate

of the distribution parameter θ for observation x, and adopt a variant of the
minmax regret approach (we could call minmax relative regret) of the form

max
θ∈Θ

min
x∈X y

P (x|θ)

P (x|θ̂x)
. (2)

The idea is that since the ideal parameter value θ for observation x is θ̂x, and
X is ill-observed, we try to find the value of θ that reaches a best compromise
between the various ideal values θ̂x for all x in agreement with the incomplete

data y. The value P (x|θ)

P (x|θ̂x)
lies in [0, 1], and can be viewed as the degree of

membership of θ to the fuzzy set θ̃x of good parameter estimates based on
observing x. Then the problem (2) is a standard fuzzy multicriteria optimisation
problem (finding θ with the maximal membership values in the intersection of
fuzzy sets θ̃x). Note that the problem (2) is very similar to the one induced by
the maximin strategy. The latter can be seen as a fuzzy optimisation problem,
albeit with non normalized fuzzy sets.

Using the log-likelihood L(x|θ) = log P (x|θ), the above problem can be for-
mulated as one of minimizing the maximal regret:

min
θ∈Θ

max
x∈X y

L(x|θ̂x) − L(x|θ) (3)

Or yet, in the finite case (X y = {x
1, . . . , x

h}), it can be expressed as a goal

programming problem, minimizing the L∞ distance maxh
i=1 |L(xi|θ̂xi)−L(xi|θ)|

between the vector (θ, . . . , θ) with length h and the ideal point (θ̂x1 , . . . , θ̂xh).
Remark An alternative choice of probabilistic model in the presence of

coarse data consists in choosing the pignistic probability of Smets [10]. The obser-
vation vector (q1, . . . , qr) on Y can be viewed as a Dempster-Shafer mass assign-
ment m on ℘(X ) [9], letting m(Aj) = qj/N for j = 1, . . . r inducing lower proba-
bilities in the sense of [2] in the form of a belief function Bel(A) =

∑

E⊆A m(A).
This Dempster-Shafer mass assignment defines a convex set {PX : PX(A) ≥
Bel(A), ∀A ⊆ X } of probabilities on X , hence of joint probabilities on X × Y
with known marginals q̂j = qj/N for j = 1, . . . , r on Y. Knowing the distribution



on Y (which can be estimated from y), the pignistic probability induced by m
can be obtained as:

pP
k =

∑

j:Aj∋ak

qj

N · |Aj |
.

where |Aj | is the cardinality of Aj , which yields a marginal distribution on X .

4 Resolution method

In this section we propose a mathematical programming approach to solving
problem (3) in the discrete case. Let c(N y) be the convex hull of N y. Elements
of c(N y) are denoted by w = (w1, . . . wm). To build this model, we show (see
Prop.1) that the maximization part of Problem (3) can be reduced to maximiza-
tion over the set of vertices of c(N y), denoted by V (N y), that actually lies in
N y. The efficiency of the approach presupposes V (N y) is small enough. Note
that L(x|θ) =

∑m

k=1 nk · log pθ
k, which can be extended to c(N y), in the form

L(w|θ) =
∑m

k=1 wk · log pθ
k, where w is a vector of non-negative reals.

Proposition 1 maxx∈X y L(x|θ̂x) − L(x|θ) = maxw∈c(N y) L(w|θ̂w) − L(w|θ) =

max
n∈V (N y) L(n|θ̂n) − L(n|θ).

Proof: L(x|θ̂x)−L(x|θ) =
∑m

k=1 nk·log nk−
∑m

k=1 nk·log pθ
k with (n1, . . . nm) ∈

N y, the term log pθ
k’s being constant. Consider maximizing L(w|θ̂x) − L(w|θ)

for w ∈ c(N y) instead. The function
∑m

k=1 wk · log wk is convex,
∑m

k=1 wk · log pθ
k

is convex, and clearly L(w|θ̂x) − L(w|θ) is convex too. We also know that
c(N y) is a convex polyhedron with integer vertices, so the maximal value of

L(w|θ̂x) − L(w|θ) is reached at one of these vertices, i.e., for some w = n ∈
V (N y) ⊆ N y corresponding to some sample x ∈ X y. �

From Proposition 1, we can solve the maximin relative regret using the fol-
lowing mathematical programming model, introducing an additional variable
α ≥ 0:

minp α (4)

s.t.

(a)
∑m

k=1 nk · log nk −
∑m

k=1 nk · log pθ
k ≤ α, ∀x ∈ V (X y)

(b)
∑m

k=1 pθ
k = 1

(c) pθ
k > 0, ∀k = 1, . . . , m,

This model has an exponential number of constraints (a). As perspective, we
intend to develop an iterative algorithm to compute the optimal probability
distribution.



5 Examples

In this section, we discuss the differences between the maximin and maximax
approaches and the new one proposed in this paper by means of examples.

Let us suppose that you want to estimate the probability to observe heads
or tails in a coin flipping experiment, where X = {h, t}. But the only precise
observations made yielded heads and we could not see the other outcomes: so
we have Y = {{h}, {h, t}}. Suppose that we observed 30 times {h} and 30 times
nothing ({h, t}). To estimate the minmax regret probability distribution on X
(noted pR) we solved the mathematical formulation (4) given in the previous
section using the solver SQP of software Octave.1 To discuss the result, let
us compare it with the probability distribution obtained using the maximax
approach (denoted by pM ) and the maximin approach (denoted by pm) and
Smets’ pignistic probability distribution [10] (denoted by pP ) induced by the
belief function whose family of focal sets is Y. The results are given in table 1.

X {h} {t}

pM (X = ai) = 1 0

pm(X = ai) = 0.5 0.5

pR(X = ai) = 0.8 0.2

pP (X = ai) = 0.75 0.25

Table 1. Probability distribution with 30 times {h} and 30 times {h, t}

Firstly we can see that the solution pR lies between the maximax and the
maximin solutions. The maximax one assumes that the observation {h, t} are
{h}, in contrast with the maximin solution, which assumes that the outcomes
behind {h, t} are {t}. The criterion proposed in this paper achieves a trade-off
between the two extreme samples S1: (30 {h}, 30 {t}) and S2: (60 {h}, 0 {t})
compatible with the observations. It selects parameter values which are the least
incompatible with both samples, here ph = 0.8 and pt = 0.2. Noted that it is
different from the pignistic distribution here, pP

h = 0.75 and pP
t = 0.25.

number of {h} 60 50 40 30 20 10 0

number of {h, t} 0 10 20 30 40 50 60

pM (X = h) = 1 1 1 1 1 1 1 or 0

pm(X = h) = 1 5
6

4
6

0.5 0.5 0.5 0.5

pR(X = h) ≈ 1 0.937 0.87 0.8 0.72 0.63 0.5

pP (X = h) ≈ 1 0.92 0.83 0.75 0.66 0.58 0.5
Table 2. Impact of imprecision on the optimal parameter

1 https://www.gnu.org/software/octave/



Let us now study, on this simple example, the impact of the imprecise data on
the optimal parameter found by the 4 methods. This is provided on Table 2. The
extreme behavior of maximin and maximax methods is patent. The maximax
approach disambiguates the data assuming the coin always yield heads. If it is
known that the measured process is random (a regular coin flipping experiment),
this approach sounds totally counter-intuitive. However if the (ill-)observed pro-
cess is known to be deterministic (e.g., it consists in repetitively reading h on the
visible side of a coin that is not flipped), concluding h with probability 1, if it has
been observed at least once, is natural. In contrast, the maximin approach (like
the other ones) interprets the lack of precise observations as pure randomness,
which may sound questionable both when the underlying phenomenon is known
to be deterministic, and when it is not. When no outcome can be observed,
the maximax approach expresses pure ignorance, while the uniform distribu-
tion found by other approaches is an instance of Laplace principle of insufficient
reason.

Observe that the maximin regret approach yields a smoother variation of the
optimal value, in terms of the amount of dataset imprecision than the maximin
approach (the latter produces a uniform distribution as soon as it can). The same
smooth behavior is observed for the pignistic probability. However, the latter is
the center of gravity of the set of probability assignments p = (p1, . . . , pm) such
that Np ∈ c(N x), hence based on Euclidean distance, while the minmax regret
uses an L∞ distance.

Let us analyze the value of likelihood ratio in (2) for optimal parameters pR

obtained by model (4), as provided on Table 3. This ratio measures our confi-
dence in the obtained model, i.e., the extent to which parameter θ = (pR

h , pR
t ) is

acceptable for all possible samples in N x.

number of {h} 60 50 40 30 20 10 0

number of {h, t} 0 10 20 30 40 50 60

θ (1,0) (0.937,0.063) (0.87,0.13) (0.8,0.2) (0.72,0.28) (0.63,0.37) (0.5,0.5)

minx∈X y
P (x|θ)

P (x|θ̂x)
1 0.68 0.44 0.26 0.14 0.06 0.015

Table 3. Confidence on the parameter θ

We can see that when the imprecision of the dataset increases, the extent
to which the optimal parameter is acceptable for all possible samples decreases.
In other words, when all observations are imprecise we are bound to choose
(0.5, 0.5) but we know that our confidence on this choice is low.

6 Conclusion

This paper is a preliminary step towards a more robust approach to statistical
estimation in the presence of coarse data. This approach is more compatible with
the usual view of likelihood functions as defined up to multiplicative constants,



while the maximax and maximin approaches compare absolute likelihood values,
albeit on equal datasets. Rather than selecting a single probabilistic model we
could also use our criterion to build a small range of suboptimal parameter
values that guarantee a given confidence level. Another issue is to compare our
approach with more traditional ones to coarse data using partitions [8]. In these
approaches, it is assumed that the imprecision generation process stems from
the random choice of a coarsening of X (a partition) such that if x = a occurs,
the corresponding element of the random partition is observed. In contrast, our
setting, based on [1], relies on the multimapping representation of incomplete
information due to Dempster [2]. The latter framework sounds more natural,
while the partition-based framework seems to require the specification of more
parameters (there are more partitions of a finite set of size m than non-empty
subsets thereof, when m is large enough). In other words, if no specific knowledge
is available on the measurement process, there are more parameters to be set
in the partition-based framework, than the number of conditional probabilities
defining P (Y |X).
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