
HAL Id: hal-02181898
https://hal.science/hal-02181898v1

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Orchestration of Domain Specific Test Languages with a
Behavior Driven Development approach

Robin Bussenot, Hervé Leblanc, Christian Percebois

To cite this version:
Robin Bussenot, Hervé Leblanc, Christian Percebois. Orchestration of Domain Specific Test Lan-
guages with a Behavior Driven Development approach. IEEE 13th Conference on System of Systems
Engineering (SoSe 2018), Jun 2018, Paris, France. pp.431-437. �hal-02181898�

https://hal.science/hal-02181898v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22577

Official URL

DOI : https://doi.org/10.1109/SYSOSE.2018.8428788

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bussenot, Robin and Leblanc, Hervé and
Percebois, Christian Orchestration of Domain Specific Test Languages
with a Behavior Driven Development approach. (2018) In: IEEE 13th
Conference on System of Systems Engineering (SoSe 2018), 19 June
2018 - 22 June 2018 (Paris, France).

Orchestration of Domain Specific Test Languages

with a Behavior Driven Development approach

Robin Bussenot, Hervé Leblanc and Christian Percebois
Institut de Recherche en Informatique de Toulouse

118 Route de Narbonne, 31400 Toulouse, France

robin.bussenot@irit.fr, leblanc@irit.fr, percebois@irit.fr

Abstract—An airplane is composed by many complexes and
embedded systems. During the integration testing phase, the de-
sign office produces requirements of the targeted system, and the
test center produces concrete test procedures to be executed on a
test bench. In this context, integration tests are mostly written in
natural language and manually executed step by step by a tester.
In order to formalize integration tests procedures dedicated to
each system with domain specific languages approved by testers,
and in order to automatize integration tests, we have introduced
agile practices in the integration testing phase. We have chosen
a Behavior Driven Development (BDD) approach to orchestrate
Domain Specific Test Languages produced for the ACOVAS FUI
project.

I. INTRODUCTION

An airplane is composed by many complexes and embedded

systems. Due to the criticality of such systems and constraints

of verification and validation, a process of certification is

necessary in order to commercialize them. In this context,

the system integration testing phase is an important topic of

the certification process. As a System Under Test (SUT) is

composed by hardware and software, a dedicated test bench

is needed to interact with it. We focus our work on integration

test procedures.

In most cases, integration tests are written in natural lan-

guage and are executed on a test bench step by step manually.

The lack of formalism of the natural language introduces mis-

interpretations. The step by step execution can be fastidious,

expensive and error prone. Tests written in natural language

and executed manually are more focused on how the test has

to be performed rather than the elicitation of the feature to

be tested. The test intention is lost because it is mixed with

implementation details. When test procedures are transformed

into some scripting languages (Python, Lua, XML, C . . .)

executed on a test bench, the gap between a test scenario

and the corresponding script is too large and does not permit

debug. Testers have domain skills on the kind of system to

test and not necessary computer knowledge to understand test

scripts. The lack of test automation implies the waste of time

during test replays. The lack of formalization implies the loss

of intention in test procedures and then the lack of reusing for

other avionic programs.

Our problematic is to improve the formalization of test

procedures by introducing several best practices coming from

software engineering and the efficiency of the integration

testing activities. We used capabilities of Domain Specific

Languages (DSLs) to formalize specific test languages ded-

icated to each system of an airplane. From these languages,

program transformations are designed to generate executable

code for some kind of test benches with their script languages.

BDD promotes test cases naturally described in languages that

focuses on preoccupations of a specific domain. The business

value of test cases is improved because tests are centered on

their intent and can be shared by all the stakeholders of the

system under test development. Our work was supported by

a FUI1 project named ACOVAS aiming at introducing agile

methods with a new generation of test benches.

After presenting system integration testing goals, basis, and

needs (Section II), we introduce Domain Specific Languages

and Behavior Driven Development, the two main concepts of

our proposition (Section III). Then we present our behavior

driven development framework for system integration testing

(Section IV). The proof of concept is detailed by the two cases

studies we have implemented during the project (Section V).

We position our work (Section VI) and we conclude and give

some perspectives (Section VII).

II. SYSTEM INTEGRATION TESTING

The process development of an entire avionic system is

more complex than a software development process because an

avionic system is composed by many systems and each system

is composed by hardware and software. This process follows

several V -cycles, and the test management process belongs to

all activities of the process. Then, we recall the objectives of

our proposition from observations of the ACOVAS partners.

A. V -cycles

An avionic system has several specific characteristics: real

time, safety critical, embedded, and fault tolerant. The de-

velopment process of each of them follows a V -model. An

embedded system merges hardware and software with their

specific V -cycle too. These two V -models are named the

W -model. The resulting system of these two processes is

integrated itself into a main process that follows a V -model

too.

Two kinds of testing activities coexist: classic testing in iso-

lation and In-the-Loop Testing. The latter provides models and

1Fonds Unique Interministériel (FUI) is a French program dedicated to
support applied research, to help the development of new products and services
susceptible to be marketed in short or middle term.

simulators to put the SUT in simulated flight conditions. This

kind of testing allows integration testing as soon as possible.

More precisely, testing is also performed since requirements

level thanks to Model-In-the-Loop testing (MiL). The SUT

behavior and the external environment are simulated through

models to ensure that requirements are correct. In Software-

In-the-Loop testing (SiL), the real software is tested with an

emulated hardware. In Hardware-In-the-Loop testing (HiL),

the real software is integrated into the target hardware. In-

the-Loop testing responds to reactive and real time constraints

of embedded systems. This kind of testing needs environment

models to simulate collaborations between the SUT and other

systems.

B. Test procedures management

Test procedures management has a dedicated process too,

as explained by Sommerville [1] for a Software Engineering

point of view. In System Engineering, this process depends on

companies. In the ACOVAS context, the design office and the

test center are the two stakeholders that manage integration

test procedures. The design office produces requirements of

the target system to develop, while the test center produces

concrete test procedures to be executed on a test bench to

verify that the system conforms to its requirements.

More precisely, the design office produces a test plan pro-

viding the integration strategy and acceptance criteria refined

from system requirements. A Lab Test Request (LTR) is

derived from a test plan. It is focused on test objectives and

is related to a specific version of the SUT. A test objective

corresponds to one expected feature of the SUT. It is described

by a single sentence completed by a flight scenario which is

independent of test means and an environment model from

which results of a test can be exploited. The test center

produces a test strategy that matches with test objectives of the

LTR. Test strategy includes test means needed to perform test

cases. Test procedures are refined from test cases descriptions

according to test means. Generally, test procedures are stored

in textual documents.

C. Needs

Actually, many test procedures are written in natural lan-

guage. We identify two different ways to use test procedures

written in natural language:

1) Test procedures are read and interpreted by a tester that

directly executes each instruction step by step on a test

bench.

2) Test procedures are translated via ad hoc transformations

into a dedicated scripting language that allows automatic

execution.

The manual intervention of a tester for the comprehension

or the translation of a test procedure written in natural lan-

guage is fastidious and error prone. More precisely, the list

below enumerates the main preoccupations of the ACOVAS

stakeholders:

• improve tests automation,

• reduce the time of tests implementation,

• manage changes in tests configuration,

• identify test solutions from the design phase,

• introduce specific languages for procedures definitions.

A framework dedicated to support the design and the

implementation of test procedures will help testers to produce

formalized tests. This formalization allows to compile a test

procedure into some scripting languages and then increases the

automation of tests. The formalization has been implemented

using a DSL workbench.

Moreover, we would like to give an holistic approach [2]

by focusing on the communication means provided by test

procedures. Our goal is not to build a complete automatic

tool chain but to help testers, developers and designers to

achieved their tasks in a collaborative manner. Our solution

is a framework supporting a BDD approach.

III. BACKGROUND

A. Domain Specific Languages

Each system of an aircraft requires specific domain skills.

The ATA 100 (Air Transport Association of America) [3]

standard contains the reference to the numbering system which

is a common standard for all commercial aircraft documenta-

tion. It contains some chapters dedicated to systems that com-

pose an aircraft (Aircraft general, Airframe systems, Struc-

ture, Propeller/Rotor, Power plant). This commonality allows

greater ease of learning and understanding for pilots, aircraft

maintenance technicians, and engineers alike. Testers must be

specialized on each system and it is difficult for them to gain

competencies both on the SUT and programming languages.

The goal of a tester is to focus on domain specifications and

not to design complex test procedures. This point requires the

introduction of small computer languages understandable by

testers and that produce executable procedures on a test bench.

A Domain Specific Language (DSL) is a computer language

that allows to provide a solution for a particular class of

problems [4]. We can cite for instance SQL, initially named

SEQUEL (Structured English Query Language), which was

designed to manipulate and retrieve data stored in relational

databases. Other examples are HTML and XML configuration

languages. A DSL clearly focuses on a small domain in order

to be easier to learn by domain experts than general purpose

languages (GPLs).

Producing a DSL brings many advantages [5]:

• makes easier expressing domain concerns,

• increases the common knowledge about a domain,

• improves team communication,

• can be used by domain experts that not necessarily have

computer programming knowledge,

• can be managed by specific tools as IDE for GPL

languages,

• hides GPLs complexity,

• can generate many lines of code in GPL from few lines.

Our specific testing languages focus on the description of

test scenarii for ATA 21 and ATA 42. Each DSL addresses

a particular domain and are designed for test engineers only.

We named Domain Specific Test Language (DSTL) this new

category of DSL [6].

B. Projectional vs textual editors

There are many tools to manage and help the implemen-

tation of new languages [7]. The most used are Xtext [8],

Spoofax [9] and Meta-Programming System (MPS) [10]. All

these tools are doing almost the same thing but the main

difference is the way of editing a program. Editors can be

projectional as they are in MPS, or textual as usual in Xtext

and Spoofax. According to Martin Folwer in [4]: ”Projectional

editing thus usually displays a wider range of editing environ-

ments - including graphical and tabular structures - rather than

just a textual form.”

With a projectional editor, the end-user is guided by the

structure of the language and no syntax errors are allowed.

With a textual editor, the end-user has an empty text frame

and must know the grammar of the language to produce test

scenarii. Syntax errors are allowed and require corrections by

the user himself.

From the point of view of a DSTL programmer, generators

in MPS come with a list of features that allow to go through

Abstract Syntax Trees (AST) [11]. Rules programmers are

only focused on the semantic of transformations and do not

take care about syntactical problems. Textual editors pro-

vide small stub generators and are model-to-text generation

oriented. For those reasons, we chose MPS to conduct our

experimentation.

C. Behavior Driven Development

BDD [12] has emerged to reduce the gap between unit

tests and the elicitation of the specifications of the product’s

behavior. ”BDD leads the development of features by design-

ing functional tests used to validate those features” (Agile

Alliance, Glossary BDD).

BDD combines Test Driven Development (TDD) and Do-

main Driven Design (DDD) principles to encompass the wider

picture of agile analysis and automated acceptance testing for

software production. BDD argues that the expected behavior

of software should be described in testable scenarii related to

functional requirements. Those testable scenarii can be seen as

isolated tests in Acceptance Test Driven Development (ATDD)

with a business view in order to improve communication

means.

Tests in BDD are structured following a Given-When-Then

canvas [13], corresponding to the Gherkin language, which is

the simplest way of describing a behavior: given a nominal

state, when an event changes this nominal state, then the

system should produce the expected response. This canvas

helps testers to discover and describe a scenario. Scenarii,

corresponding to unit tests are used as specifications, and also

have in mind to produce automated tests easily understandable

by domain experts.

Another advantage of BDD is the communication improve-

ment between stakeholders by using the vocabulary of the

business domain and understandable notations by the whole

development team. BDD provides a common view of the

domain and helps developers and test specialists to understand

domain experts needs.

In our approach, a DSTL encapsulates vocabulary and

specific actions for testing and managing a kind of SUT

as promoted by the BDD approach by using the Gherkin

language. In teams adopting a BDD style of development,

specialists of the domain write acceptance tests in a formalized

language near a natural language. Programmers complete

acceptance tests with glue code that provides links with the

real software under test. In our case, we have designed a pivot

language that a test programmer can use to link acceptance

tests to the parameters of the SUT and to the capabilities of

the test bench.

IV. A DSTL WORKBENCH

Our first idea is to use DSLs to design a specific test

language dedicated for each kind of avionic domain (ATA). All

domains involved in the development process of an airplane

are covered by a family of such languages that we named

DSTLs. Our second idea is to orchestrate three levels of testing

languages (languages dedicated to testers, a unique language

for test programmers, and scripting languages for test benches)

in a BDD approach. The Fig. 1 shows those three levels of

abstraction. In this section, we explain how we merge BDD

concepts with our DSTLs.

A. The big picture explained

State Chart XML (SCXML) and Python with Data Distri-

bution Services are two examples of executable languages on

a test bench. The pivot language has been designed to reduce

the semantic gap between languages for testers and languages

for test benches. This language is programming oriented and

serves to give a readable view of the executable code and to

reuse transformation rules to several target languages. Finally,

some business specific testing languages are proposed to

testers for each kind of system.

Nowadays, the process to design those languages is em-

pirical. To add a new DSTL, programmers have to design

projectional editors, semantic constraints and an AST-to-AST

transformation into the pivot language. To add a new tar-

get language, programmers have to develop an AST-to-text

transformation based on transformation patterns used by other

transformations proposed by the framework.

B. DSTLs and Gherkin language

DSTLs are testers oriented. Each language is dedicated to

a specific domain to take into account testers practices and

testing constraints. As example of testing domain we can quote

network features, air flow control, flight commands, etc. We

describe in the next section two experiments on DSTLs, one

for ATA 21 (Air flow control) and one for ATA 42 (IMA).

Gherkin language patterns can be used to explain the intention

of each unit test. However, for the integration testing phase of

reactive systems, tests must follow a flight plan that focus

on a unique test objective. The Given-When-Then pattern is

transposed into a flight plan pattern.

Fig. 1. The big pictureFig big pic

C. DSTLs and BDD approach

High level test languages are designed to replace test pro-

cedures in natural language. Since those languages use a com-

mon vocabulary of a specific domain, they can be considered

as ubiquitous languages. Those languages are an efficient way

of communication between testers, testers and designers, and

also testers and test programmers. ”BDD offers more precise

guidance on organizing the conversation between developers,

testers and domain experts” (Agile Alliance, Glossary BDD).

Moreover, as BDD extends TDD and ATDD approaches, a test

must focus on a single aspect of a program. Tests describe a

unique intention to which the code has to conform. During

system integration testing phase, test cases must focus on a

unique test objective.

D. The pivot language

The semantic gap between high level testing languages

and scripting languages for test benches is too wide. On

the one hand, high level languages must be closed to nat-

ural languages. On the other hand, scripting languages are

similar to assembly languages enhanced by the management

of interactions with the test bench. The pivot language is

a simple imperative language that serves to map high level

statements to executable code. It is composed by a set of four

atomic statements: set, check during, check until

and call externalTool that cover about 80% of basic actions

required by tests. The set statement of the pivot language

allows to assign a value to an avionic parameter. The goal of

the check until statement is to ensure that a state can be

reached until an amount of time given by the statement. The

check during statement ensures that a state of the SUT is

stable during an amount of time given by the statement. This

language allows to compose test suites, test cases and unit

tests as a xUnit framework. It is open to the addition of new

statements and minimizes the effort to translate test procedures

into another scripting language. It is test programmer oriented,

however it could be used by testers to directly encode their

test procedures.

E. Expected benefits

The first benefit is that test procedures can be automated

depending on the capabilities of test benches and supported

scripting languages at our disposal. Test procedures keep a

human readable form nearest of old test procedures written

in natural language and executed manually. They are able to

explicit a unique intention by test case. As in TDD approaches,

tests are isolated from each other and a specific error message

can be thrown when a test failed or when a test cannot be run

due to a problem with the SUT. The debugging phase during

new test campaigns is simplified. The second benefit is the

separation between preoccupations of testers (only focusing on

expected behavior explained) and programmers (only focusing

on glue code to improve the automation of tests) as it is

promoted by the BDD approach. The last benefit is the reuse of

transformation patterns for the generation of executable code

from a unique pivot language.

V. CASES STUDIES

The global specification of an airplane is refined into system

domains, systems, sub-systems, and finally equipments. These

systems are regrouped in the ATA classification in more than

hundred chapters [3].

Two kinds of test procedures are provided by the ACOVAS

project:

1) Airflow control test procedures (ATA 21) provided by

an equipment manufacturer are textual descriptions in

an intermediate level language that will be transformed

manually into Excel spreadsheets. These spreadsheets

are automatically transformed into an XML dialect.

2) Integrated Modular Avionic (IMA) test procedures (ATA

42) provided by an aircraft integrator are textual descrip-

tions in natural language. Due to the wide expressiveness

of natural languages, a similar procedure written by

two different testers may have significant differences.

Moreover, these procedures will be manually executed

by another tester.

A. ATA 21

The ATA 21 focuses on airflow control systems of an

airplane. Those systems manage the temperature of each area

by controlling the airflow rate of each duct supplying them.

The mind map presented by the Fig. 2 has been retro-

conceived closely with experts of the ATA 21 from

procedures written in pivot language. It shows the main

Fig. 2. Mind map of ATA 21

concepts needed to formalize a test case in this domain:

temperature, airflow rate, event and environment parameter.

Each path from SUT to a leaf is represented by a DSTL

statement. For example, the Increase statement can be

instantiated in two manners, the first one to increase the

temperature of an area (Increase the temperature

of Expected_Temperature_Area1 up to 20.◦c)

and the second one to increase the air flow rate of a

set of ducts (Increase the air flow rate of

Ducts_Area1 up to 0.2 kg/s).

The generator coming with the DSTL translates each state-

ment into the pivot language. Generally, variables manipulated

by DSTL statements correspond to a set of real avionic

parameters. Statements used to decrease or increase a tem-

perature or an airflow rate are translated into a collection of

set statements of the pivot language. Statements to verify a

behavior or to wait an event are translated into a single check

until statement of the pivot language. The statement to

check the temperature of an area is translated into a single

check during statement of the pivot language.

We implemented our conceptual framework for an air flow

control test procedure. The DSTL procedure contains 48 lines

of code, and the generated one into the pivot language contains

68 lines. We generated 2010 lines of SCXML code and 290

lines of Python code.

B. ATA 42

The ATA 42 focuses on Integrated Modular Avionic sys-

tems. Those systems are used as data concentrator and provide

data to other systems of the airplane.

Procedures dedicated to ATA 42 provided by ACOVAS

partners are described thanks to natural language. Procedures

are composed by a set of test cases and test cases are

completed by sentences divided in five kinds (Step, Check,

Trace, Log and Reminder). We have studied 10 procedures

containing around 3700 tagged sentences. We have used

Natural Language Processing tools [14] to provide statistics

about verbs the most used for each kind of sentence. The

table I shows the number of sentences and the rate of each

kind of sentence.

We have collaborated with experts of ATA 42 to produce the

mind map of all needs for this domain formalization. We have

designed seventeen kinds of Step statements, one for Log

statements, one for Check statements and five for Trace

TABLE I
NUMBER OF SENTENCES SORTED BY KIND

Step Check Log Trace Reminder

Number 1274 1047 594 520 269

% 34,4 28,3 16 14 7,2

statements. The Fig. 3 presents the mind map for the Step

statements that formalize interactions with the SUT.

Fig. 3. Mind map for Step statementsFig p fo

Testers have formalized their procedures thanks to our

DSTL workbench successfully. To improve the formalization,

some semantic contraints must be added to complete projec-

tional editors. To assume test automation, a generator must be

provided for Step, Trace and Log statements. To provide

an oracle, a new formalization and a new generator must be

provided for Check statements.

VI. RELATED WORK

We considered some contributions related to the transposi-

tion of best practices coming from software engineering into

avionic systems testing. We identify three scientific axes:

1) Test language ([15]),

2) Test automation in an avionic context ([16], [17]),

3) Agility in an avionic context ([18], [19], [20], [21],

[22]).

A. Test language

The European Telecommunications Standards Institute

(ETSI) has standardized a general purpose language named

Test Description Language (TDL) [15] dedicated to the speci-

fication of test descriptions and the presentation of test execu-

tion results. This language is between test purposes described

in natural language and the necessary complexity to implement

tests in Test Control Notation version 3 (TTCN-3) for example.

Unfortunately, a tester without computer programming skills

cannot understand TDL test descriptions. None of the partners

of the ACOVAS project have adopted this standard which

comes from the telecommunications industry.

B. Test automation in an avionic context

Ott [16] focuses on new testing activities arising from

IMA architectures. These activities concern automated bare

IMA modules and a network of configured IMA modules.

The automation of these activities is based on generic test

templates. In the first case, a user must instantiate data

configurations for a bare IMA module. In the second case,

data configurations are automatically generated from the ICD

(Interface Control Document) of a network of IMA modules.

In this work, the effort of automation uniquely concerns unit

tests of IMA modules and networks of IMA modules. A

more general framework is proposed by Guduvan et al. [17]

who use a model-driven development approach to generate

test cases for all kinds of avionic tests. The structure of test

procedures is defined thanks to a dedicated meta-model. Test

cases are components of a test suite or a test group. They

must be decomposed into behavioral sequences of statements,

and each statement corresponds to a specific test order. As in

our work, the test procedure structure is domain independent,

while specific statements are related to a specific domain.

C. Agility in an avionic context

The usefulness of Scrum and XP was studied by Salo et

al. [18] in many embedded software development projects

from European organizations. This study reveals that these

organizations seem to be able to apply agile methods in

their projects. A process named Safe Scrum was proposed

by Stålhane et al. [23] to introduce agile principles in an

embedded software certification context. A test first approach

was proposed by Manhart et al. [19] for high-speed software

engineering for embedded software. This work focuses on unit

testing and mixes agile practices with conventional process

activities. All these works are dedicated to software embedded

development only.

A DSL is very closed to an ubiquitous language used by the

BDD approach [13]. The structure of an ubiquitous language

comes from the business model and contains terms which will

be used to define the behavior of a system. The main idea is

that customers and developers share the same language without

ambiguity.

VII. CONCLUSION

Integration test procedures are conceived to verify several

behaviors expected of a system responding to several stimuli

during a flight plan. Usually, integration test procedures are

described by a specific domain vocabulary. These procedures

are good candidates to adopt a behavior driven approach. We

have formalized and automatized test procedures for ATA 21

and two demonstrations have been made on two different test

benches with StateChart XML and Python scripting languages.

We will design a new DSTL dedicated to another ATA to

propose a global process to guide the design of new DSTLs.

These future works will be supported by the ESTET (Early

Systems TEsTing) project leaded by the DGAC2.

ACKNOWLEDGMENT

We would like to thank the ACOVAS (outil Agile pour

la COnception et la VAlidation Système) partners for their

collaboration and their involvement during the project.

REFERENCES

[1] I. Sommerville, Software Engineering, 9th ed. USA: Addison-Wesley
Publishing Company, 2010.

[2] L. Von Bertalanffy, General system theory, Foundations, Development,

Applications. New York: George Braziller, 1968.
[3] s. S-tech Entreprises, “Ata100 and section headings,” http://www.

s-techent.com/ATA100.htm.
[4] M. Fowler, Domain-Specific Languages, ser. Addison-Wesley Signature

Series (Fowler). [Online]. Available: https://books.google.gr/books?id=
ri1muolw\ YwC

[5] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander,
L. Kats, E. Visser, and G. Wachsmuth, DSL Engineering Designing,

Implementing and Using Domain-Specific Languages. dslbook.org,
2013. [Online]. Available: http://dslbook.org

[6] R. Bussenot, H. Leblanc, and C. Percebois, “A domain specific test
language for systems integration,” in Proceedings of the Scientific

Workshop Proceedings of XP2016, ser. XP ’16 Workshops. New
York, NY, USA: ACM, 2016, pp. 1–10, article 16. [Online]. Available:
http://doi.acm.org/10.1145/2962695.2962711

[7] M. Fowler, “Language workbenches: The killer-app for domain specific
languages,” http://www.martinfowler.com/articles/languageWorkbench.
html.

[8] Itemis, “XText,” http://www.eclipse.org/Xtext/.
[9] E. Visser, “Spoofax,” http://strategoxt.org/Spoofax.

[10] Jetbrains, “Meta-programming system,” https://www.jetbrains.com/mps/.
[11] F. Campagne, The MPS Language Workbench. FABIEN CAMPAGNE,

2013-2014, vol. 1.
[12] D. North, “Introducing BDD,” 2006, https://dannorth.net/

introducing-bdd/.
[13] C. Solı́s and X. Wang, “A study of the characteristics of behaviour

driven development,” Proceedings - 37th EUROMICRO Conference on

Software Engineering and Advanced Applications, pp. 383–387, 2011.
[14] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and

D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of 52nd Annual Meeting of the Association

for Computational Linguistics: System Demonstrations. Baltimore,
Maryland: Association for Computational Linguistics, 2014, pp. 55–60.
[Online]. Available: http://www.aclweb.org/anthology/P14-5010

[15] ETSI. (2015) The Test Description Language (TDL); Part 1 : Abstract
Syntax and Associated Semantics. ES 203 119-1, http://www.etsi.org/
technologies-clusters/technologies/test-description-language.

[16] A. Ott, “System Testing in the Avionics Domain,” Ph.D. dissertation,
University of Bremen, 2007.

[17] A.-R. Guduvan, H. Waeselynck, V. Wiels, G. Durrieu, Y. Fusero,
and M. Schieber, “A Meta-Model for Tests of Avionics Embedded
Systems,” Proceedings of the 1st International Conference on

Model-Driven Engineering and Software Development, pp. 5–13, 2013.
[Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.aspx?
doi=10.5220/0004320000050013

[18] O. Salo and P. Abrahamsson, “Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum,” Software, IET, vol. 2,
no. 1, pp. 58–64, February 2008.

[19] P. Manhart and K. Schneider, “Breaking the Ice for Agile Development
of Embedded Software: An Industry Experience Report,” in Proceedings

of the 26th International Conference on Software Engineering. IEEE,
2004, pp. 378–386.

2French Civil Aviation Authority

[20] M. R. Smith, A. K. C. Kwan, A. Martin, and J. Miller, “E-TDD
- embedded test driven development a tool for hardware-software
co-design projects,” in 6th International Conference, XP 2005, Sheffield,

UK, June 18-23, 2005, Proceedings, 2005, pp. 145–153. [Online].
Available: http://dx.doi.org/10.1007/11499053 17

[21] M. Karlesky, W. Bereza, and C. Erickson, “Effective test driven devel-
opment for embedded software,” in Proceedings of IEEE International

Conference on Electro information Technology, May 2006, pp. 382–387.
[22] A. Wils, S. Van Baelen, T. Holvoet, and K. De Vlaminck, “Agility in

the avionics software world,” in Proceedings of the 7th International

Conference on Extreme Programming and Agile Processes in Software

Engineering, ser. XP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
123–132. [Online]. Available: http://dx.doi.org/10.1007/11774129 13

[23] T. Stålhane, T. Myklebust, and G. Hanssen, “The application of
safe scrum to IEC 61508 certifiable software,” in 11th International

Probabilistic Safety Assessment and Management Conference 2012,

PSAM11 ESREL 2012. Curran Associates, Inc., 2012, vol. 8, pp.
6052–6061. [Online]. Available: http://www.scopus.com/inward/record.
url?eid=2-s2.0-84873160115{\&}partnerID=tZOtx3y1

