
HAL Id: hal-02181895
https://hal.science/hal-02181895

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-B Formalization of a Variability-Aware
Component Model Patterns Framework

Jean-Paul Bodeveix, Arnaud Dieumegard, M Filali

To cite this version:
Jean-Paul Bodeveix, Arnaud Dieumegard, M Filali. Event-B Formalization of a Variability-Aware
Component Model Patterns Framework. 15th International Conference on Formal Aspects of Com-
ponent Software (FACS 2018), Oct 2018, Pohang, South Korea. pp.54-74, �10.1007/978-3-030-02146-
7_3�. �hal-02181895�

https://hal.science/hal-02181895
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22579

Official URL

DOI : https://doi.org/10.1007/978-3-030-02146-7_3

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bodeveix, Jean-Paul and Dieumegard,
Arnaud and Filali, Mamoun Event-B Formalization of a Variability-
Aware Component Model Patterns Framework. (2018) In: 15th
International Conference on Formal Aspects of Component
Software (FACS 2018), 10 October 2018 - 12 October 2018
(Pohang, Korea, Republic Of).

Event-B Formalization of a

Variability-Aware Component Model

Patterns Framework

Jean-Paul Bodeveix1(B), Arnaud Dieumegard2,3, and Mamoun Filali4

1 IRIT-UPS, 118 Route de Narbonne, 31062 Toulouse, France
Jean-Paul.Bodeveix@irit.fr

2 IRT Saint Exupéry, 3 Rue Tarfaya, 31400 Toulouse, France
Anaud.Dieumegard@irit.fr

3 ONERA, 2 Avenue Edouard Belin, 31055 Toulouse, France
4 IRIT-CNRS, 118 Route de Narbonne, 31062 Toulouse, France

Mamoun.Filali@irit.fr

Abstract. In the domain of model driven engineering, patterns have
emerged as an ubiquitous structuring mechanism. Actually, patterns are
used for instance at the requirement analysis level, during system design,
and during the deployment and code generation phases. In this paper,
we are interested in making precise the use of such a notion during sys-
tem design. More precisely, our ultimate goal is to provide a seman-
tic framework to support correct by construction architectures, i.e., the
structural correctness of the architectures obtained through the appli-
cation of patterns. For this purpose, we propose an Event-B modeling
scheme for hierarchical component models. This model is built incremen-
tally through horizontal refinements which introduce components, ports
and lastly connectors. Patterns with variability are defined, instantiated
and applied to user models. We show that these operations preserve the
structural properties of the component model.

Keywords: Design patterns · Formal refinement · Variability
System engineering · Critical systems

1 Introduction

In the domain of model driven engineering, patterns have emerged as an ubiqui-
tous structuring mechanism. Patterns are used for instance to express and struc-
ture requirements and to ease their analysis [8]. During the process of system
development, during deployment, or for code generation activities, they ensure
knowledge capitalization, and production homogeneity. Patterns may take vari-
ous form and are specifically structured: textual patterns expressed as sentences,
structural patterns for describing components combinations, code patterns for

This work was done while working on the MOISE project at IRT Saint Exupery.

_https://doi.org/10.1007/978-3-030-02146-7 3

code generation . . . We focus here on the development of system architectures
that shall be refined until they can be used for equipment level refinement. The
work we present here results from exchanges with safety system engineers who
practice patterns for solving identified safety issues. We specifically focus here
on automatically instantiated safety refinement patterns. The patterns we rely
on are based on the ones detailed in [22].

We are1 interested in making precise the use of such a notion in the system
development process. More precisely, our ultimate goal is to provide a semantic
framework to support correct by construction architectures, i.e., the structural
correctness of the architectures obtained through the application of patterns.
For this purpose, we propose to use Event-B as the support platform to define
the notion of hierarchical component. This Event-B model is built incrementally
through horizontal refinements which introduce components, ports and lastly
connectors. Patterns with variability are then defined, instantiated so that vari-
able elements are fixed. Lastly we define pattern application on user models. We
show that this transformation preserves the structural properties of the compo-
nent model. We remark that Event-B is mainly used to assess the correctness of
the patterns that engineers apply to given architectures.

We remark that achieving the production of structurally correct component
models may be reached using different approaches. The translation validation

approach [23] consists of verifying each individual translation whereas transfor-

mation verification [7] consists of verifying once and for all the generator itself.
In this paper, we adopt the transformation verification approach. The specifica-
tion of the transformation and its verification are done incrementally through
successive refinements as supported by the Event-B method [2].

Section 2 motivates our proposal by means of a small case study and presents
our pattern model. In Sect. 3, we describe how patterns are applied to component
models. Section 4 introduces our formal modeling framework based on Event-B.
Section 5 details within this formal setting the steps followed to apply a pattern
to a model. Section 6 discusses some related works. Section 7 concludes and
suggests some future works.

2 Motivating Example

We describe here an example that will be used first to clarify what we mean
by a pattern and by pattern application. The next paragraph features a very
simple component model. We then showcase the transformation of this model
to replicate one of its components. Focus will be on the N-Version programming
pattern as described in [22]. This pattern is proposed in the context of architec-
ture safety in order to enhance system robustness. We detail its structure and
content, the solution that is provided by the application of such a pattern, and
its complexity from the scope of its variability.

2.1 Component Models

In our work, we consider hierarchical components models as an abstraction of
the classical “boxes and arrows” modeling formalism used to model: systems as
for example Capella [27], SysML [21] or AADL [14]; software as for example
BIP [6], UML [25], Scade [4]; or hardware as for example VHDL [16]. In each
of these formalisms, components are connected through arrows (and sometimes
ports or interfaces).

Fig. 1. A simple component model

We provide in Fig. 1 an
example of a very simple com-
ponent model. This model
features the Sub1 component
with 2 input ports and 1 out-
put port. Each port of the
component is connected to
another component through
links. In addition to the struc-
tural description of our sim-
ple model, we have attached
to the Sub1 component one comment (yellow box) representing the association
of a component with its specification, its verification or its validation artifacts
or any other information of interest related to the component.

2.2 Replicating a Component

In the use case depicted in this paper, we propose to take the example that some
analysis of the system leads to the need to provide different implementations of
the Sub1 component in order to make the system fault tolerant. This mechanism
is in this context referred to as replication of a component.

An example of our simple system where the Sub1 component has been
replicated is provided in Fig. 2. In this new version of the model, we have
three versions (Sub1 X) (X ∈ {1, 2, 3}) whose inputs are taken from the orig-
inal inputs of the Sub1 component and dispatched using specific duplication
(dupl Y) (Y ∈ {1, 2}) components whose purpose are to replicate their inputs
on each one of their outputs (the specification of these components is provided
in the dupl spec comments). Then, the outputs of the replicated Sub1 X com-
ponents are connected to a new component (vote 1) in charge of taking the
decision of which one of the Sub1 X component output shall be relied on and
sent to the outputs of the original Sub1 component.

One may remark that applying such a replication not only preserves the
original structure of the model (the interface of the Sub1 component is the
same), but also duplicates elements of the original model (the new Sub1 X com-
ponents) and introduces new elements such as replication specifications (Diverse
implementation of Sub1 1, Sub1 2, Sub1 3, Vote spec, and dupl spec).

2.3 Pattern Model

The previously depicted model modifications are considered in our setting as an
example of the application of a design pattern. The model of Fig. 1 is the source
model, and the model of Fig. 2 is the target or destination model where the
pattern have been applied. What remains to be defined is what is the model of
the pattern itself.

Fig. 2. A component model where a component is replicated twice

Many design pattern description formats have been defined in the litera-
ture. We decided to rely on the classical pattern description format proposed by
Coplien [9]. This comprises many information among which are the name of the
pattern, its context of use and the problem solved by the pattern, the strength
and weaknesses of the pattern, a graphical model representation and many other
information. We also rely on the work of Preschern et al. [22] where a set of archi-
tectural safety patterns are proposed for high level architecture definition. These
patterns are connected to IEC 61508 standard methods for achieving safety and
are extended with formal argumentation models. A simple example of such a
pattern is provided in Fig. 3.

While this representation of a pattern is very interesting, it is nevertheless
restrictive on the structural description of the pattern. It may be interesting
to explicitly express the parameters of the pattern and its variability. In the
context of the N-Version Programming pattern, N is a parameter meaning the
number of times the software is developed. This parameter also impacts the
implementation of the voting algorithm (Voter block). In addition to these,
the links between the blocks described in the Solution section of Fig. 3 are a
simplification of the actual possible links between blocks as there may be multiple
links between these blocks: the N version of the block all have the same number
of input values and output values. Both of these numbers are also parameters

Fig. 3. N-Version Programming pattern extract from [22]

of the pattern that shall be made explicit. We thus propose an extension of this
model representation of patterns where these parameters are made explicit.

Figure 4 is our proposal for an alternative graphical representation of the
N-Version programming pattern model. In this model, we rely on structural
elements like components, ports, and links between components through ports,
and multiplicity objects attached to components and ports. multiplicity
objects are represented as small grey boxes in the figure. In this pattern model,
three different multiplicity elements are defined: nb comp, nb in, and nb out.
They respectively stand for the number of times the component is replicated,
and the number of input and output ports of the replicated component.

Fig. 4. The N-Version programming pattern model

By selecting the model element to be replicated (Sub1 in Fig. 1), the last
two multiplicity objects values are set (respectively to 2 and 1). The user
shall then provide the value for nb comp which is set to 3 in this case. Based
on the user selection and provided values, the pattern model is instantiated: (1)
its root component will have two input ports and one output port; (2) the root
component of the pattern will be renamed as Sub1; (3) the comp component will
be replicated nb comp times as copies of the Sub1 component with nb in input
ports and nb out output ports; (4) the dupl component will be instantiated

nb in times with one input port and nb comp output ports; (5) the vote compo-
nent will be instantiated nb out times with nb comp input ports and one output
port; (6) links between components are elaborated depending on their connection
pattern (detailed in the following section); Here, we use the Transpose pattern
to connect port i of component j to port j of component i; (7) finally, the orig-
inal Sub1 model element is replaced with the newly produced Sub1 component
and its content. Figure 5 shows two instances of our N-Version-Programming

pattern, the first one with (nb in=2 nb out=1 nb comp=3) and the second one
with (nb in=2 nb out=2 nb comp=3).

(a) (b)

Fig. 5. (a) shows a first instance of the pattern. (b) shows a second instance.

In our setting, a pattern model is thus a family (in the product line [18] ter-
minology) of models. Each combination of multiplicities allows for the definition
of a pattern instance. The production of design pattern instances and the appli-
cation of the produced pattern instance on a model shall thus be implemented.

The object of the Event-B model proposed in this paper is first to formally
define the previously presented structure of a pattern, and second to propose
a formal definition of the pattern instantiation and application algorithms. We
have also produced a formalization of the structure of component models and
pattern models as Ecore1 metamodels that is a de-facto standard formalism for
the specification of graph grammars2. This second formalization is used in order
to easily produce tools for the creation, edition and display of model instances
used throughout this paper. We do not detail these elements here.

3 Pattern Application

Our starting point is a parameterized pattern of which parameters are the mul-
tiplicities attached to pattern elements (components and ports). This pattern
is to be applied to a model. We distinguish three steps for pattern application:
initialization, elaboration, and application of patterns as depicted in Fig. 6.

1 https://www.eclipse.org/modeling/emf/.
2 Unlike abstract syntax which usually describe trees.

pattern
initialization

pattern instance
elaboration

pattern instance
application

Fig. 6. Pattern application process

3.1 Pattern Initialization

During the initialization step, some of the pattern parameters are set and the
root component of the pattern is identified. Patterns are parameterized by the
multiplicity of their components and ports. These parameters must be fixed in
order to create the pattern instance that will be applied to the model.

Fig. 7. Pattern (Fig. 1) to model (Fig. 4) mapping

Parameters of the pattern interface are defined through the mapping (Fig. 7)
of pattern elements to model elements. This mapping constrains the multiplicity
of some elements (nb in = 2, nb out = 1 in the figure). The nb comp multiplicity
should be set by the user.

3.2 Pattern Instance Elaboration

The goal of the second step is to “elaborate” the pattern. This elaboration leads
to a pattern instance where multiplicities have been suppressed and which can
be directly applied to a given model. The elaboration of a pattern is a complex
operation since a pattern can be considered as recursive along two dimensions:
horizontally due to the multiplicities and vertically due to the nesting of com-
ponents. This leads to the fact that the number of instances of a sub-component
is the product of the multiplicities of all its ancestors including itself. When a
component is replicated its contained ports are also replicated.

s

ms

mq

t

mt

mp

Fig. 8. Pattern link

Links between ports are unfolded depending on their
semantics which specify how the multiple instances of the
source and destination port in the pattern should be con-
nected. It is illustrated in Fig. 8 where components s and
t have respective multiplicities ms and mt and are linked
through ports of respective multiplicities mp and mq. We
note that these link semantics are called connection pat-

terns in AADL [14]. Also, frameworks like BIP [6] and

Reo [5] provide expressive ways to define connectors between given components.
However, our work is more concerned by the application of a pattern to an initial
design.

Table 1 gives for each connection pattern the constraints on its elements
multiplicities, and its textual and graphical mapping schemes.

Table 1. Connection patterns

Name
Multiplicities
constraints

Source to target
mapping scheme

Graphical mapping scheme

One To One mp = mq ∧ ms = mt si,j → ti,j

s1 . . . si . . . sn2

1 n1

t1 . . . ti . . . tn4

First
(mp = 1 ∨ mq = 1)∧

ms = mt

si,1 → ti,1

(mp = 1 case)

s1 . . . si . . . sn2

t1 . . . tj . . . tn4

mp = mq∧

(ms = 1 ∨ mt = 1)
s1,i → t1,i

(ms = 1 case)

s1

t1 . . . tj . . . tn4

Last
(mp = 1 ∨ mq = 1)∧

ms = mt

si,1 → ti,n

(mp = 1 case)

s1 . . . si . . . sn2

t1 . . . tj . . . tn4

mp = mq∧

(ms = 1 ∨ mt = 1)
s1,i → tn,i

(ms = 1 case)

s1

t1 . . . tj . . . tn4

Rotate mp = mq ∧ ms = mt si,j → t(i+1)%n2,j

s1 . . . sn2−1 sn2

1 n1

t1 t2 . . . tn4

Transpose mp = mt ∧ ms = mq si,j → tj,i

s1 . . . si . . . sn2

1 j

t1 . . . tj . . . tn4

This table can be extended to support additional connection patterns. For
example, variants of Rotate could be parameterized by the number of shifts,
shifting could be applied to ports or components or both. . .

3.3 Pattern Instance Application

In the final step, the unfolded pattern instance can be applied to the model.
Applying a pattern instance comes to merging instance model elements into the
user model while keeping mapped elements identical. In category theory, this
operation can be seen as a pushout where mapped elements are identified.

4 Formal Framework and Component Model

Fig. 9. Event-B model structure

Our formal framework is modeled
in Event-B which supports powerful
data modelling capacities inherited
from set theory and offers events as
the unique control structure to define
data evolution. After an overview of
Event-B, we describe our methodol-
ogy and our component model in an
incremental way.

4.1 A Brief Overview of

Event-B

The Event-B method allows the development of correct by construction systems
and software [2]. It supports a formal development process based on a refinement
mechanism with mathematical proofs. We take as example the framework we
have developed to illustrate the structure of an Event-B project (Fig. 9). In this
figure, boxes represent Event-B machines, rounded boxes contexts, and arrows
relations between these elements. Static data models are introduced incremen-
tally through a chain of context extensions (here, with cModel as root). Dynamic
data updated by events are introduced in machines (here, with mComponent as
root) and subsequently refined. Each machine can access context data through
the sees link. Contexts define abstract data types through sets, constants and
axioms while machines define symbolic labelled transition systems. The state of
a transition system is defined as the value of machine variables. Labelled transi-
tions are defined by events specifying the new value of variables while preserving
invariants. Moreover, the theorem clause expresses facts that should be satis-
fied. Proof obligations for wellformedness, invariant preservation and theorems
are automatically generated by the Rodin tool [26]. They can be discharged
thanks to automatic proof engines (CVC4, Z3 . . .) or through assisted proofs.

Notations. For the most part, Event B uses standard set theory and its usual
set notation. Some notations are specific to Event B:

– pair construction: pairs are constructed using the maplet operator �→. A
pair is thus denoted a �→ b instead of (a, b). The set of pairs a �→ b where
a ∈ A and b ∈ B is denoted A × B.

– A subset of A × B is a relation. The set of relations from A to B is denoted
A ↔ B = P(A × B). A relation r ∈ A ↔ B has a domain: dom(r) and a
codomain: ran(r). When a relation r relates an element of dom(r) with at
most one element, it is called a function. The set of partial functions from
A to B is denoted A �→B, the set of total functions is denoted A → B. The
image of a set A by a relation r is denoted r[A].

– The relation composition of two relations r1 ∈ A ↔ B and r2 ∈ B ↔ C is
denoted as r1; r2.

– The direct product r1 ⊗ r2 of relations r1 ∈ A ↔ B1 and r2 ∈ A ↔ B2 is
the relation containing the pairs (x �→ (y1 �→ y2)) where x �→ y1 ∈ r1 and
x �→ y2 ∈ r2.

– domain restriction: D ⊳ r = {x �→ y | (x �→ y) ∈ r ∧ x ∈ D}
– range restriction: r ⊲ D = {x �→ y | (x �→ y) ∈ r ∧ y ∈ D}
– overwrite: f⊳−g = ((dom(f)\dom(g))⊳f)∪g. For instance, such a notation

is used to denote a new array obtained by changing the element of an array
a at index i: a⊳−{i �→ e′}.

As already said, Event-B machines specify symbolic transitions through
events. An event has three optional parts: parameters (any p1 . . . pn), guards
(where . . .) specifying constraints to be satisfied by parameters and state vari-
ables, and actions (then . . .) specifying state variables updates. Guards are
defined in set-based predicate logic.

4.2 Methodology

The aim of our work is to provide a formal semantics to the application of
patterns with multiplicities. This formal semantics is obtained through horizon-
tal refinements [2]. We first elaborate an initial machine dealing with our basic
components. Then, through refinements, we introduce new machines dealing suc-
cessively with components having properties, ports and links. The last machine
can be considered as the specification of a pattern application and the starting
point for code generation through vertical refinements [1]. In the following, we
first give a global overview of the considered development, then, we detail the
Event-B machines underlying this development.

4.3 Incremental Description of the Component Model

Since our focus is on system engineering, our basic entity is a model denoted
by the set Model. Each model has its own components which belong to the set
Component. Patterns are introduced as a subset of Model. Except for these
base sets, modeling elements are introduced through machine variables as we
intend to build and update models. These modeling elements will be introduced
incrementally using a horizontal refinement-based approach. At first, we intro-
duce components in the machine mComponent. A model is related to a finite set
of components. Each component belongs to at most one model. Furthermore,
components associated to patterns have a multiplicity which will be used to
parameterize the elaboration of pattern instances (c.f. Listing 1.13).

Listing 1.1. Models and components

@comp components ∈ Model ↔ Component
@comp finite ∀m·finite(components[{m}])

@comp not shared components−1 Component →� Model
@c mult c multiplicity ∈ components[Pattern] → N

We adopt a hierarchical com-

ponent model. We formalize the
hierarchy property over the com-
ponents of each model. The par-
tial function container returns
the parent of a component, if any.
In order to be well defined, containment should be acyclic. To ensure this prop-
erty, we assume the existence of an irreflexive superset of the transitive closure of
the container function: it is represented by the existentially quantified relation
f [12]. Note that Event-B does not provide a transitive closure operator and
even if it was available, using a superset is sufficient and leads to simpler proof
obligations (c.f. Listing 1.2).

Listing 1.2. Hierarchy of components

@cont ty container ∈ ran(components) →� ran(components)
@cont ctr components;container;components−1 ⊆ id
@acycl ∃f· f ∈ Component ↔ Component ∧ container ⊆ f ∧ f;f ⊆ f ∧ id ∩ f = ∅

In order to support modular descriptions, a component defines a set of input
or output ports (c.f. Listings 1.3 and 1.4). A base set Port, partitioned into input
and output ports (IPort and OPort) is introduced in an extension cPort of the
context cComponent.

Listing 1.3. Ports context

context cPort extends cComponent
sets Port
constants IPort OPort
axioms

@part partition (Port, IPort ,OPort)
end

Listing 1.4. Port invariants

@port ty ports ∈ ran(components) ↔ Port
@port finite ∀c·finite(ports[{c}])

@port not shared ports−1 ∈ Port →� Component
@p mult p multiplicity ∈ (components;ports)[Pattern] → N

3 In Event-B, proposition labels are introduced by the @ symbol.

Modeling elements related to ports are declared in a refinement, named
mPort, of the root machine. A port belongs to at most one component. Ports of
pattern components have a multiplicity. A base set Link is added in the context
cLink. Our component model is refined (machine mLink) to add links between
pairs of ports. A link is also defined through its source and destination ports.
For this purpose, we introduce the src and dst functions (Listing 1.5).

Listing 1.5. Links

@link ty links ∈ ran(components) ↔ Link
@link finite ∀c· finite(links [{c}])
@src ty src ∈ ran(links) → ran(ports)
@dst ty dst ∈ ran(links) → ran(ports)

The direction of links must
be compatible with the one of
its source and destination ports.
A link can connect a component
port and a sub-component port or
two sub-component ports, which
leads to four cases (graphically pictured in Fig. 10 and formalized in Listing 1.6).
For example, if an input port is connected to an output port (case (1)), these
ports belong to the same component. Thus, the source and destination ports,
supposed to be an input and an output, are ports of the component to which
the link is attached. In the same way, case (2) can be read as follows: if a link
of a given component connects an input to an input, its source is a port of this
component and its destination is a port of a direct sub-component.

Listing 1.6. Connection constraints

@link cio links ; ((src ⊗ dst) ⊲ (IPort × OPort)) ⊆ ports ⊗ ports
@link cii links ; ((src ⊗ dst) ⊲ (IPort × IPort)) ⊆ ports ⊗ (container−1; ports)

@link coi links ; ((src ⊗ dst) ⊲ (OPort × IPort)) ⊆ (container−1; ports) ⊗ (container−1; ports)

@link coo links ; ((src ⊗ dst) ⊲ (OPort × OPort)) ⊆ (container−1; ports) ⊗ ports

We comment these constraints by expanding the formula labelled link cio4

∀ c p1 p2.

(∃l.c �→ l ∈ links ∧

p1=src(l)
︷ ︸︸ ︷

l �→ p1 ∈ src∧

p2=dst(l)
︷ ︸︸ ︷

l �→ p2 ∈ dst∧p1 ∈ IPort ∧ p2 ∈ OPort)
⇒ c �→ (p1 �→ p2) ∈ ports ⊗ ports

∀ c l. c �→ l ∈ links ∧ src(l) ∈ IPort ∧ dst(l) ∈ OPort
⇒ c �→ src(l) ∈ ports ∧ c �→ dst(l) ∈ ports

which can be read as the source and destination ports belong to the same c

component.
The presence of links between components and ports with multiplicities

impose constraints on these multiplicities. Multiplicities are attached to ports
and components of the subset Pattern of Model. Pattern links must be coherent
with these multiplicities and depend on the nature of the link.

4 The equations over braces are deduced from the functionality of src and dst (List-
ing 1.5).

(1)I O

(2)I I (3)O I (4)O O

Fig. 10. Component (I/O) ports links

We only consider here (List-
ing 1.7) Transpose links which
should connect instance port
number i of instance component
number j to instance port number
j of instance component number i

where i and j are in the range of
pattern port and component mul-
tiplicities. In order to make unfolding possible, the multiplicity of the source port
should be equal to the multiplicity of the target component, and conversely.

Listing 1.7. Multiplicity constraints

@tsrc ∀l·l∈ (components;links)[{Pat}]∩Transpose ⇒ p multiplicity (src(l))= c multiplicity (ports−1(dst(l)))
@tdst ∀l·l∈ (components;links)[{Pat}]∩Transpose ⇒ p multiplicity (dst(l))= c multiplicity (ports−1(src(l)))

Properties (e.g. requirements, tests, constraints...) may be associated to com-
ponents, ports and links. We thus have defined the Property set, the elements of
which are attached to components through the cProperties relation. We have
only considered here properties attached to components.

The invariant properties we have introduced apply either to specific models
(patterns when multiplicities are concerned) or to any model. The events we
will present now let patterns unchanged, but create instances and update user
models. They should thus establish or preserve these wellformedness properties.
Three identifiers are introduced to designate these models: Pat for a pattern,
Inst for a pattern instance and Mdl for a user model. These identifiers are
declared as constants but they designate models defined through the variables
introduced by the successive refinements, which allow them to evolve.

5 Pattern Application in Event-B

We study the application of domain specific design patterns to produce refine-
ments of architecture models and ensure that the produced model including the
instantiated pattern is a structurally correct refinement. We present the succes-
sive steps, illustrated by Fig. 11, needed to perform pattern application in an
iterative way. In this figure, loops express the repeated firing of events during
the top down traversal of the pattern structure.

5.1 Pattern Initialization Step

The initialize pattern event instantiates the parameters of the pattern and
identifies the root components of the pattern. This event is enriched in each
refinement:

initialize pattern

clone cunfold root c unfold node c

apply pattern

elaboration
step

Fig. 11. Pattern application steps

Component and ports level Component (resp. ports) mapping between the
pattern and the source model are provided. They allow for the extraction of
components (resp. ports) multiplicities based on the number of source model
elements mapped to the considered pattern element. Additional explicit pattern
components (resp. ports) multiplicities are also provided by the user.

Link level. Finally at the link level, link mappings are provided and multi-
plicity constraints are checked depending on the link semantics (c.f. multiplicity
constraints provided in Table 1).

5.2 Instance Elaboration Step

This step is initiated by the unfold root c which marks root components to be
unfolded. Then, the events unfold node c and clone c express the elaboration
of a pattern along these two dimensions. Actually, these two events operate in
a mutually recursive way. Auxiliary events and state variables are introduced to
make the replication process iterative. These events are enriched in each refine-
ment:

Component level

c

n

=⇒ c1 . . . cn

i2p c

to clone c

Pat Inst

Fig. 12. Unfolding roots

Root components unfolding. The instantiation event
sets the variable to unfold c with the set of pattern
components without containers. The unfold root c

event takes one such component c, creates the asso-
ciated instance components. The number of the
created component is the multiplicity of c. The
event stores the couples (instance, c) in the func-
tion to clone c used as a temporary variable to fire
the next step. Links between instance and pattern
components are stored in i2p c (Fig. 12).

n1

n2

Pat Inst

to clone c

to unfold c in

Fig. 13. Sub-component identification

Sub-component identification. This
step is fired by the presence of
a component c in the domain
of to clone c. It adds to the
relation to unfold c in couples
(sub-component, c) to prepare
the unfolding (using multiplicities
n1 and n2) of each sub-component
of the image of c into c (Fig. 13).

Sub-component unfolding. This
step (Fig. 14) is fired by a cou-
ple (c, dest) in to unfold c in.
It creates as sub-components of dest new instances c1, . . . , cn of c, the number
of which corresponding to its multiplicity. The new sub-components are mapped
to c in to clone c to pursue the unfolding process.

n

C C1
. . . Cn

Pat Inst

i2p c

to clone c

to unfold c in

Fig. 14. Sub-components unfolding

Port level. The sub-component
identification step is enriched by
storing in to unfold p in ports
to be unfolded with their destina-
tion component. A new event is
added to unfold ports. It is fired
by the presence of a pattern port
in the relation to unfold p in.
Ports are created with the same
direction as the pattern port and
linked to the instance component. The variable i2p p is used to store mappings
between instance and pattern ports.

Link level. We fire link creation within a given instance component c after its
sub-components unfolding. For this purpose, four injective mappings, indexed by
multiplicities, are declared from pattern source and destination components and
ports to sub-components of c and their input or output ports. As a consequence,
we only consider here links between two sub-components, not redirection links
between a component and a sub-component, or cross-links from an input to
an output of a component. In the Event-B model, we only consider transpose

links. The corresponding multiplicity constraint is added and the array of links is
created (Listing 1.8). We can see the four mappings (sci, spi, dci, dpi) to source
(s) then destinations (d) components (c) and ports (p) instances (i) and the
newly created links (new l).

Listing 1.8. Link Unfolding

@links links := links ∪ ({c} × ran(new_l))
@nsrc src := src ∪ {ip,ic· ip �→ ic ∈ dom(new_l) | new_l(ip �→ic) �→ spi(sci(ic))(ip)}
@ndst dst := dst ∪ {ip,ic· ip �→ ic ∈ dom(new_l) | new_l(ip �→ic) �→ dpi(dci(ip))(ic)}

Properties. When elements (components, ports or links) are duplicated, their
associated properties are also duplicated. This is done in the mProperty machine
where the unfolding events are refined. An example of such a refinement for the
unfold root c event is provided in Listing 1.95. A similar refinement is applied
for the replication of properties for ports and links in the respective events.

Listing 1.9. Properties replication for components

event unfold root c extends unfold root c
then

@prop cProperties := cProperties ∪ (ran(new c)×cProperties[{c}])
end

Instantiation properties. Properties of pattern instantiation are stated as
invariants. We have already expressed that the instance model (as well as any
model) is well structured. We have added additional properties stating that pat-
tern and instance models seen as labelled graphs are bisimilar with respect to
the component-to-component relation container, the component-to-port rela-
tion ports, the link-to-port relations src and dst and specified the semantics
of transpose links:

@inst2pat_cont inst2pat_c;container = container;inst2pat_c

@inst2pat_comp inst2pat_p;ports−1 = ports−1;inst2pat_c

@inst2pat_l_src inst2pat_l;src = src;inst2pat_p

@inst2pat_l_dst inst2pat_l;dst = dst;inst2pat_p

@transp_correct1 ∀l·l ∈ (components;links)[{Inst}] ∩ Transpose ⇒

p_index(src(l)) = c_index(ports−1(dst(l)))

@transp_correct2 ∀l·l ∈ (components;links)[{Inst}] ∩ Transpose ⇒

p_index(dst(l)) = c_index(ports−1(src(l)))

5.3 Instantiated Pattern Application Step

Pattern application is specified by the event apply pattern initially defined for
component-only models and then incrementally specified to support ports and
links. This event applies the pattern instance obtained through the preceding
step to the user-supplied model. This event is enriched in each refinement:

Component level. Pattern instance application (Listing 1.10) is fired by pro-
viding a mapping inst components from instance components to model com-
ponents.

5 In Event-B, event action labels are introduced by the @ symbol.

Listing 1.10. Instance application at Component level

event apply pattern // transformation du mod\‘{e}le

any inst components // instance mapping

new components

where

@ic inst components ∈ components[{Inst}] � components[{Mdl}]

@nc new components ∈ components[{Inst}] \ dom(inst components) Component \ ran(components)

@acycl inst components dom(inst components) ⊳ container;inst components ⊆ inst components;container

@acycl container container [dom(inst components)] ⊆ dom(inst components)

then

@m components := components ∪ ({Mdl}×ran(new components))

@f container := container ∪ ((inst components ∪ new components)−1;container;

(inst components ∪ new components))

end

Listing 1.11. Updated superset of the model containment relation

new components−1; f; inst components; f0 ∪

(new components−1; f; (new components ∪ inst components)) ∪ f0

Inst Mdl

inst comp

inst comp

inst comp

new comp

new comp

new comp

Fig. 15. Pattern application

Unmapped components (not
belonging to the interface), des-
ignated by the new components

identifier, will be created and
inserted to the set of compo-
nents of the model. The con-
tainer function of the model is
updated to take into account con-
tainment coming from the pattern
instance (Fig. 15).

The main point is to show
that invariant properties are pre-
served, one of them being the
acyclicity of the containment relationship. Some hypotheses (@acycl inst and
@acycl container) are needed to avoid merging a graph and its inverse: if an
instance component is mapped to a model component and has a container, this
container should be mapped to the container of the model component. The
acyclicity proof is then quite automatic once the superset of the transitive clo-
sure of the new container function has been provided. Given supersets f and f0

of the pattern instance (resp. user model) containment function supposed to be
closed for composition. The relation of Listing 1.11 contains the updated (after
pattern application) model containment relation, it is closed for composition and
is irreflexive. The added hypotheses ensure that the pattern instance is inserted
as a subtree of the user model. Thus the two containment relations need not be
interleaved.

Listing 1.12. Instance application at Property level

event apply pattern extends apply pattern
any inst props
where

@inst prop inst props ∈ Property →� Property // pattern properties to model properties
then

@prop cProperties := cProperties ∪
((inst components ∪ new components)−1;cProperties; (id ⊳− inst props))

Properties. Properties attached to pattern components are transferred to their
corresponding model components (Listing 1.12). However, if pattern properties
are instanciated by model properties, these ones are used instead.
Port and link levels. Instance pattern application is extended to ports using
the same code schema as for components. Container update is replaced by port-
to-component update. Furthermore port mapping and new ports should preserve
port direction. In the same way, links are considered and link to port attachments
are made consistent.

6 Related Works

A refinement pattern is a transformation rule that constructs a model refinement.
The generation of correct-by-construction B/Event-B refinements has already
been studied. They either propose a dedicated language for the expression of
patterns ([24] for B, [17] for Event-B), or a pattern is seen as a usual Event-B
machine that is mapped on the Event-B machine to be refined [15].

However, rather than focusing on patterns applied on Event-B models, our
objective is the formalization using Event-B of the instantiation and the appli-
cation of patterns for system architectures expressed using component models.
Let us remark that a pioneering work advocating a formal approach, especially
for architectural design patterns, is [3,11]. Behavioral semantics of the patterns
is considered thanks to TLA: the Temporal Logic of Actions [19] and the behav-
ioral correctness of the composition with respect to safety and fairness properties
is proven. To the best of our knowledge, this work has not been mechanized.

We have chosen Event-B as a meta-level framework and used it to express a
semantics for components models usually adopted by Model Based System Engi-
neering frameworks [13,28]. Using this framework, we have defined a semantics
for the definition, the instantiation and the application of patterns. As in [13],
patterns are defined by adding multiplicities to target models and a pattern
application algorithm is proposed. However, we consider component models, not
argumentation models and our formalization is incremental (horizontal refine-
ment) and its dynamics has been formalized through Event-B events. Thus,
pattern elaboration and application are not monolithic algorithms and can eas-
ily be extended through refinement. As a consequence, correctness proofs can
also be of finer grain.

As we said in the introduction, patterns are used in many stages of the devel-
opment process. Temporal patterns have been proposed by [10] to promote the
use of temporal logics for behavioural specifications. Also, in a context closer to
ours, with respect to the underlying component model, [20] consider dynamic
properties of patterns. However, their approach is based on model checking and
consequently follows a translation validation approach whereas we follow a trans-
formation verification approach. It should be interesting to investigate how such
dynamic properties could be combined with the static properties presented in
this paper and evaluate well suited verification approaches.

7 Conclusion

As said in the introduction, the work presented here results from exchanges with
safety system engineers. Safety concerns lead to applying some design patterns
selected among those solving the identified safety issues. In order to make the
pattern library reusable, we provide a limited form of variability management
through pattern model element multiplicities. We have presented an Event-B
specification of two main operations needed to support the process: pattern
instantiation taking into account variability and pattern instance application to
the user model. These operations are modeled in an incremental way based on
horizontal refinements and are shown to preserve basic structural properties of
the component model.

Additional work may also be done in order to prove relevant properties on
the pattern instantiation and application algorithms especially regarding the cor-
rectness of the application of the pattern. Such correctness shall be defined prop-
erly in terms of preservation of replicated model elements properties. Extensions
of the pattern instantiation/application mechanisms may allow the mapping of
sets of components/ports/links to a single pattern model element. This leads to
a more powerful instantiation mechanism allowing in our example to replicate
the chain of components used as input of the replicated component. As said
in the introduction, we have used Event-B mainly to assess the correctness of
pattern application. We believe that this “correct by construction” approach is
interesting for the elaboration of frameworks dedicated to, e.g. safety, engineers.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

3. Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P.: A formal approach to architectural
design patterns. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol.
1051, pp. 576–594. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-60973-3 108

4. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006). https://doi.org/10.
1007/11925040 8

5. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

6. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Softw. 28(3), 41–48 (2011)

7. Blazy, S., Leroy, X.: Mechanized semantics for the clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009)

8. Carson, R.S.: Implementing structured requirements to improve requirements qual-
ity. In: INCOSE International Symposium, vol. 25, pp. 54–67. Wiley Online Library
(2015)

9. Coplien, J.O.: Software Patterns. SIGS Management Briefings. SIGS books & mul-
timedia, New York (1996)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the ICSE’ 99, Los Angeles, CA, USA,
May 16–22, pp. 411–420 (1999)

11. Dong, J., Alencar, P.S.C., Cowan, D.D., Yang, S.: Composing pattern-based com-
ponents and verifying correctness. J. Syst. Softw. 80(11), 1755–1769 (2007)

12. Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured
file system in event-b and rodin. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88194-0 5

13. Denney, E., Pai, G., Whiteside, I.: Model-driven development of safety architec-
tures. In: 20th ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems, MODELS 2017, Austin, TX, USA, September 17–22,
2017, pp. 156–166. IEEE Computer Society (2017)

14. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL - An Introduction
to the SAE Architecture Analysis and Design Language. SEI Series in Software
Engineering. Addison-Wesley, Upper Saddle River (2012)

15. Hoang, T.S., Fürst, A., Abrial, J.-R.: Event-B patterns and their tool support.
Softw. Syst. Model. 12(2), 229–244 (2013)

16. Heinkel, U., Glauert, W., Wahl, M.: The VHDL Reference: A Practical Guide to
Computer-Aided Integrated Circuit Design (Including VHDL-AMS) with Other.
Wiley, New York (2000)

17. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A.: Patterns for refine-ment
automation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel,
M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 70–88. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17071-3 4

18. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain
analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

19. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

20. Marmsoler, D., Degenhardt, S.: Verifying patterns of dynamic architectures using
model checking. In: Kofron, J., Tumova, J. (eds.) Proceedings International Work-
shop on Formal Engineering approaches to Software Components and Architec-
tures, FESCA@ETAPS 2017, Uppsala, Sweden, 22nd April 2017, vol. 245 of
EPTCS, pp. 16–30 (2017)

21. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3 (2012)
22. Preschern, C., Kajtazovic, N., Kreiner, C.: Building a safety architecture pattern

system. In: Proceedings of the 18th European Conference on Pattern Languages
of Program, EuroPLoP ’13, pp. 17:1–17:55, ACM, New York, NY, USA (2015)

23. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: Steffen, B. (ed.)
TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054170

24. Requet, A.: BART: a tool for automatic refinement. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 33

25. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education (2004)

26. http://www.event-b.org/
27. Sango, M., Vallée, F., Vié, A.-C., Voirin, J.-L., Leroux, X., Normand, V.: MBSE

and MBSA with Capella and safety architect tools. In: Fanmuy, G., Goubault, E.,
Krob, D., Stephan, F. (eds.) CSDM 2016, p. 239. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49103-5 22

28. Voirin, J.L.: Model-based System and Architecture Engineering with the Arcadia
Method. Elsevier Science (2017)

