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Z-numbers as Generalized Probability Boxes

Didier Dubois Henri Prade
IRIT, CNRS and University of Toulouse, France

{dubois,prade}@irit.fr

Abstract This paper tries to propose a new approach to the notion of Z-number, i.e., a 
pair (A, B) of fuzzy sets modeling a probability-qualified fuzzy statement. Originally, a Z-
number is viewed as the fuzzy set of probability functions stemming from the flexible 
restriction of the probability of the fuzzy event A by the fuzzy interval B on the proba-bility 
scale. This representation leads to complex calculations, and a probability-qualified 
statement represented by a Z-number fails to come down to the original fuzzy statement 
when the attached probability is 1. It is shown that simpler representations can be pro-
posed, that avoid these pitfalls, starting from the remark that in the crisp case, where both 
fuzzy sets A and B forming the Z-number are crisp, the generated set of probabilities is 
representable by a special kind of belief function that corresponds to a probability box (p-
box). Then several proposals are made to generalize this approach when the two sets are 
fuzzy. One explored idea is to consider a Z-number as a weighted family of crisp Z-numbers, 
obtained by independent cuts of the two fuzzy sets, that can be averaged. In the alternative 
approach, a Z-number is modeled by a pair of possibility distributions on the universe of A. 
In that case, the probability of each cut of A is upper and lower bounded by two probability 
values that come from the p-box induced by the fuzzy probability B. Then computation with 
Z-numbers come down to uncertainty propagation with random intervals.

Key-words: Fuzzy event, Z-number, belief function, p-box, imprecise probability.

1 Introduction

In order to account for uncertainty attached to fuzzy statements, Zadeh [33] introduced the 
notion of a Z-number (see also [32]). It was one of the last proposals made by him, that 
triggered a significant amount of literature. A Z-number is a pair (A, B) where A is a fuzzy 
subset of U and B is a fuzzy subset of [0, 1] modeling a fuzzy restriction on the probability of 
A. Informally it tries to formalize the meaning of a statement of the form
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“(X is A) has probability B”, like the statement “it is probable that my income will he high 
this year”. Zadeh introduced this kind of probability-qualified statements much earlier, 
when introducing a general framework for the mathematical representation of linguistic 
statements (the PRUF language [31]). The pair (A, B) was then modelling a probability-
qualified statement, interpreted as a family of probability distributions obtained by fuzzily 
restricting the probability of the fuzzy event A by the fuzzy set B. The latter is viewed as 
a possibility distribution restricting the possible values of an ill-known probability. So a Z-
number can be viewed as a fuzzy set of probability measures, more specifically a possibility 
distribution over them. In his paper, Zadeh [33] outlines a method to make computations 
with Z-numbers. This question has been taken up by other authors, most noticeably Aliev 
and colleagues [1, 3, 2], with a view to provide practical computation methods with Z-
numbers. However, these methods seem to need the extensive use of linear programming 
even for solving small problems.

This research trend seems to have developed on its own with no connection with other 
generalized probabilistic frameworks for uncertainty management, like belief functions [21] 
and imprecise probabilities [23]. Yet, in those frameworks, the idea of a second-order possi-
bility distribution over probability functions has been envisaged as a finer representation of 
convex probability sets by Moral [17], or Walley [24], with a view to represent linguistic in-
formation [25]. A full-fledged behavioral approach to the fuzzy probability of a crisp event 
(understood as partial knowledge about an objective probability) has been even studied in 
this spirit by De Cooman [5].

In this short paper, we reconsider Z-numbers and their interpretation by Zadeh in the 
light of belief functions and imprecise probabilities, questioning some choices made. First 
we characterize crisp Z-numbers where both A and B are crisp sets. This seems not to 
have been done yet. However it is quite important to do it so as to put Z-numbers in the 
general perspective of uncertainty modeling. We show that a crisp Z-number can be exactly 
represented by a belief function [21], more specifically a p-box [15]. On such a basis, we 
first propose alternative interpretations of Z-numbers, which may sound more natural and 
make them easier to process in computations. Basically we show that a Z-number can be 
represented, or at least approximated, by a belief function. As a consequence, computing 
with Z-numbers come down to computing with random intervals.

The paper is organized as follows. Section 2 recalls the original definition of a Z-number 
and highlights some limitations of this representation. Section 3 shows that in the crisp 
case a Z-number is equivalently represented by a special kind of belief function. The next 
section presents the main results of the paper. First we try to extend the belief function 
view to the case when only one of the elements of the pair (A, B) is crisp. Finally, we deal 
with the general case, proposing two different approaches.



2 Z-numbers

Consider two fuzzy sets A and B where A is a fuzzy subset of the real line, typically a
fuzzy interval, that stands for a fuzzy restriction on the value of some quantity X, and B is
a fuzzy interval on [0, 1] that stands for a fuzzy probability. After Zadeh [33], a Z-number
(A,B) represents the fuzzy set P̃(A,B) of probability measures P such that the probability
P (A) of the fuzzy event A is fuzzily restricted by the fuzzy set B.

By definition, the scalar probability of fuzzy event A is P (A) =
∫ 1
0 µA(x)p(x)dx [29],

where p is the density of probability measure P . So the Z-number (A,B) represents a
second-order possibility distribution over probability measures defined by

∀P : π(A,B)(P ) = µB(P (A)).

which is the membership function of P̃(A,B). On this basis one may compute the probability

of some other fuzzy event C as the fuzzy probability P̃ (C) such that

µP̃ (C)(p) = sup
P :P (C)=p

π(A,B)(P ) = sup
P :P (C)=p

µB(P (C))

which defines an inferred Z-number (C, P̃ (C)). Zadeh [33] calls Z+-number, or bimodal dis-
tribution, the pair (A,P ) where the probability distribution is made precise. It represents
the statement “the probability that X isA is P (A)”.

This interpretation of Z-number meets a difficulty: it seems we cannot recover as a
special case the statement X isA expressed with full certainty, which should correspond
to the Z-number (A, 1), i.e., P (A) = 1. Indeed if A is a genuine fuzzy interval, P (A) = 1
if and only if the support of P lies in the core of A, Â = {x : µA(x) = 1}. Indeed, it is
clear that without this restriction, we always have P (A) < 1. To make sense of Zadeh’s
interpretation of the Z-number, one should then accept the equivalence between (A, 1) and
(Â, 1), the latter being crisp. In other words, the original interpretation of Z-numbers loses
the membership function of A on the way.

Zadeh [33] puts an additional restriction on the set of probability functions compatible
with a Z-number, namely that the mean-value of P be equal to the centroid of A. However

this restriction is questionable because the centroid of A, of the form cent(A) =
∫
1

0
xµA(x)

∫
1

0
µA(x)

comes down to considering the membership function as a probability distribution, the mean
value of which is the centroid of A, thus doing away with the possibilistic understanding
of A as representing incomplete information.

Zadeh [33] also deals with the computation of a Z-number (AZ , BZ) such that Z =
f(X,Y ) where the information on X is (AX , BX), and on Y is (AY , BY ). Zadeh proposes
to apply the extension principle to AZ = f(AX , AY ):

µf(AX ,AY )(z) = sup
z=f(x,y)

min(µAX
(x), µAY

(y)),



and to define a possibility distribution π(AZ ,BZ) over the set of probability functions
PZ = PX ◦f PY obtained by probabilistic f -convolution of PX and PY using the extension
principle:

π(AZ ,BZ)(PZ) = sup
PX ,PY :PZ=PX◦fPY

min(µBX
(PX(AX)), µBY

(PY (AY )))

where PZ((−∞, z]) =
∫ z

−∞
(
∫

(x,y):u=f(x,y) pX(x)pY (y)dxdy)du (again requesting that E(PX) =

Cent(AX), E(PY ) = Cent(AY )).
Then the recovering of a fuzzy probability BZ is obtained by projection

µBZ
(b) = sup

PZ :PZ(A)=b

π(AZ ,BZ)(PZ)

This computation scheme is further studied by Yager [27] and Aliev et al. [1, 3, 2].
However the proposed approach looks a bit questionable as i) it is very complicated to

implement, ii) its formal justification is questionable. On the latter point, the fuzzy interval
A represents the family of compatible probability functions P(A) = {P : P (C) ≤ ΠA(C) =
supu∈C µA(u), ∀C} [13]. The above approach seems to consider that if probability measures
P1, P2 are respectively compatible with fuzzy intervals A1 and A2, then PZ = PX ◦f PY

will be compatible with the fuzzy interval AZ = f(AX , AY ), which is quite unclear. For
instance, it is well-known that the two conditions P1 ∈ P(AX), P2 ∈ P(AY ) do not imply
that P1 ◦f P2 ∈ P(f(AX , AY )) [16, 4]. It is then dubious whether E(P1) = Cent(AX) and
E(P2) = Cent(AY ) imply E(P1 ◦f P2) = Cent(f(AX , AY )).

The above discussion motivates the search for a different interpretation of Z-numbers,
where the idea that it represents a set or a fuzzy set of probability measures is kept, but
the use of a probability of fuzzy events is given up.

3 Crisp Z-numbers

Define a crisp Z-number to be a Z-number (A,B) where A is an interval on the real
line1 and B is a probability interval [b−, b+]. It is of interest to see what becomes of Zadeh’s
modeling of Z-numbers in this crisp case. It is clear that it yields the convex probability
family

P(A,B) = {P : b− ≤ P (A) ≤ b+}

and π(A,B) is the characteristic function of this probability family. This set of probabilities
can actually be described by a belief function on R.

A belief function on a set U is defined by a mass assignment, that is an assignment
m : F → (0, 1] of positive numbers to a finite family F of subsets of U , whose elements

1more generally A can be any subset of a referential set.



E are called focal sets (m(E) > 0), and such that
∑

E∈F m(E) = 1. m is a probability
distribution over 2U , namely over possible statements of the form X isE. The degree of
belief Bel(C) in an event C induced by m is defined by Bel(C) =

∑

E∈F ,E⊆C m(E). It is
the probability that X isC can be inferred from some statement X isE for E ∈ F . The
degree of plausibility of an event C is Pl(C) = 1 − Bel(C̄) ≥ Bel(C), where the overbar
denotes set-complementation.

A belief function defined by m characterizes a convex set of probabilities (called credal
set) P(m) = {P : P (C) ≥ Bel(C), ∀C ⊆ U} in the sense that Bel(C) = inf{P (C) : P ∈
P(m)} is the lower probability induced by P(m). Given a crisp Z-number (A, [b−, b+]),
consider the mass function defined by

m(A,B)(A) = b−; m(A,B)(Ā) = 1− b+; m(A,B)(U) = b+ − b−.

In this model, the weight m(A,B)(A) is the probability of knowing that X isA, the weight
m(A,B)(Ā) is the probability of knowing thatX is Ā, the weightm(A,B)(U) is the probability
of not knowing anything. The coincidence between this interpretation of the crisp Z-number
with Zadeh’s approach is summarized by the following easy-to-check proposition:

Proposition 1 P(m(A,B)) = P(A,B).

Proof: This because in this case, Bel(C) ∈ {0, Bel(A), Bel(Ā)} if C 6= U . Hence
Bel(C) ≤ P (C) ≤ Pl(C) either trivially holds or comes down to Bel(A) = b− ≤ P (A) ≤
Pl(A) = 1− b+. �

A belief function Bel1 is said to be more committed (informative) than Bel2 if and
only if Bel1 6= Bel2 and Bel1 ≥ Bel2, which is clearly equivalent to P(m1) ⊂ P(m2). The
belief function induced by (A,B) via m(A,B) is clearly the least committed belief function
such that Bel(A) ≥ b− and Pl(A) ≤ b+. This is in conformity with Zadeh’s intuition
of Z-numbers. The Z-number is also akin to Shafer’s view of belief functions as coming
from an unreliable testimony [21]. Suppose a witness declares X isA, but you consider
the statement as irrelevant with probability 1 − b−. It means that in the latter case the
statement brings no information. This can be represented as a special case of a Z-number
with b+ = 1. The Z-number is then of the form (A, [b−, 1]), which corresponds to a simple
support belief function. The general case of a Z-number corresponds to an unreliable
testimony where the witness may not only be irrelevant, but also has possibility of lying.
Then, the probability that the witness is a liar is 1 − b+, while the probability that the
information is irrelevant (brings no information) is b+ − b−. See Pichon et al. [20] for a
study in the combination of such kind of testimonies, that can be useful for the merging of
Z-numbers coming from several sources.

The crisp Z-number can be actually represented by a special family of belief functions
that coincide with p-boxes [15]. A p-box is the set of probability measures on a totally 
ordered set whose cumulative function is limited by an upper and a lower cumulative



function: there are distribution functions F ∗ ≥ F∗ that define the probability family {P :
F ∗(u) ≥ P ([inf U, x]) ≥ F∗(u)}. The focal sets of the corresponding belief function are
in the form Eα = [inf{u : F ∗(u) ≥ α}, inf{u : F∗(u) ≥ α}], (that is, if the cumulative
functions are continuous bijections, [(F∗)−1(α), (F∗)

−1(α)]), 0 < α ≤ 1). To see it, let
A = [a−, a+] ⊂ U = [a−, u+]. Then we have:

F∗(x) = Bel([u−, x]) =











0 if x < a+

b− if a+ ≤ x < u+

1 if x = u+

,

F ∗(x) = Pl([u−, x]) =

{

b+ if a− ≤ x < a+

1 if a+ ≤ x ≤ u+
.

We recover the three focal sets of m(A,B) as A for 0 ≤ α < b−, U for b− ≤ α < b+, and Ā

for b+ ≤ α < 1. Note that for finite U , it is always possible to rank-order the n elements
of U such that A = {u1, . . . , uk}, and Ā = {uk+1, . . . , un} so that the focal sets are of the
form A = [u1, uk], U = [u1, un], Ā = [uk+1, un].

However, requesting the additional condition

E(P ) = Cent(A)

comes down to restricting to probability distributions in P(m(A,B)) such that the mean
value E(P ) is the midpoint of interval [b−, b+]. This linear constraint, notwithstanding
its lack of natural justification (it does not even imply the symmetry of the density of
P ), leads to a smaller credal set that cannot generally be represented by a belief function,
which significantly increases the complexity of handling Z-numbers in practice.

Proposition 1 makes the computation with crisp p-boxes quite easy to perform. Let
mX and mY the mass functions induced by two independent crisp Z-numbers (AX , BX),
and (AY , BY ), respectively. We can apply the random set propagation method (Yager [26],
Dubois and Prade [10, 12]) to compute the mass function for f(X,Y ) as

mf(X,Y )(G) =
∑

EX∈FX ,EY ∈FY :G=f(EX ,EY )

mX(EX) ·mY (EY ).

This is not computationally extensive as each belief function only has 3 focal sets. However,
it is easy to figure out that in general the result will not always be represented by a Z-
number as the result potentially has 9 focal sets.

For instance, consider the sum on R of two crisp Z-numbers ([a−1 , a
+
1 ], [b

−
1 , b

+
1 ]), and

([a−2 , a
+
2 ], [b

−
2 , b

+
2 ]). Suppose without loss of generality that a−1 + a+2 < a+1 + a−2 . Note that

Āi = (−∞, a−i ) ∪ (a+i ,+∞). Computing EX + EY yields focal sets

• A1 +A2 = [a−1 + a−2 , a
+
1 + a+2 ] with mass b−1 b

−
2 .



• Ā1 +A2 = (−∞, a−1 + a+2 ) ∪ (a+1 + a−2 ,+∞), with mass (1− b+1 )b
−
2

• R otherwise, with mass 1− b−2

It does not correspond to a Z-number because Ā1 +A2 6= A1 +A2 in general. However, it
is possible to extract a Z-number (A′, B′) from the result, where the idea is to compute the
probability interval B′ given A′. For instance, in the above example, we get the Z-number
(A1 + A2, [b

−
1 b

−
2 , 1]) since Bel(A1 + A2) = b−1 b

−
2 , and Pl(A1 + A2) = 1 since the two first

focal sets overlap. It is clear that the latter Z-number is only part of the whole information
obtained by computing the sum X + Y .

4 Interpreting Z-numbers: various proposals

In the following, we see to what extent general Z-numbers can be interpreted by belief
functions, and whether this point of view on Z-numbers is in agreement or not with Zadeh’s
approach relying on probabilities of a fuzzy event. We first deal with cases where one of
the components of (A,B) is crisp, the other being fuzzy.

4.1 Crisp probability qualification of fuzzy events: (A, [b−, b+])

Consider the case of a fuzzy statement X isA whose probability is considered to lie in
[b−, b+]. After Zadeh [33], it corresponds to a probability set P(A,B) = {P : b− ≤ P (A) ≤
b+} where P (A) is the probability of a fuzzy event A. It is a convex probability set
characterized by linear constraints. For instance, A could be a fuzzy subset of a finite set
U = {u1, . . . , un} and the constraint is of the form b− ≤

∑n
i=1 µA(ui)pi ≤ b+ on probability

assignments (p1, . . . , pn). It does not characterize a belief function at all [23].

Z-number and fuzzy belief structures However there is another interpretation of the
Z-number, whereby the weight b− is assigned not to the fuzzy event A, but to the fact
of knowing that X isA and nothing more. Then what we get is a fuzzy belief structure,
first proposed by Yen [28], which is a belief function whose focal sets are fuzzy and form a
family F̃ . Formally we still have a mass function m̃ such that m̃(A) = b−, m̃(Ā) = 1− b+

and m̃(U) = b+ − b− where the fuzzy focal set Ā has membership function µĀ = 1 − µA.
Then the definitions or belief and plausibility functions are extended as follows:

Bel(C) =
∑

F∈F̃

(min
x6∈C

1− µF (x))m̃(F ); Pl(C) =
∑

F∈F̃

(max
x∈C

µF (x))m̃(F ).



Here,

Bel(C) =(min
x6∈C

1− µA(x))m̃(A) + (min
x6∈C

µA(x))m̃(Ā) (1)

=(min
x6∈C

1− µA(x))b
− + (min

x6∈C
µA(x))(1− b+); (2)

Pl(C) =(max
x∈C

µA(x))b
− + (max

x∈C
(1− µA(x))(1− b+) + b+ − b− (3)

If the fuzzy focal sets have a finite number of membership grades α1 = 1 > α2 > · · · >
αk > 0, and the αi-cut of the focal set F is Fαi

= {u : µF (u) ≥ αi}, it can be checked that
the belief and plausibility functions defined above derive from the mass assignment whose
focal sets are α-cuts of fuzzy focal sets: they form the family F = ∪F∈F̃{Fαi

: i = 1, . . . , k}
with mass m(Fαi

) = m̃(F )(αi − αi+1) for all fuzzy focal sets F . Then
∑

i=1,k m(Fαi
) =

m̃(F ) and it is easy to verify the following claim

Proposition 2 Bel(C) =
∑

F∈F̃ (minx6∈C 1− µF (x))m̃(F ) =
∑k

i=1

∑

F∈F̃ ,Fαi
⊆C m(Fαi

).

Under this view, the Z-number (A, [b−, b+]) can be expressed by the belief function with 
mass assignment m that allocates weight m(Fαi ) = b−(αi − αi+1) to cuts Fαi of F and 
m(F̄αi ) = (1 − b+)(αi − αi+1) to the cuts F̄αi of their complements, while m(U) = m̃ (U).

The natural question is whether P(m) = {P : P (C) ≥ Bel(C)} = P(A,[b−,b+]) namely if 
the credal set induced according to Zadeh’s view is in agreement with the belief function 
approach. In other words, does Proposition 1 still hold when A is fuzzy? The answer is no 
since as pointed out above, P(A, [b−, b+]) is not induced by constraints on the probabilities 
of events only, but by linear constraints [23].

Besides, consider again the special case where the interval [b−, b+] reduces to the value 
1. As seen earlier P(A, 1) is equivalent to the set P(A,ˆ 1), where Â is the core of A. Thus 
Zadeh’s approach to Z-numbers interprets (A, 1) as the statement X is Â, which sounds 
questionable. In contrast, the present approach interprets (A, 1) as a belief function whose 
focal sets are the cuts of A (a necessity measure based a possibility distribution π = µA in 
the spirit of Zadeh [30]). Using the fuzzy belief structure view, one has that (A, 1) naturally 
reduces to the statement X is A, and the probability family is P(A), the one induced by 
π = µA previously defined in Section 2.

Z-number as a parametric belief function An alternative interpretation of the Z-
number (A, [b−, b+]) can be a fuzzy set of standard belief functions: we consider the Z-
number (A, [b−, b+]) as a parameterized set of crisp Z-numbers Zα = (Aα, [b−, b+]), α ∈ 
(0, 1]. Each Zα gives a mass function mα with focal sets Aα, Aα, U with respective weights 
b−, 1 − b+, b+ − b−. Note that each value α corresponds to a single belief function Belα,
i.e., this construction rather yields a gradual element (in the sense of [14]) of the set of 
belief functions.

In practice, rather than se
∫

le
1
cting a value α, one may average out the family of belief 

functions and build Bel(C) = 0 Belα(C)dα. It comes down to allocating masses m(Fαi ) =



b−(αi − αi+1) to Fαi
and m(Fαi

) = (1− b+)(αi − αi+1) to its complement. Note that this
approach differs from the previous one (Bel 6= Bel) because Aα 6= (Ā)α. It is clear that
the difference between the two approaches based on belief functions is due to the difference
between a fuzzy bipartition in Ruspini sense (a fuzzy set and its complement) used in the
fuzzy belief structure, and a fuzzy partition seen as a gradual partition (in the sense of
[14]) that to each α ∈ (0, 1] associates the crisp partition (Fα, Fα), a point of view adopted
to define a parametric belief function.

4.2 Crisp statements with fuzzy probabilities

Let us consider the opposite case, namely (A,B) where A = [a−, a+] is a crisp inter-
val and B is a fuzzy set of probability values (a fuzzy interval on [0, 1]). In this sit-
uation, Zadeh’s definition looks natural: it yields a fuzzy set of probability functions :
π(A,B)(P ) = µB(P (A)) where P (A) is the usual probability of [a−, a+]. It is actually a
higher-order possibility distribution over probability functions, as studied in [24]. Alterna-
tive approaches may be considered in the spirit of belief functions.

Fuzzy-valued mass assignment One possibility is to see ([a−, a+], B) as a belief func-
tion with a fuzzy mass function m̆ [6]: the mass function m̆ associates a fuzzy interval
m̆(E) to each focal set E. Such a fuzzy mass assignment m̆ is interpreted as a fuzzy set of
belief functions as follows:

µm̆(m) = min
E⊆U

µm̆(E)(m(E)).

Then the Z-number (A,B) is viewed as the fuzzy mass function with focal sets A, Ā defined
by m̆(A) = B and m̆(Ā) = 1 ⊖ B, using the fuzzy subtraction based on the extension
principle. Note that this definition is not consistent with the interpretation of the crisp
Z-number (A, [b−, b+]) where A is crisp. It would assume that the latter defines an interval-
valued mass function m̆(A) = [b−, b+], m̆(Ā) = [1− b+, 1− b−], which is too complex to be
attractive.

Z-number as a parametric belief function Another option is to consider ([a−, a+], B)
as a set of crisp Z numbers ([a−, a+], Bβ) parameterized by β. Let Bβ = [b−(β), b+(β)].
Each ([a−, a+], Bβ) can be represented by a parametric belief function with mass function
mβ , letting mβ(A) = b−(β), mβ(Ā) = 1 − b+(β) and mβ(U) = b+(β) − b−(β), for each
choice of β. Averaging out this fuzzy set of belief functions comes down to replacing
the fuzzy probability B by its interval average E(B) computed as the Aumann integral
∫ 1
0 Bβdβ = [

∫ 1
0 inf Bβdβ,

∫ 1
0 supBβdβ] [19, 11]. For instance consider the discrete case,

with membership levels β1 > · · · > βℓ > 0. The overall weight assigned to A is then
∑ℓ

j=1(βj − βj+1)b
−(β) = inf E(B) indeed. This approach is the counterpart to the one in

the second part of Subsection 4.1.



4.3 Handling full-fledged Z-numbers

Suppose now that both A and B are fuzzy intervals (i.e., their α-cuts are closed intervals).
It is not easy to propose an interpretation different from the one of Zadeh, that agrees with
the preceding cases. We can suggest two approaches.

4.3.1 Hybridizing the previous cases

One is to put together the fuzzy belief structure of subsection 4.1 and the cut approach
of subsection 4.2. Then we can view both A and B as sets of α-cuts. To each Aαi

is
associated a weight b−(β)(αi−αi+1), Aαi

is assigned weight (1− b+(β))(αi−αi+1), and U

is assigned weight b+(β)− b−(β). We then get a parameterized family of belief functions,
with parameter β selecting a probability interval from B, which may sound hard to use in
practice if there is no criterion to select a value β.

However we can average β out as well. Suppose that B is a discrete fuzzy set with
membership levels β1 > · · · > βℓ > 0 for each βj the above approach yields a belief

function Belj , and we can compute Bel =
∑ℓ

j=1(βj − βj+1)Belj as the representation of
the Z-number. It could be proved that this approach comes down to interpreting (A,B)
as a set of kℓ crisp Z-numbers (Aαi

, Bβj
) each yielding a belief function Belij with mass

function

mij(Aαi
) = inf Bβj

, mij(Aαi
) = 1− supBβj

, mij(U) = supBβj
− inf Bβj

,

and to computing the weighted average

Bel =

k
∑

i=1

ℓ
∑

j=1

(αi − αi+1)(βj − βj+1)Belij .

Again it comes down to interpreting (A,B) as a crisply qualified fuzzy set (A,E(B)) by
the fuzzy belief structure approach of subsection 4.1, using the interval average of B.

4.3.2 The p-box approach

Another simpler approach is to interpret (A,B) as a unique belief function representing a
generalized p-box. One first idea is to not only view A as its α-cuts, but simultaneously
use the end-points of the α-cuts [b−(α), b+(α)] of B to derive bounds on P (Aα). However
since if α > β we get P (Aα) ≤ P (Aβ), it is fruitless to interpret (A,B) as the set of
constraints b−(α) ≤ P (Aα) ≤ b+(α), 0 < α ≤ 1. Indeed, b−(α) increases with α, while
P (Aα) decreases, so that the lower bounds b−(α) are redundant when α < 1: the set of
constraints come down to b−(1) ≤ P (Aα) ≤ b+(α), 0 < α ≤ 1.

One way out is to consider b−(1−α) as the lower bound of P (Aα), that is we interpret
B as a p-box on [0, 1] using the pair of decumulative functions

Π([b, 1]) = max
x≥b

µB(x), N([b, 1]) = min
x<b

1− µB(x)



associated toB. Using a continuous membership function forB we have that Π([b+(α), 1]) =
µB(b

+(α)) = α and N([b−(α), 1]) = 1− µB(b
−(α)) = 1− α.

The set of constraints b−(1−α) ≤ P (Aα) ≤ b+(α), α ∈ (0, 1] forms a generalised p-box
on U , since it is a nested family of subsets whose probability is upper and lower bounded
[7]. It can be characterized by two possibility distributions (π+ and π−) built from A and
B such that 1− π− ≤ π+ and 1− π−, π+ are comonotonic functions [8], as we shall detail
below. The ordering on U for generating the cumulative distributions is the one induced
by the membership function µA.

Namely, the set of constraints b−(1−α) ≤ P (Aα), α > 0 is representable by a possibility
distribution π+ on U such that [13]

π+(u) = min
u6∈Aα

1− b−(1− α)

In fact it is easy to see that letting Aα = [a−(α), a+(α)], we have that π+(a−(α)) =
π+(a+(α)) = 1 − b−(1 − α). If Π+(C) = supu∈C π+(u) is the possibility measure with
distribution π+, then the convex set of probabilities captured by the set of constraints
b−(1− α) ≤ P (Aα), α > 0 is P(π+) = {P : P (C) ≤ Π+(C), ∀C measurable}.

Likewise the set of constraints P (Aα) ≤ b+(α), α ∈ (0, 1], once written as P (Aα) ≥
1− b+(α), α ∈ (0, 1] is representable by a possibility distribution π− on U such that

π−(u) = min
u∈Aα

b+(α).

α

α

α α

α α

Again, we have that π−(a−(α)) = π−(a+(α)) = b+(α), and the corresponding set of 
probabilities is P(π−).

We can describe π+ and π− more precisely:

Proposition 3 If the support of B is [0, 1] and µB is continuous and concave (in the 
usual sense) then π+(u) ≥ µA(u) ≥ 1 − π−(u) and inf π−(u) = b+(1)

Proof: Indeed suppose µA(u) = α and, say, u = a− (the lower bound of the α-cut of A). 
Then π+(u) = π+(a−) = 1 − b−(1 − α) ≥ α since from the assumptions on the support 
and concavity of µB, function 1 − µB(·) is convex on [0, b−(1)], hence under the line 1 − α, 
so b−(1 − α) ≤ 1 − α, hence α = µA(a

−) ≤ π+(a−). Likewise, due to the assumptions on 
µB, π−(a−) = b+(α) ≥ 1 − α = 1 − µA(a

−). Function b+(α) is decreasing with α and goes 
from b+(0) = 1 (since the support of B is [0, 1]) down to b+(1). Hence inf π−(u) = b+(1), 
when u in the core of A. �

Proposition 4 If µA(u) = 0, π+(u) = 1 − b−(1), π−(u) = 1

Proof: Suppose u is out of the support of A. Hence u 6∈ Aα, ∀α > 0. So π−(u) = 1 as it is 
the minimum on an empty set. Besides function 1 − b−(1 − α) is increasing with α (since



b−(α) is increasing) and its minimum is attained for α = 0, which is the case if µA(u) = 0.�

Note that the bracketing property π+(u) ≥ µA(u) ≥ 1 − π−(u) no longer holds if the
support of B is not [0, 1]. In particular, if there is a value α∗ ∈ (0, 1] such that 1− b−(1−
α∗) = α∗, then π+(a−α∗) = µA(a

−
α∗) = α∗. We shall generally have that 1− b−(1− α) > α

for α > α∗ so that the α-cut of π+ is contained in the α-cut of A (as shown on Figure 1 in
the case when A and B are trapezoidal fuzzy numbers).

0

1

α

µA(x)

π+(x)

1− π−(x)

a+(0)a−(0) a(1)

•
A

◦1− b−(0)

1− b−(1)

1− b−(1− α)

1− b+(1)

1− b+(0)
•

◦

•

◦

0

1

µB(x)

b−(0) b−(1) b+(1) b+(0) 1

B

Figure 1: p-box associated with Z-number (A,B) (•: point included ; ◦: point excluded)

We can express the two possibility distributions induced by (A,B) as follows.

π+(u) =











1 if µA(u) = 1,

1− b−(1− µA(u)) if 0 < µA(u) < 1,

1− b−(0) if µA(u) = 0.

π−(u) =











1 if µA(u) = 0,

b+(µA(u)) if 0 < µA(u) < 1,

b+(1) if µA(u) = 1.

Even if π+ and 1 − π− will not always bracket µA, we do have the inequality π+ ≥
1− π−since it comes down to noticing that 1− b−(1− α) ≥ 1− b+(1− α).

The following result can also be established:

Proposition 5 The two functions π+ and δ = 1− π− are comonotonic



Proof: Indeed as both A and B are fuzzy intervals, we have that if α > β, then
[b−(α), b+(α)] ⊆ [b−(β), b+(β)]. Hence the functions b+(α) and b−(1 − α) are comono-
tonic. Now suppose π+(u) > π+(v) where 1 > µA(u) > 0 and 1 > µA(v) > 0. Then
π+(u) = 1 − b−(1 − µA(u)) > π+(v) = 1 − b−(1 − µA(v)). Hence b+(µA(u)) ≤ b+(µA(v))
and we get 1− π−(u) = 1− b+(µA(u)) ≥ 1− π−(v). �

As explained in [8], the pair (π+, 1−π−) forms a co-monotonic cloud [18] corresponding
to a set of probabilities P = P(π+) ∩ P(π−), where P(π) = {P : P (C) ≤ Π(C), ∀C
measurable}. This credal set generates a belief function whose focal sets are of the form
Eα = {u : π+(u) ≥ α} \ {u : 1− π−(u) ≥ α}. More specifically, in the case of a continuous
Z-number, the focal sets obtained are of the following form:

1. A1 with mass m(A1) = b−(0);

2. {u : π+(u) ≥ α} with (infinitesimal) mass dα for 1− b−(0) ≥ α > 1− b−(1);

3. U with mass b+(1)− b−(1);

4. {u : 1− π−(u) < α} with (infinitesimal) mass dα for 1− b+(1) ≥ α > 1− b+(0);

5. Supp(A) with mass 1− b+(0).

What we obtain is a (partially) continuous belief function [22].
There are interesting special cases to be noticed.

• In the case A and B are crisp intervals, the result of the p-box approach degenerates
in the belief function of subsection 3. Namely the continuous parts of π+ and π−

disappear since 1− b−(0) = 1− b−(1) and 1− b+(1) = 1− b+(0);

• If the support of B is [0, 1], some discrete parts of the mass assignment (cases 1 and
5) disappear, and the comonotonic cloud brackets µA.

• If b+(1) = 1 (B expresses a form of certainty) then 1−π−(x) = 0 and only the upper
possibility distribution π+ remains. If moreover b−(1) = 1 then the support of π+ is
inside the support of A (and is equal to it if b−(0) = 0).

• If µB(x) = x (what could be a genuine gradual representation of probabilistic cer-
tainty), it is easy to see that π+ = µA and 1 − π−(x) = 0. In this case, (A,B) just
reduces to the sure statement X isA. This is reminiscent of Zadeh’s truth qualifica-
tion (X isA is τ) by the fuzzy truth-value τ , he called “u-true” [31], where µτ (x) = x

and the result of truth-qualification is of the form µτ (µA). Also in this case the in-
equalities b−(1−α) ≤ P (Aα) ≤ b+(α), α ∈ (0, 1] reduce to 1−α ≤ P (Aα), α ∈ (0, 1],
which is well-known to be a faithful account of the fuzzy number A (see [9]).



• If µB(x) = 1− x (what could be a genuine gradual representation of negative prob-
abilistic certainty, namely that X isA is improbable), it is easy to see that π+ = 1
(since b−(0) = b−(1) = b+(0) = 0 and b+(1) = 1) and π−(u) = 1 − µA(u) since
b+(α) = 1 − α. It corresponds to the sure statement X is Ā, which is the negation
of statement X isA. In turn, µB(x) = 1− x is reminiscent of Zadeh’s truth-qualifier
“u-false” [31].

• If A is an interval and B is fuzzy, the inequalities b−(1 − α) ≤ P (Aα) ≤ b+(α), α ∈
(0, 1] reduce to the inequalities b−(1) ≤ P (A) ≤ b+(1), which is equivalent to the
crisp Z-number (A, B̂) using the core of B.

• if B is an interval and A is fuzzy, the inequalities b−(1 − α) ≤ P (Aα) ≤ b+(α), α ∈
(0, 1] reduce to the inequalities b− ≤ P (Aα) ≤ b+, α ∈ (0, 1], which is equivalent to
the crisp Z-number (Supp(A), B) using the support of A. In particular if B = [0, 1]
(expressing ignorance), it is easy to see that π+ = π− = 1, which corresponds to
complete ignorance about A.

We notice that we do not retrieve the solutions proposed in subsections 4.1 and 4.2 for 
cases when only one of A, B is fuzzy. It suggests that it is not so natural to assign a fuzzy 
probability to a crisp event or a precise probability to a fuzzy event (in some sense the 
p-box approach assumes that the gradual nature of B reflects the gradual nature of A).

5 Conclusion

The notion of a Z-number is rather naturally found when collecting uncertain information 
in a linguistic format. It is thus important to propose faithful mathematical representa-
tions of this kind of information. In this paper, Z-numbers have been examined in the light 
of possibility theory, imprecise probabilities and belief functions, in order to provide more 
solid foundations to this concept. The main message is that it is possible to interpret a 
Z-number (A, B) as a special kind of belief function (or random set) on the universe of A 
(namely, a p-box), provided that we give up the use of the probability of a fuzzy event, 
as well as constraints involving the centroid of A. Indeed the original approach yields a 
convex (fuzzy) set of probabilities that seems to be very hard to handle in practice. On 
the contrary, it is much easier to use random sets than convex sets of probabilities in-
duced by any kind of linear constraints. Using the approaches described in this paper, we 
can compute the uncertainty pervading expressions of the form f(X, Y ) where X and Y 
are Z-numbers by means the random set propagation principle recalled in Section 3 using 
Monte-Carlo methods (see for instance [4]). Note that the result will not generally be 
equivalent to another Z-number, but a more general random set, contrary to what some 
works are presupposing, which does not prevent other Z-numbers on quantities of interest 
from being extracted from the resulting random set obtained via computation.
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