
HAL Id: hal-02181900
https://hal.science/hal-02181900v1

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reducing timing interferences in real-time applications
running on multicore architectures

Thomas Carle, Hugues Cassé

To cite this version:
Thomas Carle, Hugues Cassé. Reducing timing interferences in real-time applications running on mul-
ticore architectures. 18th International Workshop on Worst-Case Execution Time Analysis (WCET
2018), Jul 2018, Barcelone, Spain. pp.1-11. �hal-02181900�

https://hal.science/hal-02181900v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22540

Official URL

DOI : https://doi.org/10.4230/OASIcs.WCET.2018.3

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Carle, Thomas and Cassé, Hugues Reducing
timing interferences in real-time applications running on multicore
architectures. (2018) In: 18th International Workshop on Worst-
Case Execution Time Analysis (WCET 2018), 3 July 2018 - 3 July
2018 (Barcelone, Spain).

Reducing Timing Interferences in Real-Time

Applications Running on Multicore Architectures

Thomas Carle
Université Paul Sabatier, IRIT, CNRS

Toulouse, France

thomas.carle@irit.fr

Hugues Cassé
Université Paul Sabatier, IRIT, CNRS

Toulouse, France

casse@irit.fr

Abstract

We introduce a unified wcet analysis and scheduling framework for real-time applications de-
ployed on multicore architectures. Our method does not follow a particular programming model,
meaning that any piece of existing code (in particular legacy) can be re-used, and aims at re-

ducing automatically the worst-case number of timing interferences between tasks. Our method
is based on the notion of Time Interest Points (tips), which are instructions that can generate
and/or suffer from timing interferences. We show how such points can be extracted from the
binary code of applications and selected prior to performing the wcet analysis. We then rep-

resent real-time tasks as sequences of time intervals separated by tips, and schedule those tasks
so that the overall makespan (including the potential timing penalties incurred by interferences)
is minimized. This scheduling phase is performed using an Integer Linear Programming (ilp)
solver. Preliminary results on state-of-the-art benchmarks show promising results and pave the
way for future extensions of the model and optimizations.

Keywords and phrases: Multicore architecture, WCET, Time Interest Points

Digital Object Identifier: 10.4230/OASIcs.WCET.2018.3

1 Introduction

The advent of multicore architectures in embedded real-time systems raises multiple challenges

for the community. For single-task (single-threaded) applications running on single-core

architectures, the computation of safe-yet-precise Worst-Case Execution Time (wcet) bounds

is a mature research domain, in which the complexity of hardware acceleration mechanisms

(e.g. branch predictors) and of programs semantical properties (e.g. infeasible execution paths)

must be mitigated in the analysis in order for the problem to remain tractable. On single-

core machines, using preemptions to implement multi-task applications additionally incurs

Cache-Related Preemption Delays (crpds) [2]: since multiple tasks share the instruction and

data caches, a preemptive task can invalidate cache lines still needed by preempted tasks.

This leads to additional timing penalties that were not present in the analysis of single-task

applications.

For applications running on multicore architectures, deriving wcet bounds for the tasks

running on each core becomes even more complex. Indeed, logically independent tasks

can cause or suffer from timing interferences induced by the execution of tasks running

simultaneously on other cores. For architectures where multiple cores share caches, the same

effect as crpd can be observed. However, caches are not the only source of contention in
multicore architectures, and subtler timing interferences between tasks can be generated in
other shared elements such as the interconnect.

We consider that closely integrating wcet analysis and Time-Triggered (TT) scheduling
can be a pragmatic and efficient way of coping with this increasing complexity by reducing
the temporal instability of the applications. Existing models [15, 6] have shown that this
approach yielded good results, but they require the analyzed applications to be written in a
particular fashion. On the other hand, we propose a unified, code-analysis centric approach
targetting arbitrary applications, and thus suited for legacy applications. Our technique
analyses each task’s code in isolation, and pinpoints all instructions that can generate or
suffer from timing interferences. We call these particular instructions Time Interest Points
(tips). Our method abstracts each task of the system into a sequence of code segments
delimited by two (not necessarily consecutive) tips. Each segment’s execution duration is
stabilized by injecting a busy-wait loop before the ending tip, directly in the binary code.
Each segment is represented by its duration and the worst number of tips executed on any
control flow path contained in the code of the segment. The objective of our approach is
to schedule the segment sequences according to the real-time (e.g. periods and deadlines)
and functional (data dependencies) constraints of their respective tasks, while reducing the
number of possible timing interferences. In this paper, we propose an ilp formulation of the
scheduling constraints in order to formally expose the problem. Since this paper presents
a preliminary investigation of this model we will only focus on applications composed of
two tasks running at the same frequency, yet the proposed approach can be easily extended
to more general task systems (e.g. multi-periodic dependent tasks). Our approach does
not rely on a particular programming model, and can be used on existing code without
re-writing it. It works at binary level, allowing the analysis and the automatic code injection
in pre-compiled code, and freeing our analysis from any programming language constraint.

This paper is divided as follows: Section 2 gives a presentation of existing work in the
domain, Section 3 formally presents the problem and Section 4 details our method. Finally,
Section 5 provides a proof-of-concept and Section 6 concludes.

2 Related work

2.1 Multicore interference analysis frameworks

Several Worst Case Response Time analysis frameworks [1] for multicore architectures have

been devised in the past years. Their goal is to provide a schedulability criterion for a

multi-task real-time system prior to its deployment, in particular for task systems scheduled

using a non TT policy (e.g. fixed priority or EDF). The objective is to derive an exact or

conservative bound on the number of timing interferences that can occur on each task, and

to apply timing penalties to their wcets accordingly. In [3], the analysis framework is based

on the analysis of all possible execution traces of the task system on a given architecture,

and allows a very high level of precision in the modeling of the architecture components,

raising the concerns of the authors about the complexity of their analysis. Alternatively, the

authors of [14, 16] propose an analysis method based on real-time Calculus for applications

running on multicore architectures: tasks are approximated as sequences of time intervals

containing the minimum and maximum number of potential interferences that can occur for

the task on these intervals. However, to the best of our knowledge, the authors do not provide

methods to obtain such abstractions from actual code. Our method uses an intermediate

representation that is very close to the one defined in [14] and refined in [16]. However our

model differs in several points. First, instead of verifying the schedulability of the system,
we use this representation to derive a schedule of the tasks. Second, in our method each
code portion corresponding to a segment in the representation is temporized using busy-wait
loops so that it executes for exactly the segment duration. Finally, our method targets the
general model of multicore architectures with starvation-free interconnects, instead of the
more restricted model of tdma interconnect based architectures of [16].

2.2 Multicore extensions of the PREM model

The PREM [13] model was designed to avoid timing interferences for applications running
on single core architectures connected to peripherals. The main idea is to separate the
application into phases of three types: Read phases perform reads in the memory to preload
the application code and the needed data, Execution phases perform the task calculation
using only the instructions and data present in the cache, and Write phases update the
values of modified variables in the main memory. The phases of the application can then
be statically scheduled so that no Read or Write phase occurs when a peripheral uses the
bus1. This model is extended to multicore architectures with scratchpad memories [15] and
caches [6] by separating each task in three phases (Read/Exec/Write for the rew model or
Acquisition/Execution/Restitution for the aer model) and by scheduling them statically
so that memory phases from two or more cores never happen simultaneously. Each phase
is time-triggered following the pre-computed starting dates. These methods work at the
granularity of tasks, meaning that each task is composed of exactly one Read, one Execution
and one Write phase. The Read (or Acquisition) phase prefetches all the data and instructions
potentially required for the execution of the task in the local L1 cache or scratchpad, even
though they may not be actually needed during the execution. To do so, it must be clear
what data will potentially be read or written, as well as what code may be executed, by the
task. This is defined by the programmer, using for example a system-level language such as
PRELUDE [12] or wrapper functions. Tasks whose memory requirements exceed the capacity
of the cache or scratchpad have to be manually divided into smaller subtasks. By contrast,
our method works at a finer grain level and does not require any programmer’s intervention.

3 Problem setting and formalism

In this section we define the formalism that will be used to describe our model and method

throughout the paper.

3.1 Architecture

Our model focuses on multicore architectures composed of N cores, each of them connected to

a private L1 cache. Each L1 cache is connected to the main memory through a starvation-free

interconnect.

Each core has a programmable timer that can wake up a task sequencer (implementing

a schedule computed off-line) using an interrupt through a direct link (not going through

the shared interconnect).The core can program or rearm the timer through the shared

interconnect. Moreover, each core also has a time stamp counter register tsc_reg (or an

equivalent register) which counts CPU clock cycles with a fine granularity. These architecture

traits are present in commercial off-the-shelf microprocessors such as the Aurix Tricore [10]

or multicore ARMv8A [4].

1 In the PREM model, peripherals such as sensors are allowed to write to the main memory.

3.2 Real-time tasks

We consider real-time applications modeled under the form of non-preemptive mono-periodic
task systems. Formally, we denote T = {τi|1 ≤ i ≤ n} a task system composed of n tasks.
Each task τi ∈ T is characterized by:

its period2 τi.p ∈ N,

its deadline τi.d ∈ N (when τi.p = τi.d, the task is said to have an implicit deadline),

In the scope of this paper, we assume that each task runs on a separate core: this simplifies

the scheduling ILP system, and at the same time allows us to apply our technique in situations

where interferences are more likely to appear. This model is simple, yet complex enough to

capture the traits of real-time applications with regard to multicore timing interferences.

3.3 WCET Computation

The identification of tips and the proposed scheduling method require not only wcet

computation by static analysis but also intermediate results such as the analysis of the data

cache. To this end, we use the Implicit Path Enumeration Technique (ipet) [11] approach

which is made of three passes: (a) the path analysis, (b) the accelerator mechanism analysis

and (c) the time analysis.

The path analysis consists in parsing all executions of the program. In order to increase

the precision of the analysis, the ipet is performed on the binary form of the program and

therefore, a compact and complete representation of a task is the Control Flow Graph (cfg).

A cfg is a graph G = 〈V, E, ν, ω〉 where the nodes set V is composed of Basic Blocks (bb).

A bb is a sequence of instructions in which only the first instruction can be targeted by

a branch and only the last instruction can be a branch. E ⊆ V × V is the set of edges

representing sequential execution or branches of the program. ν, ω ∈ V are special empty

bbs ensuring that G contains exactly one entry point (ν) and one exit point (ω).

The second analysis (b) aims at estimating the impact of accelerator mechanisms such as

caches or branch predictors: these statistically improve the execution of the program (hit),

but they do not work all the time (miss). A very common approach to support them is to

statically compute abstract states (including all possible hardware states) and to assign a

category representing their behavior. For example, for data caches [7], we distinguish four

categories: Always Hit (AH), Always Miss (AM), Persistent (PE) or Not-Classified (NC).

NC is the most imprecise case and a fall-back when the cache behavior is too complex. PE

is a bit smarter and arises in loops: it means that the first access may cause a miss but the

following accesses will cause hits. Notice that only memory instructions classified as AH are

guaranteed to not generate interferences.

The last pass (c) computes the duration of bbs and weaves together (1) the wcet

expression as the sum of all bbs durations multiplied by their occurrence counts on the

wcet path, and (2) the constraints representing the execution paths and the effects of the

accelerator mechanisms. The result gives an ilp system whose maximization provides the

wcet.

3.4 TIPsGraph

We define TIPsGraphs as an intermediate representation in order to transform the cfg

representing the control flow of a task into a sequence of time intervals representing the

timing aspects of the task execution.

2 In the scope of this paper we only target mono-periodic systems, so all tasks have the same period.

A TIPsGraph for task τi, GT IP s(τi) = {VT IP s(τi), ET IP s(τi)} is composed of tips
t ∈ VT IP s(τi) and of edges e ∈ ET IP s(τi).

tips t ∈ VT IP s(τi) are instructions of task τi which can create or suffer from interferences
in a multicore execution context, or pivot instructions which represent flow disjunctions (i.e.
conditional branches) and junctions in the cfg. Pivot instructions allow our algorithm to
encapsulate if and loop constructs into a single TIPsGraph edge, and thus to restrain the
complexity of the subsequent ILP system.

Typically, tips can be:

Memory instructions (stores and loads), when the static analysis cannot guarantee that

they will always result in AH,

Memory instructions addressing shared variables, or data residing in a cache block that

can be written by another task,

Instructions for which the static analysis cannot guarantee that they will always result in

a hit in the instruction cache,

Pivot instructions.

Instructions falling in the first and third categories can generate interferences for other

tasks or suffer from interferences from other tasks on the interconnect (e.g. memory bus).

Instructions falling in the second category are subject to interferences due to cache coherence

maintenance. In the scope of this paper, we will focus on instructions falling in the first

and last categories only, although the extraction of TIPsGraphs including tips falling in the

other two categories is performed using the same algorithm. The reason for this restriction

is that increasing the number of tips in the system dramatically complexifies the ilp system

that we use for scheduling. Consequently, for the scope of this paper we consider that the

tasks code is preloaded into the Instruction caches (or equivalently in private ScratchPad

Memories) when the system is powered up.

An edge e ∈ ET IP s(τi) is characterized by:

its source tip instruction e.src ∈ VT IP s(τi),

its destination instruction e.dst ∈ VT IP s(τi),

the worst-case number e.µ of tips encountered on any control-flow path linking e.src to

e.dst,

e.wcet: the wcet of control-flow paths linking e.src to e.dst.

3.5 Temporal segments sequence

Each task τi is represented as a sequence of time intervals (or segments) {(di.j , µi.j)0≤j<ni
}, ni

being the number of segments that compose τi. These sequences are used to generate the ilp

system which ultimately produces the tasks schedule. A time interval tii.j is characterized by

its duration di.j , as well as the worst case number of non-AH memory accesses µi.j performed

during the execution of the segment. An important point is that a segment is characterized

by an exact duration, and not by a wcet: in order to effectively reduce conflicts on the

interconnect through careful scheduling of the tasks, we must know in advance when a

task accesses memory. In order to suppress the temporal instability inherent to unbalanced

control-flow paths and to the conservatism of our wcet estimation technique, stabilization

loops are injected automatically in the binary code before the end of each segment. These

loops poll the tsc_reg of their core until a pre-computed date is reached. Once it has been

reached, the normal execution flow resumes. This technique has been introduced in the

PREM model [13] to stabilize the duration of the whole Execution phase of each task.

Figure 1 Example of graph extraction for

a linear sequence of bbs.

Figure 2 Example of graph extraction for

a non-linear control structure.

The segments are straightforwardly obtained from a TIPsGraph by translating each edge

in the graph into a segment.

4 Multicore WCET analysis using TIPs

In this section, we describe how TIPsGraphs are extracted from the cfg of tasks and then

transformed into sequences of temporal segments. We also explain how the ilp scheduling

system is generated from a set of temporal segments sequences.

4.1 Extracting a TIPsGraph from the CFG of a task

The extraction of the TIPsGraph of a task τi is performed by exploring the task’s cfg from

the entry point to the exit point. During this exploration, the extraction algorithm can be in

one of two situations: either it is exploring a linear sequence of bbs without pivot instruction,

or it has reached a pivot which marks a disjunction in the control flow. In this second case,

a subprocedure looks for the matching junction in the graph and creates an edge between

the disjuncting pivot and its matching join pivot (see 4.1.2).

4.1.1 Linear sequence of Basic Blocks

As long as the exploration procedure has not encountered a pivot instruction, it goes

through the instructions of the program in sequence. If an instruction inst is a memory

instruction (str/ldr/stm/ldm in ARM instruction set) which is not guaranteed to result

in a hit (non-AH) in the data cache, the procedure creates a corresponding tip new_TIP

in VT IP s(τi), and an edge e in ET IP s(τi) from the last encountered tip last_TIP to the

current tip, with e.µ = 0 since no memory operation is performed between the two tips,

and e.wcet equal to the wcet of the code portion between last_TIP and new_TIP . In

order to reduce the number of extracted tips, the procedure then regroups all non-AH

memory instructions directly following new_TIP in the code as part of the same tip (if

such instructions are present). It computes the number µ′ of all non-AH memory accesses

performed by the instruction(s) grouped in the tip, as well as the wcet of the corresponding

instruction(s) wcet′, and creates an edge e′, in which e′.src = e′.dst = new_TIP , e′.µ = µ′

and e′.wcet = wcet′. This self-edge looping on the tip accounts for the duration of

the instruction(s) represented by the tip, which generate traffic on the interconnect. The

procedure then resumes the exploration of the instructions in sequence. Figure 1 illustrates

this process: the boxes on the left represent bbs in the cfg of a task, and the graph in the
right is the part of the TIPsGraph corresponding to this part of the cfg. The str instruction
in the top is analyzed as non-AH, so a tip (a node) is created in the TIPsGraph. The
self-edge on this tip is labeled with µ = 1 because the str instruction only performs one
non-AH memory access. The wcet label for this edge corresponds to the wcet of this str
instruction3. The next non-AH memory access found by the procedure is made by the ldmfd
instruction at the bottom. A tip is added to represent this instruction in the TIPsGraph,
and an edge links it to the previous tip.

If a pivot instruction p is reached, the procedure creates a corresponding tip in VT IP s(τi),
as well as an edge e from the last encountered tip to p, with e.µ = 0 and e.W CET =
WCET (last_T IP, p). The procedure then follows the algorithm described in the next
section. Finally, when the procedure reaches the end of the cfg, it returns GT IP s(τi).

4.1.2 Non-linear control structures

When a pivot instruction p is reached, it necessarily marks a disjunction in the control
flow (an if branch or the start of a loop). In order to analyze the disjoint part of the cfg
as a whole, the procedure first looks for the unique pivot instruction p′ that marks the
corresponding junction of the control flow paths, and puts it in VT IP s(τi). This instruction
is the first instruction of the first bb that (a) is a (direct or transitive successor of the bb
containing p and (b) dominates the exit point (ω) of the cfg. Then the procedure explores
all control flow paths between p and p′, in order to find the maximum number of non-AH
memory instructions µmax present on any path linking p to p′. Finally, it creates an edge
e in ET IP s(τi), with e.src = p, e.dst = p′, e.µ = µmax and e.wcet = wcet(p, p′). The
procedure then resumes the linear exploration of the cfg described in Section 4.1.1.

The exploration of non-linear control structures is illustrated by Figure 2. The bhi
instruction is a pivot which opens a disjoint section of the CFG. The procedure adds a tip
corresponding to this pivot in the TIPsGraph. After this, it looks for the first instruction
after the disjoint portion of the cfg (the first instruction of the bottom bb) and creates a
corresponding tip. Then an analysis is performed on the two paths: the maximum number
of non-AH memory accesses on either paths is 2: the left path executes a ldmfd instruction
performing two memory accesses, both of which were labeled non-AH by the cache analysis.
On the other hand, the path on the right makes no non-AH memory access. The wcet of
the section between the bhi instruction and the first instruction in the bb at the bottom was
found to be 24 time units. This wcet does not necessarily correspond to the left path.

4.2 From a TIPsGraph to a temporal segments sequence

Once a TIPsGraph containing all tips of a task has been extracted, its translation into a
sequence of temporal segments is straightforward: the graph is traversed from its starting
node to its end node, passing by each edge exactly once, with a priority given to self-edges.
When traversing an edge e, it is translated into a segment s with s.d = e.W CET and
s.µ = e.µ. Figure 3 shows how a segment sequence is obtained from the TIPsGraph of a
task τ1: the TIPsGraph section considered in this example starts by a tip on the left. The
first edge e0 to be translated into a segment is a self-edge: a segment ti1.0 is created with

3 In the figures, the wcets are given in arbitrary time units.

Figure 3 Example of temporal segment sequence extraction.

d1.0 = e0.WCET = 2 and µ1.0 = e0.µ = 1. Then a second segment ti1.1 with µ1.1 = 0 is

extracted from edge e1, and so on. In the figure, the density of the color of the segments

reflects the number of tips they contain: the higher the µ, the darker the segment.

We will now present how such sets of sequences are translated into ILP variables and

constraints in order to schedule the task system.

4.3 Multicore scheduling using ILP

In this section, we present the variables and constraints that are used to model our scheduling

problem in ilp. Multiple objective functions can be used, optimizing different aspects, but

overall the constraints presented here remain the same regardless of the optimization criterion.

Finally, some constraints make use of ∞ : these constraints are encoded using a sufficiently

large integer number (i.e. at least one order of magnitude larger than the variables of the

system)4.

For each task τi in our system, we first introduce two sets of variables : {si.j |0 ≤ j < ni}

and {γi.j |0 ≤ j < ni}, which represent respectively the start time and the number of inter-

ferences for each segment tii.j . In addition to these variables, we define si.ni
as the end date

of the last temporal segment of τi (i.e. the end date of tii.ni−1). Using these variables, the

following constraints impose the sequential execution of τi and the application of deadline

τi.d (cinter represents the cost of an interference):

si.0 ≥ 0 (1)

si.ni
≤ τi.d (2)

∀j : 0 ≤ j < ni, si.j+1 = si.j + di.j + cinter × γi.j (3)

The tricky part concerns the evaluation of γi.j which depends on the segments of tasks

running on other cores, k.l (segment l of task k), that overlap the execution of segment i.j.

Variable χi.j−k.l ∈ {0, 1} asserts whether i.j and k.l overlap. In this case, i.j undergoes at

most min(µi.j , µk.l) interferences from k.l. In fact, considering all segments of τk overlapping

i.j, our conservative approximation is that i.j suffers in the worst case from the sum of

interferences generated by each overlapping segment of core k, with at most µi.j interferences

in total. The interferences with τk are recorded in γi.j−k and, as exposed below, γi.j is the

sum of interferences of τi with all other tasks:

γi.j =
∑

0≤k<n∧k Ó=i

γi.j−k , with: γi.j−k = min

µi.j ,
∑

0≤l<nk

µk.l × χi.j−k.l

The formulation of γi.j−k cannot be translated as is in the ilp system because of the min

4 As a result, ∞ × 0 = 0

but we can rewrite it as:

γi.j−k ≤ µi.j (4)

γi.j−k ≤

∑

0≤l<nk

µk.l × χi.j−k.l

 (5)

γi.j−k ≥ µi.j − ∞ × (1 − αi.j−k) (6)

γi.j−k ≥

∑

0≤l<nk

µk.l × χi.j−k.l

 − ∞ × αi.j−k (7)

0 ≤ αi.j−k ≤ 1 (8)

Eq. (4) and (5) enforce the selection of the minimum but, according to the trend of the

objective function, a possible value for γi.j−k could be 0. This is prevented by the variable

αi.j−k and Eq. (6) and (7) which ensure that either µi.j , or the sum of µk.l is selected.

To detect overlapping and define χi.j−k.l, we have to compare start and end dates of

segments of tasks running on different cores, i.j and k.l:

θi.j−k.l ⇐⇒ sk.l ≤ si.j < sk.l+1 , and θk.l−i.j ⇐⇒ si.j ≤ sk.l < si.j+1

Considering the trend to minimize γi.j , θi.j−k.l (and symmetrically θk.l−i.j) can be viewed

as the selection of exactly one of the following constraints:

sk.l ≤ si.j < sk.l+1 (θi.j−k.l = 1); si.j < sk.l (θi.j−k.l = 0); sk.l+1 ≤ si.j(θi.j−k.l = 0)

Introducing the cancellation variable βi.j−k.l, the ilp formulation becomes:

sk.l ≤ si.j + ∞ × (1 − θi.j−k.l) (9)

si.j < sk.l+1 + ∞ × (1 − θi.j−k.l) (10)

si.j < sk.l + ∞ × (1 − βi.j−k.l) (11)

sk.l+1 ≤ si.j + ∞ × (βi.j−k.l + θi.j−k.l) (12)

0 ≤ βi.j−k.l + θi.j−k.l ≤ 1 (13)

Eq. (9) and (10) apply only if θi.j−k.l = 1 (overlapping of segments i.j and k.l). When

θi.j−k.l = 0, only one constraint between Eq. (11) and (12) holds, depending on the value of

βi.j−k.l ∈ {0, 1}. The last constraint ensures that βi.j−k.l and θi.j−k.l are not both set to 1

at the same time.

Notice that θi.j−k.l and θk.l−i.j can be set to 1 together when the segments start at the

same date (si.j = sk.l). Finally, χi.j−k.l is defined as:

0 ≤ χi.j−k.l ≤ 1 (14)

χi.j−k.l ≥ θi.j−k.l (15)

χi.j−k.l ≥ θk.l−i.j (16)

At this point, we have presented all the models and algorithms required to apply our

method. In the next section, we present our preliminary results on realistic applications.

Table 1 Summary of applications profiles.

wcet in isolation longest segment max tips

bench (in clock cycles) # segments # tips (in clock cycles) in a segment

edn 416221 70 5882 208056 3400

insertsort 2968 30 13 2796 1

fibcall 942 18 69 761 60

5 Proof-of-concept

We developed a prototype application5 based on the OTAWA [5] wcet analyzer and applied

it on three benchmarks from the Mälardalen [8] suite: edn, fibcall and insertsort. These

benchmarks exhibit common traits of embedded applications, and as we will see, they show

very different profiles in terms of wcet and of number of memory accesses.

The first result of our analysis method is that we are able to exhibit and analyze a safe

and refined timing profile of memory accesses of these applications. These profiles can also

be used to extract precise arrival curves suited for methods such as [14]. We summarize key

points in Table 1.

These three applications show varied profiles in number of segments, overall size and

number of tips. Yet, one common trait is that each of them has one segment that lasts

around half of its total wcet or more (wcets and segment lengths are given in number of

processor cycles). This is the result of aggregating ifs and loops inside one segment. However,

we are currently working on adding more precision to the analysis of such constructs, and

in particular on allowing the extraction of segments delimited by a chosen number of loop

iterations.

Once this profiling is done, our prototype calls CPLEX [9] to schedule tasks two-by-two on

separate cores, minimizing the makespan of the task system. We chose to fix the interference

cost cinter to 10 processor cycles, because it is approximately the cost of accessing the shared

data scratchpad in the Aurix Tricore architecture. The result for insertsort and fibcall with

this objective function is an interference-free schedule in which insertsort begins its execution

at date 0 and finishes at date 2968. fibcall starts at date 170 and finishes at date 1112.

Without our method the worst-case of 13 interferences should have been assumed, incurring

a total additional duration of 130 cycles, which is more than a 10% overhead for fibcall. This

preliminary experiment on real applications illustrates the possibility to reduce the number

of timing interferences without having to re-write existing code, as well as the necessity

to define precise analysis models in order to do so. We also tried to apply our method on

application pairs featuring edn, but CPLEX failed to provide a solution. We believe this is

linked to this application having a too long overall wcet, which increases dramatically the

feasible region to be explored. These experiments convince us that our method should rely

on efficient scheduling heuristics rather than on ilp solvers if we are to successfully deal with

large tasks and/or large task systems.

5 Following this proof-of-concept, a complete analysis application is now under development.

6 Conclusion and future work

In this paper we proposed a novel approach for the wcet analysis of applications running on

multicore architectures. This method is particularly well-suited for legacy applications, since

it can be fully automated, requires no re-writing of existing code, and works directly at the

binary level. It is based on the notion of Time Interest Points, which are instructions in the

binary code that potentially cause or suffer from timing interferences on the interconnect. Our

method extracts such tips and abstracts the application tasks as sequences of tips separated

by temporal segments. In order to increase the timing stability of this representation, waiting

loops are automatically injected at the end of each segment. These sequences of temporal

segments are then scheduled in order to minimize the application makespan. In order to

illustrate how this approach works, we implemented a prototype application and applied it

on benchmarks from the Mälardalen suite. Our preliminary results (application profiling and

scheduling) lead to the following conclusions:

This method is technically feasible and promising, especially for the analysis of legacy

code,

Our next efforts should target the definition of fast-yet-efficient scheduling heuristics, to

free our method from the limitations inherent to ilp and allow the resolution of larger

systems as well as the introduction of new kinds of tips in our problems (e.g. Instruction

Cache tips),

In order to aggressively reduce the number of interferences, we must break down large

temporal segments that represent ifs and loops. For example, we want to make it possible

to extract temporal segments as specified chunks of loop iterations.

References

1 A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs, A. H. Moin,

J. Reineke, B. Schommer, and R. Wilhelm. Impact of resource sharing on performance and

performance prediction: A survey. In CONCUR, 2013.

2 S. Altmeyer and C. Maiza Burguière. Cache-related preemption delay via useful cache

blocks: Survey and redefinition. Journal of Systems Architecture, 2011.

3 S. Altmeyer, R. I. Davis, L. Soares Indrusiak, C. Maiza, V. Nélis, and J. Reineke. A generic

and compositional framework for multicore response time analysis. In RTNS, 2015.

4 ARM. ARM Cortex-A Series – Programmer’s Guide for ARMv8 - A, v1.0 edition, 2015.

5 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. Otawa: An open toolbox for adaptive

wcet analysis. In Software Technologies for Embedded and Ubiquitous Systems, 2010.

6 G. Durieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and W. Puffitsch. Predictable

flight management system implementation on a multicore processor. In ERTS2, 2014.

7 C. Ferdinand and R. Wilhelm. On predicting data cache behavior for real-time systems.

Lecture notes in computer science, 1998.

8 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen WCET benchmarks:

Past, present and future. In 10th International Workshop on Worst-Case Execution Time

Analysis, WCET, 2010.

9 IBM. Cplex user’s manual. https://www.ibm.com/support/knowledgecenter/SSSA5P_

12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf, 2016.

10 Infineon. AURIX TC27x D-Step (32-Bit Single-Chip Microcontroller) User’s Manual, v2.2,

2014.

11 Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path

enumeration. In Workshop on Languages, Compilers, and Tools for Real-Time Systems,

1995.

12 C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task implementation

of multi-periodic synchronous programs. Discrete Event Dynamic Systems, 21(3), 2011.

doi:10.1007/s10626-011-0107-x.

13 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A

predictable execution model for cots-based embedded systems. RTAS, 2011.

14 R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele. Worst case delay

analysis for memory interference in multicore systems. DATE, 2010.

15 B. Rouxel, S. Derrien, and I. Puaut. Tightening contention delays while scheduling parallel

applications on multi-core architectures. ACM Trans. Embed. Comput. Syst., 2017.

16 A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for tdma arbitration in resource

sharing systems. RTAS, 2010.

