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Abstract—We propose a logical encoding of extended abstract
argumentation frameworks, that is frameworks with higher-
order attacks (i.e. attacks whose targets are other attacks). Our
purpose is to separate the logical expression of the meaning of
an attack (simple or higher-order) from the logical expression
of acceptability semantics. We consider semantics which specify
the conditions under which the arguments (resp. the attacks)
are considered as accepted, directly on the extended framework,
without translating the original framework into a Dung’s ar-
gumentation framework. We characterize the output of a given
framework in logical terms (namely as particular models of a
logical theory). Our proposal applies to the particular case of
Dung’s frameworks, enabling to recover standard extensions.

Index Terms—abstract argumentation, higher-order attacks,
logical theory

I. INTRODUCTION

Formal argumentation has become an essential paradigm

in Artificial Intelligence, e.g. for reasoning from incomplete

and/or contradictory information or for modeling the interac-

tions between agents [1]. Formal abstract frameworks have

greatly eased the modeling and study of argumentation. The

original Dung’s argumentation framework (AF) [2] consists of

a collection of arguments interacting with each other through

a relation reflecting conflicts between them, called attack,

and enables to determine acceptable sets of arguments called

extensions.

AF have been extended along different lines, e.g. by en-

riching them with positive interactions between arguments

(usually expressed by a support relation), or higher-order

attacks (i.e. attacks whose targets are other attacks). The idea

of encompassing attacks to attacks in abstract argumentation

frameworks has been first considered in [3] in the context of

an extended framework handling argument strengths and their

propagation. Then, higher-order attacks have been considered

for representing preferences between arguments (second-order

attacks in [4]), or for modeling situations where an attack

might be defeated by an argument, without contesting the

acceptability of the source of the attack [5]. Attacks to attacks

and supports have been first considered in [6] with higher level

networks, then in [7]; and more generally, [8] proposes an

Attack-Support Argumentation Framework which allows for

nested attacks and supports, i.e. attacks and supports whose

targets can be other attacks or supports, at any level. Here is

an example of higher-order attack in the legal field.

Example 1: The lawyer says that the defendant did not have

intention to kill the victim (Argument b). The prosecutor says

that the defendant threw a sharp knife towards the victim

(Argument a). So, there is an attack from a to b. And the

intention to kill should be inferred. Then the lawyer says that

the defendant was in a habit of throwing the knife at his wife’s

foot once drunk. This latter argument (Argument c) is better

considered attacking the attack from a to b, than Argument

a itself. Now the prosecutor’s argumentation seems no longer

sufficient for proving the intention to kill.

A natural idea that has proven useful to define semantics for

these frameworks, known as “flattening technique”, consists

in turning the original extended framework into an AF by

introducing meta-arguments and a new simple (first-order)

attack relation involving these meta-arguments [5], [8], [9].

More recently, alternative acceptability semantics have been

defined in a direct way for argumentation frameworks with

higher-order attacks [10] or for higher-order attacks and

supports [11]. The idea is to specify the conditions under

which the arguments (resp. the interactions) are considered

as accepted directly on the extended framework, without

translating the original framework into an AF.

In this paper, we propose a logical encoding of argu-

mentation frameworks with higher-order attacks. Our purpose

is (1) to characterize in a logical way the meaning of an

attack (simple or higher-order) (2) to encode the acceptance

conditions for arguments and attacks proposed in [10] and (3)

to characterize the outputs of the framework in logical terms,

thus enabling to use logical tools for computational issues.

The connection between abstract argumentation and logics

goes back to the seminal work of Dung, where a translation

from an AF to a logic program was given. This line of research

has been pursued with other kinds of translation e.g. in [12].

Other works have encoded acceptance conditions as logical

formulae of a first-order theory e.g. [13], or defined a logical

language for expressing the dynamics of a framework e.g. [14].

To the best of our knowledge, all these works consider only

attacks between two arguments. In [15] a representation of a

standard abstract argumentation network is provided by adding

Logical Encoding of Argumentation Frameworks 
with Higher-order Attacks

 



strong negation to classical logic. Then, networks with higher

level attacks can be represented via a translation of the original

network into a standard one by the addition of nodes.

The paper is organized as follows: the necessary background

is given in Sect. II; the logical encoding is presented in Sect. III

and IV; some related works are discussed in Sect. V and

Sect. VI concludes the paper. Due to lack of space, the proofs

are omitted but are available in a technical report [16].

II. BACKGROUND

A. The Standard Abstract Framework

The standard case handles only one kind of interaction:

attacks between arguments.

Definition 1: [2] A Dung’s argumentation framework (AF)

is a tuple 〈A,R〉, where A is a finite and non-empty set of

arguments and R ⊆ A×A is a binary attack relation on the

arguments, with (a, b) ∈ R indicates that a attacks b.

A graphical representation can be used for an AF: an attack

(a, c) ∈ R is represented by two nodes a, c and an edge from

a to c:

a c

We recall the definitions1 of some well-known extension-

based semantics. Such a semantics specifies the requirements

that a set of arguments should satisfy. The basic requirements

are the following ones:

An extension can “stand together”. This corresponds to

the conflict-freeness principle.

An extension can “stand on its own”, namely is able to

counter all the attacks it receives. This corresponds to the

defence principle.

Reinstatement is a kind of dual principle. An attacked

argument which is defended by an extension is reinstated

by the extension and should belong to it.

Definition 2: [2] Let AF = 〈A,R〉 and S ⊆ A.

S is conflict-free iff (a, b) 6∈ R for all a, b ∈ S.

a ∈ A is acceptable wrt S (or equivalently S defends a)

iff for each b ∈ A with (b, a) ∈ R, there is c ∈ S with

(c, b) ∈ R.

The characteristic function of AF is defined by: F(S) =
{a ∈ A such that a is acceptable wrt S}.

S is admissible iff S is conflict-free and S ⊆ F(S).
S is a complete extension of AF iff it is conflict-free and

a fixed point of F .

S is the grounded extension of AF iff it is the minimal

(wrt ⊆) fixed point2 of F .

S is a preferred extension of AF iff it is a maximal (wrt

⊆) complete extension.

S is a stable extension of AF iff it is conflict-free and

for each a 6∈ S, there is b ∈ S with(b, a) ∈ R.

1Where “iff” (resp. “wrt”) stands for “if and only if” (resp. “with respect
to”).

2It can be proved that the minimal fixed point of F is conflict-free.

Note that the complete (resp. grounded, preferred, stable)

semantics satisfies the conflict-freeness, defence and reinstate-

ment principles.

B. A Framework with Higher-Order Attacks

We consider a framework that allows representing both

simple and higher-order attacks, i.e. attacks from an argument

to either another argument or another attack. Such a framework

has been usually called “recursive argumentation framework”

in literature. So we keep this latter expression, even it is not

completely satisfactory.

Definition 3: [10] A recursive argumentation framework

(RAF) is a tuple 〈A,R, s, t〉 where A is a finite and non-empty

set of arguments, R is a finite set disjunct from A representing

attack names, s is a function from R to A mapping each

interaction to its source, and t is a function from R to (A∪R)
mapping each interaction to its target.

Note that an AF can be viewed as a particular RAF with t

being a mapping from R to A.

A RAF can also be graphically represented: an attack named

α (with s(α) = a and t(α) = c ∈ A) being the target of an

attack β with s(β) = b is represented by:

a α c

b β

(arguments are in a circle and attack names are in a square)

Acceptability semantics for argumentation frameworks with

higher-order attacks have been defined in a direct way in [10].

The idea is to specify the conditions under which the argu-

ments are considered as accepted directly on the extended

framework, without translating the original framework into an

AF. Moreover, due to the defeasible nature of attacks (attacks

may be affected by other attacks), conditions under which

the attacks are accepted must also be specified. Indeed, some

attacks may not be “valid”, in the sense that they cannot defeat

the argument or attack they are targeting. So, acceptability

conditions for arguments should be given with respect to valid

attacks and conversely attacks should be declared valid with

respect to other arguments or attacks. For instance, the fact that

two arguments may be conflicting depends on the validity of

the attack between them. Hence, the notion of extension (set

of arguments) is replaced by a pair of a set of arguments and

a set of attacks, called a “structure”.

Definition 4: [10] Consider RAF = 〈A, R, s, t〉. A

structure of RAF is a pair (S,Γ) with S ⊆ A and Γ ⊆ R.

Intuitively, given a structure U = (S,Γ), S contains the

arguments that are accepted “owing to” U and Γ contains the

attacks which are valid “owing to” U (the meaning of “owing

to” depending on the considered semantics).

In the following, we recall the acceptability conditions for

structures, and the definitions of the semantics that are given

in [10]. The key notion is the fact that a set of arguments



(resp. attacks) can be “defeated” (resp. “inhibited”) wrt a given

structure.

Definition 5: [10] Consider RAF = 〈A, R, s, t〉. Given

U = (S,Γ) a structure of RAF . Let a ∈ A and α ∈ R.

a is defeated wrt U iff there is β ∈ Γ with s(β) ∈ S and

t(β) = a,

α is inhibited wrt U iff there is β ∈ Γ with s(β) ∈ S and

t(β) = α.

Def(U) (resp. Inh(U)) denotes the set of arguments (resp.

attacks) that are defeated (resp. inhibited) wrt U .

1) Conflict-free structures: The minimal requirement for a

structure (S,Γ) is that two arguments of S cannot be related

by an attack of the structure, and similarly there cannot be an

attack grounded in S and whose target is an element of Γ.

Formally:

Definition 6: [10] Consider RAF = 〈A, R, s, t〉. A struc-

ture U = (S,Γ) of RAF is conflict-free iff S ∩Def(U) = ∅

and Γ ∩ Inh(U) = ∅.

2) Admissible structures: Acceptability (for an argument or

an attack) is also relative to a structure.

Definition 7: [10] Consider RAF = 〈A, R, s, t〉. Given a

structure U = (S,Γ) of RAF . Let a ∈ A and α ∈ R.

a (resp. α) is acceptable wrt U iff for each β ∈ R with

t(β) = a (resp. t(β) = α), either β ∈ Inh(U) or s(β) ∈
Def(U).
U is admissible iff it is conflict-free and for each x ∈
(S ∪ Γ), x is acceptable wrt U .

Acc(U) denotes the set containing all acceptable arguments

and attacks wrt U .

Remark: Let α ∈ R with t(α) = b ∈ A (resp. t(α) =
β ∈ R). If α and s(α) are unattacked, there is no admissible

structure U = (S,Γ) such that b ∈ S (resp. β ∈ Γ).

3) Complete, stable, preferred and grounded structures:

For any pair of structures U = (S,Γ) and U ′ = (S′,Γ′),
U ⊆ U ′ means that (S ∪ Γ) ⊆ (S′ ∪ Γ′). The structure U is

⊆-maximal iff every structure U ′ that satisfies U ⊆ U ′ also

satisfies U ′ ⊆ U . Similarly, U is ⊆-minimal iff every structure

U ′ that satisfies U ′ ⊆ U also satisfies U ⊆ U ′.

Definition 8: [10] Consider RAF = 〈A, R, s, t〉. A

structure U = (S,Γ) of RAF is:

complete iff it is conflict-free and Acc(U) = S ∪ Γ.

stable iff it is conflict-free and satisfies A\S ⊆ Def(U)
and R \ Γ ⊆ Inh(U).
preferred iff it is a ⊆-maximal admissible structure.

grounded iff it is the ⊆-minimal conflict-free structure

U = (S,Γ) satisfying Acc(U) ⊆ S ∪ Γ.

It has been proved in [10] that usual properties of Dung’s

extensions also hold for structures:

A complete structure contains all the unattacked argu-

ments and all the unattacked attacks.

Every complete structure is admissible, every preferred

structure is also complete and every stable structure is

also preferred.

The grounded structure is the ⊆-minimal complete struc-

ture. It is unique.

Example 2: Consider the RAF depicted by the following

figure:

a α b

d δ β

c

There is only one complete (resp. preferred, stable,

grounded structure): ({a, c, d}, {α, δ}).

4) D-structures: The notion of structure has been strength-

ened in order to obtain a conservative generalization of Dung’s

frameworks for the conflict-free, admissible, complete, stable

and preferred semantics. It is worth to note that in an AF,

each attack is considered as valid, in the sense that it may

affect its target. The next definition strengthens the notion of

structure by adding a condition on attacks that will force every

acceptable attack to be valid.

Definition 9: [10] Given RAF = 〈A, R, s, t〉.

1) A d-structure on RAF is a structure U = (S,Γ) such

that (Acc(U) ∩R) ⊆ Γ.

2) A conflict-free (resp. admissible, complete, preferred,

stable) d-structure is a conflict-free (resp. admissible,

complete, preferred, stable) structure which is also a d-

structure.

It follows from Def. 8 that every complete (resp. stable,

preferred) structure of a RAF is a d-structure of this RAF.

However it is not the case for admissible and conflict-free

structures.

The conservative generalization proved in [10] relies upon a

correspondence between a Dung’s framework (and its exten-

sions) and a “nonrecursive” RAF (and its d-structures), where

a nonrecursive RAF is a RAF in which no attack targets

another attack.

III. LOGICAL DESCRIPTION OF A RAF

We propose a logical description of a RAF, that allows an

explicit representation of arguments, attacks and their proper-

ties (accepted argument, attacked argument, valid attack, . . . ).

We have been inspired by works in bioinformatics (see [17],

[18]), where metabolic networks are used to describe the

chemical reactions of cells; these reactions can be negative

(inhibition of a protein) or positive (production of a new

protein) and they can depend on other proteins or other

reactions. A translation from metabolic networks to classical

logic has been proposed in [18], which allows for the use of

automated deduction methods for reasoning on these networks.

Given RAF a recursive argumentation framework,

Σ(RAF ) will denote the set of first-order logic formulae

describing RAF .



A. Vocabulary

The following unary predicate symbols are used: Acc,

NAcc, V al, Attack, Arg and the following unary functions

symbols : T , S, with the following meaning:

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x

cannot be accepted”), when x denotes an argument

V al(α) means “α is valid” when α denotes an attack

Attack(x) means “x is an attack”

Arg(x) means “x is an argument”

T (x) (resp. S(x)) denotes the target (resp. source) of x,

when x denotes an attack

The binary equality predicate is also used. Note that the

quantifiers ∃ and ∀ range over some domain D. To restrict

them to subsets of D, bounded quantifiers will be used:

∀x ∈ E (P (x)) means ∀x (x ∈ E → P (x)) or equivalently

∀x(E(x)→ P (x)).
So we will use:

∀x ∈ Attack (Φ(x)) (resp. ∃x ∈ Attack (Φ(x)))
and ∀x ∈ Arg (Φ(x)) (resp. ∃x ∈ Arg (Φ(x))).

Note that the meaning of NAcc(x) is not “x is not accepted”

but rather “x cannot be accepted” (for instance because x is

the target of a valid attack whose source is accepted). Hence,

NAcc(x) is not logically equivalent to ¬Acc(x). However, the

logical theory will enable to deduce ¬Acc(x) from NAcc(x),
as shown below.

B. Logical theory

Two kinds of formulae describe RAF :

the formulae describing the general behaviour of an at-

tack, possibly recursive, in an argumentation framework,

i.e. how an attack interacts with arguments and other

attacks related to it.

and the formulae encoding the specificities of the current

framework.

The meaning of an attack is described under the form of

constraints on its source (an argument) and its target (an

argument or an attack). Moreover, as attacks may be attacked

by other attacks, some attacks may not be valid.

If an attack from an argument to an attack is valid, then

if its source is accepted, its target is not valid.

If an attack between two arguments is valid and if its

source is accepted, then its target cannot be accepted. In

that case, the target is not accepted.

Using the vocabulary defined above, these constraints can be

expressed by the following formulae:

(1) ∀x ∈ Attack (∀y ∈ Attack (
(V al(y) ∧ (T (y) = x) ∧Acc(S(y)))
→ ¬V al(x) ))

(2) ∀x ∈ Arg (∀y ∈ Attack (
(V al(y) ∧ (T (y) = x) ∧Acc(S(y)))
→ NAcc(x) ))

(3) ∀x ∈ Arg (NAcc(x)→ ¬Acc(x))

Two other formulae limit the domain to arguments and

attacks.

(4) ∀x (Attack(x)→ ¬Arg(x))
(5) ∀x (Arg(x) ∨Attack(x))

Note that we assume that the argumentation framework is

finite, with A = {a1, . . . an} and R = {α1, . . . , αm}. Then,

the logical encoding of specificities of the RAF leads to the

following set of formulas:

(6) (S(α) = a)∧(T (α) = b) for all α ∈ R with s(α) =
a and t(α) = b

(7) ∀x (Arg(x)↔ (x = a1) ∨ . . . ∨ (x = an))
(8 ∀x (Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αm))
(9) ai 6= aj for all ai, aj ∈ A with i 6= j

(10) αi 6= αj for all αi, αj ∈ R with i 6= j

In the following, we will write sα (resp. tα) in place of

S(α) (resp. T (α)) for simplicity.

The logical theory Σ(RAF ) corresponding to RAF con-

sists of the above 10 formulae. It is obviously consistent.

Example 2 (cont’d): Using the equality axioms, a simplified

version of Σ(RAF ) can be obtained (in particular tautologies

are omitted):3

Σ(RAF ) = {(V al(β) ∧Acc(c))→ ¬V al(α) (from (1)),

(V al(δ) ∧Acc(d))→ ¬V al(β) (from (1)),

(V al(α) ∧Acc(a))→ NAcc(b) (from (2)),

NAcc(b)→ ¬Acc(b) (from (3)),

NAcc(a)→ ¬Acc(a) (from (3)),

NAcc(c)→ ¬Acc(c) (from (3)),

NAcc(d)→ ¬Acc(d) (from (3))}

In the particular case of a nonrecursive RAF, formula (1) is

a tautology. However, formula (2) cannot be simplified as it

cannot be deduced that the attacks are valid. Indeed, the logical

theory Σ(RAF ) only captures the description of RAF and is

not concerned with the semantics of the framework (the logical

description of the semantics is handled in the next section).

Example 3: Consider the nonrecursive RAF depicted by the

following figure:

a α b

Σ(RAF ) enables to deduce the formula (V al(α) ∧
Acc(a)) → NAcc(b). Note that if V al(α) is assumed, we

obtain Acc(a)→ NAcc(b) and from NAcc(b)→ ¬Acc(b) it

follows that Acc(a) → ¬Acc(b) and so Acc(b) → ¬Acc(a).
However, it cannot be deduced that Acc(b) → NAcc(a).
Indeed, the predicate NAcc allows for the representation of

the direction of an attack between two arguments and avoids

the contraposition of the attack.

IV. LOGICAL FORMALIZATION OF SEMANTICS

A. Logical Encoding of Semantics

In presence of higher-order attacks, the conflict-freeness,

defence and reinstatement principles must take into account

the fact that attacks might be not valid. Moreover, for each of

these principles, two versions will be given, one for arguments

and another one for attacks. Then, for each principle, we give

3The simplification will be applied for the other examples.



a logical expression, thus leading to add formulas to the base

Σ(RAF ) and producing new bases.

1) Conflict-freeness: The conflict-freeness principle is for-

mulated as follows (for arguments and for attacks):

If there is a valid attack between two arguments, they

cannot be jointly accepted.

If there is an attack from an accepted argument to an

attack, these attacks cannot be both valid.

Note that these properties are already expressed in Σ(RAF )
by the formulae (1), (2), (3).

2) Defence: The idea is to claim that an argument a is

defended by a set of arguments S if S weakens each attack

α to a, either by attacking the source of α, or by attacking

α itself. Moreover the defence should be obtained with valid

attacks. So, the defence principle is formulated as follows (for

arguments and for attacks):

An attacked argument may be accepted only if for each

attack to it, either the source or the attack itself is in turn

attacked by a valid attack from an accepted argument.

An attack may be valid only if for each attack to it, either

the source or the attack itself is in turn attacked by a valid

attack from an accepted argument.

These properties are expressed by the following formulae:

(11) ∀α ∈ Attack (
Acc(tα)
→ (∃β ∈ Attack

(tβ ∈ {sα, α}
4 ∧ V al(β) ∧Acc(sβ))) )

(12) ∀α ∈ Attack (∀δ ∈ Attack (
((δ = tα) ∧ V al(δ))
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ))) ))

These formulae are added to the base Σ(RAF ), thus

producing the base Σd(RAF ).

3) Reinstatement: Based on the previous notion of defence,

the reinstatement principle is formulated as follows (for argu-

ments and for attacks):

An argument must be accepted provided that, for each

attack to it, the source or the attack itself is in turn

attacked by a valid attack from an accepted argument.

An attack may be valid provided that for each attack to

it, either the source or the attack itself is in turn attacked

by a valid attack from an accepted argument.

These properties are expressed by the following formulae:

(13) ∀c ∈ Arg (
(∀α ∈ Attack (tα = c

→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ)))))
→ Acc(c) )

(14) ∀δ ∈ Attack (
(∀α ∈ Attack (tα = δ

→ (∃β ∈ Attack

4Strictly speaking, should be written as follows : tβ = sα ∨ tβ = α.

(tβ ∈ {sα, α} ∧ V al(β) ∧Acc(sβ)))))
→ V al(δ) )

These formulae are added to the base Σ(RAF ), thus

producing the base Σr(RAF ).

4) Stability: The stability requirement can be formulated

as follows (one for arguments and one for attacks):

If an argument is not accepted, it must be attacked by a

valid attack from an accepted argument.

If an attack is not valid, it must be attacked by a valid

attack from an accepted argument.

These properties are expressed by the following formulae:

(15) ∀c ∈ Arg (
¬Acc(c)
→ (∃β ∈ Attack

((tβ = c) ∧ V al(β) ∧Acc(sβ))) )
(16) ∀α ∈ Attack (

¬V al(α)
→ (∃β ∈ Attack

((tβ = α) ∧ V al(β) ∧Acc(sβ)) )

These formulae are added to the base Σ(RAF ), thus

producing the base Σs(RAF ).

Example 2 (cont’d): Σd(RAF ) is obtained from Σ(RAF ) by

adding the formulas:

Acc(b)→ (V al(β) ∧Acc(c)),
¬V al(β) and

V al(α)→ (V al(δ) ∧Acc(d)).
Σr(RAF ) is obtained from Σ(RAF ) by adding the formulas:

Acc(a),
Acc(c),
Acc(d),
(V al(β) ∧Acc(c))→ Acc(b),
V al(δ) and

(V al(δ) ∧Acc(d))→ V al(α).

B. Characterizing Semantics of a RAF

We propose characterizations of the structures under dif-

ferent semantics in terms of models of the bases Σ(RAF ),
Σd(RAF ), Σr(RAF ), Σs(RAF ).

Let RAF = 〈A, R, s, t〉. Given I an interpretation of

Σ(RAF ), we define:

SI = {x ∈ A|I(Acc(x)) = true}
ΓI = {x ∈ R|I(V al(x)) = true}

Moreover, let I be a model of Σ(RAF ):

I is a ⊆-maximal model of Σ(RAF ) iff there is no model

I ′ of Σ(RAF ) with (SI ∪ ΓI) ⊂ (SI′ ∪ ΓI′).
I is a ⊆-minimal model of Σ(RAF ) iff there is no model

I ′ of Σ(RAF ) with (SI′ ∪ ΓI′) ⊂ (SI ∪ ΓI).

We have the following characterizations:

Proposition 1: Let RAF = 〈A, R, s, t〉. Let U = (S,Γ) a

structure on RAF .

1) U is conflict-free iff there exists I model of Σ(RAF )
with SI = S and ΓI = Γ.



2) U is admissible iff there exists I model of Σd(RAF )
with S = SI and ΓI = Γ.

3) U is complete iff there exists I model of Σd(RAF ) ∪
Σr(RAF ) with S = SI and ΓI = Γ.

4) U is a stable structure iff there exists I model of

Σs(RAF ) with SI = S and ΓI = Γ.

5) U is a preferred structure iff there exists I ⊆-maximal

model of Σd(RAF ) with SI = S and ΓI = Γ.

6) U is the grounded structure iff S = SI and ΓI = Γ
where I is a ⊆-minimal model of Σr(RAF ).5

Example 2 (cont’d): There is only one complete structure:

({a, c, d}, {α, δ}). Indeed, every model I of Σd(RAF ) ∪
Σr(RAF ) is such that SI = {a, c, d} and ΓI = {α, δ}, in

other words, every model of Σd(RAF ) ∪ Σr(RAF ) satisfies

Acc(a), Acc(c), Acc(d), V al(δ), V al(α) and falsifies Acc(b),
V al(β). An example of admissible (but not complete) struc-

ture is ({a, d}, {δ}). Indeed, there is a model I of Σd(RAF )
with SI = {a, d} and ΓI = {δ}.

D-structures can also be characterized. Let us recall that d-

structures are particular structures in which acceptable attacks

are forced to be valid. So, we consider the base Σ(RAF )
augmented with the formula that expresses the reinstatement

principle for attacks, that is formula (14).

As said before, complete structures are d-structures. So we

just have to complete Prop.1 with the characterizations of

conflict-free and admissible d-structures.

Proposition 2: Let RAF = 〈A, R, s, t〉. Let U = (S,Γ) a

structure on RAF .

1) U is a conflict-free d-structure iff there exists I model

of Σ(RAF ) ∪ {(14)} with SI = S and ΓI = Γ.

2) U is an admissible d-structure iff there exists I model

of Σd(RAF ) ∪ {(14)} with S = SI and ΓI = Γ.

Example 2 (cont’d): From (14), the following formulae are

obtained: V al(δ) and (V al(δ) ∧Acc(d))→ V al(α).
An example of admissible (but not complete) d-structure is

({a, d}, {α, δ}). Indeed, there is a model I of Σd(RAF ) ∪
{(14)} with SI = {a, d} and ΓI = {α, δ}. Note that

({a, d}, {δ}) is an admissible structure but not an admissible

d-structure.

C. Case of AF

As said before, an AF can be viewed as a particular RAF.

So we can consider the associated logical theory, which we

denote by Σ(AF ) for simplicity. Moreover, in the particular

case of an AF, the semantics recalled in SectionII-A assume

that each attack is valid. As a consequence, the logical theory

Σ(AF ) can be replaced by a logically equivalent theory

built as follows: For each (a, b) ∈ R, the attack from a

to b is described by the formulae Acc(a) → NAcc(b) and

NAcc(b)→ ¬Acc(b).

5It also holds that U is the grounded structure iff S = SI and ΓI = Γ
where I is a ⊆-minimal model of Σd(RAF ) ∪ Σr(RAF ). Considering
Σd(RAF ) ∪ Σr(RAF ) instead of Σr(RAF ) might be useful from a
computational point of view, when searching for minimal models.

Then, the standard defence, reinstatement and stability prin-

ciples are encoded with simplified versions of formulae (11),

(13) and (15) (as attacks are never attacked, formulae (12),

(14) and (16) would be tautologies). Let AF = 〈A,R〉. For

x ∈ A, let R
−(x) denote the set of its attackers. For each

principle, a set of formulas is provided, one for each argument:

Defence: For each x ∈ A,

Acc(x)→ (∧y∈R−(x)(∨z∈R−(y)Acc(z)))

Reinstatement: For each x ∈ A,

(∧y∈R−(x)(∨z∈R−(y)Acc(z)))→ Acc(x)

Stability: For each x ∈ A,

¬Acc(x)→ (∨y∈R−(x)Acc(y))

We denote by Σd(AF ) (resp. Σr(AF ), Σs(AF )) the log-

ical theories obtained by adding all the formulas encoding

defence (resp. reinstatement, stability) to Σ(AF ). Given I be

an interpretation of Σ(AF ), we still denote by SI the set

{x ∈ A|I(Acc(x)) = true}. If I is a model of Σ(AF ), I
is said to be a ⊆-maximal (resp. minimal) model of Σ(AF )
iff there is no model I ′ of Σ(AF ) such that SI ⊂ SI′ (resp.

SI′ ⊂ SI).

Then, we get the following characterizations:

Proposition 3: Let AF = 〈A,R〉. Let S ⊆ A.

1) S is conflict-free in 〈A,R〉 iff there exists I model of

Σ(AF ) with SI = S.

2) S is admissible in 〈A,R〉 iff there exists I model of

Σd(AF ) with S = SI .

3) S is a complete extension of 〈A,R〉 iff there exists I
model of Σd(AF ) ∪ Σr(AF ) with S = SI .

4) S is a stable extension of 〈A,R〉 iff there exists I model

of Σs(AF ) with SI = S.

5) U is a preferred extension of 〈A,R〉 iff there exists I
⊆-maximal model of Σd(AF ) with SI = S.

6) S is the grounded extension iff S = SI where I is a

⊆-minimal model of Σr(AF ).

Example 4: Consider the AF represented by:

a b c

It can be encoded by the following simplified bases:

Σ(AF ) = {Acc(a)→ NAcc(b),
NAcc(b)→ ¬Acc(b),
Acc(b)→ NAcc(c),
NAcc(c)→ ¬Acc(c),
NAcc(a)→ ¬Acc(a)}

and Σd(AF ) = Σ(AF ) ∪
{¬Acc(b),
Acc(c)→ Acc(a)}.

Every ⊆-maximal model of Σd(AF ) satisfies Acc(a), Acc(c)
and falsifies Acc(b). That corresponds to the unique preferred

extension {a, c}.

V. RELATED WORKS

From the seminal work of Dung [2], several works have

proposed to connect abstract argumentation with logic pro-

gramming (see [12] for recent work and more references). The



issue is to find an appropriate encoding of an AF into a logic

program P , so that applying logic programming semantics to

P enables to capture argumentation semantics of the original

AF. Dung [2] has proposed an encoding allowing the capture

of (only) grounded and stable semantics. In [12], the encoding

allows for the characterization of the standard argumentation

semantics (grounded, stable, preferred and complete seman-

tics) through 3-valued models of a logic program.

In the particular case of an AF, the logical representation

of [15] using classical propositional logic augmented with

strong negation is very close to our proposal. However, taking

into account higher-order attacks requires a modification of

the original framework with the addition of nodes and joint

attacks.

The issue of logical encoding of abstract argumentation

has recently been addressed for different other purposes in-

dependently of the notion of logic programming. In [13], [19]

acceptance conditions and standard semantics are encoded by

first-order logical formulae (given a semantics σ and a set S of

arguments, a formula is provided which is satisfiable iff S is

a σ-extension). However, the argumentation framework itself

is not represented. A similar issue is addressed in [20] with a

modal logic, considering that the accessibility relation is the

inverse of the attack relation; the same kind of work is pre-

sented in [21] using signed theories and QBF formulae; [22]

presents algorithms using particular logical notions (minimal

correction sets, backbone) in order to compute some semantics

(semi-stable and eager); [23] translates complete labellings

into logical formulae in order to compute preferred extensions

with SAT solvers; [24] proposes a metalevel analysis of the

computation problems related to given semantics in order to

automatically generate solvers adapted to these problems.

In the more general abstract dialectical framework [25],

each argument is associated with a propositional formula

which represents the acceptance conditions of the argument.

This logical translation enables to capture easily the stable

semantics. However, recursive interactions are not taken into

account.

[14] proposes a complete framework for handling the

dynamics on an AF. A first-order logical language is presented,

enabling to describe the structure of an AF, to express incom-

plete knowledge on an AF and to encode change operations

on an AF.

Moreover in the context of the First International Competi-

tion on Computational Models of Argumentation (ICCMA),

different solvers have been proposed and tested (e.g. [26],

or [27]). However, in all these works, neither the attack relation

itself is logically encoded, nor the recursive aspects are taken

into account.

VI. CONCLUSION

In this work, we have proposed a logical encoding of argu-

mentation frameworks with higher-order attacks. Our proposal

enables to separate the logical expression of the meaning of an

attack (simple or higher-order) and the logical expression of

acceptability semantics. These semantics (introduced in [10])

specify the conditions under which the arguments (resp. the

attacks) are considered as accepted, directly on the extended

framework, without translating the original framework into an

AF.

Then, we are able to characterize the output of a given

argumentation framework (under the form of structures) in

logical terms (namely as particular models of a logical theory).

That opens a way for computational issues by using logical

tools. As a preliminary work in that direction, a software has

been developed [28] that enables to represent a RAF, to express

the associated logical theories Σ(RAF ),Σd(RAF ), . . ., and

to compute the structures under different semantics.

Another feature of our work is its conservative generaliza-

tion of AF, when d-structures are considered.

Future works will include the study of a logical encoding

of frameworks with higher-order attacks and higher-order sup-

ports. The difficulty is that there exist different interpretations

of the notion of support in argumentation frameworks. In a

first step, we plan to consider a recent framework that allows

handling both higher-order attacks and higher-order evidential

supports, with structure-based semantics [29].
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