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In the domain of model driven engineering, patterns have emerged as an ubiquitous structuring mechanism. Actually, patterns are used for instance at the requirement analysis level, during system design, and during the deployment and code generation phases. In this paper, we are interested in making precise the use of such a notion during system design. More precisely, our ultimate goal is to provide a semantic framework to support correct by construction architectures, i.e., the structural correctness of the architectures obtained through the application of patterns. For this purpose, we propose an Event-B modeling scheme for hierarchical component models. This model is built incrementally through horizontal refinements which introduce components, ports and lastly connectors. Patterns with variability are defined, instantiated and applied to user models. We show that these operations preserve the structural properties of the component model.

Introduction

In the domain of model driven engineering, patterns have emerged as an ubiquitous structuring mechanism. Patterns are used for instance to express and structure requirements and to ease their analysis [START_REF] Carson | Implementing structured requirements to improve requirements quality[END_REF]. During the process of system development, during deployment, or for code generation activities, they ensure knowledge capitalization, and production homogeneity. Patterns may take various form and are specifically structured: textual patterns expressed as sentences, structural patterns for describing components combinations, code patterns for code generation . . . We focus here on the development of system architectures that shall be refined until they can be used for equipment level refinement. The work we present here results from exchanges with safety system engineers who practice patterns for solving identified safety issues. We specifically focus here on automatically instantiated safety refinement patterns. The patterns we rely on are based on the ones detailed in [START_REF] Preschern | Building a safety architecture pattern system[END_REF].

We are1 interested in making precise the use of such a notion in the system development process. More precisely, our ultimate goal is to provide a semantic framework to support correct by construction architectures, i.e., the structural correctness of the architectures obtained through the application of patterns. For this purpose, we propose to use Event-B as the support platform to define the notion of hierarchical component. This Event-B model is built incrementally through horizontal refinements which introduce components, ports and lastly connectors. Patterns with variability are then defined, instantiated so that variable elements are fixed. Lastly we define pattern application on user models. We show that this transformation preserves the structural properties of the component model. We remark that Event-B is mainly used to assess the correctness of the patterns that engineers apply to given architectures.

We remark that achieving the production of structurally correct component models may be reached using different approaches. The translation validation approach [START_REF] Pnueli | Translation validation[END_REF] consists of verifying each individual translation whereas transformation verification [START_REF] Blazy | Mechanized semantics for the clight subset of the C language[END_REF] consists of verifying once and for all the generator itself. In this paper, we adopt the transformation verification approach. The specification of the transformation and its verification are done incrementally through successive refinements as supported by the Event-B method [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF].

Section 2 motivates our proposal by means of a small case study and presents our pattern model. In Sect. 3, we describe how patterns are applied to component models. Section 4 introduces our formal modeling framework based on Event-B. Section 5 details within this formal setting the steps followed to apply a pattern to a model. Section 6 discusses some related works. Section 7 concludes and suggests some future works.

Motivating Example

We describe here an example that will be used first to clarify what we mean by a pattern and by pattern application. The next paragraph features a very simple component model. We then showcase the transformation of this model to replicate one of its components. Focus will be on the N-Version programming pattern as described in [START_REF] Preschern | Building a safety architecture pattern system[END_REF]. This pattern is proposed in the context of architecture safety in order to enhance system robustness. We detail its structure and content, the solution that is provided by the application of such a pattern, and its complexity from the scope of its variability.

Component Models

In our work, we consider hierarchical components models as an abstraction of the classical "boxes and arrows" modeling formalism used to model: systems as for example Capella [START_REF] Sango | MBSE and MBSA with Capella and safety architect tools[END_REF], SysML [START_REF] Omg | OMG Systems Modeling Language (OMG SysML)[END_REF] or AADL [START_REF] Feiler | Model-Based Engineering with AADL -An Introduction to the SAE Architecture Analysis and Design Language[END_REF]; software as for example BIP [START_REF] Basu | Rigorous component-based system design using the BIP framework[END_REF], UML [START_REF] Rumbaugh | Unified Modeling Language Reference Manual[END_REF], Scade [START_REF] Abdulla | Designing safe, reliable systems using scade[END_REF]; or hardware as for example VHDL [START_REF] Heinkel | The VHDL Reference: A Practical Guide to Computer-Aided Integrated Circuit Design (Including VHDL-AMS) with Other[END_REF]. In each of these formalisms, components are connected through arrows (and sometimes ports or interfaces). We provide in Fig. 1 an example of a very simple component model. This model features the Sub1 component with 2 input ports and 1 output port. Each port of the component is connected to another component through links. In addition to the structural description of our simple model, we have attached to the Sub1 component one comment (yellow box) representing the association of a component with its specification, its verification or its validation artifacts or any other information of interest related to the component.

Replicating a Component

In the use case depicted in this paper, we propose to take the example that some analysis of the system leads to the need to provide different implementations of the Sub1 component in order to make the system fault tolerant. This mechanism is in this context referred to as replication of a component.

An example of our simple system where the Sub1 component has been replicated is provided in Fig. 2. In this new version of the model, we have three versions (Sub1 X) (X ∈ {1, 2, 3}) whose inputs are taken from the original inputs of the Sub1 component and dispatched using specific duplication (dupl Y) (Y ∈ {1, 2}) components whose purpose are to replicate their inputs on each one of their outputs (the specification of these components is provided in the dupl spec comments). Then, the outputs of the replicated Sub1 X components are connected to a new component (vote 1) in charge of taking the decision of which one of the Sub1 X component output shall be relied on and sent to the outputs of the original Sub1 component.

One may remark that applying such a replication not only preserves the original structure of the model (the interface of the Sub1 component is the same), but also duplicates elements of the original model (the new Sub1 X components) and introduces new elements such as replication specifications (Diverse implementation of Sub1 1, Sub1 2, Sub1 3, Vote spec, and dupl spec).

Pattern Model

The previously depicted model modifications are considered in our setting as an example of the application of a design pattern. The model of Fig. 1 is the source model, and the model of Fig. 2 is the target or destination model where the pattern have been applied. What remains to be defined is what is the model of the pattern itself. Many design pattern description formats have been defined in the literature. We decided to rely on the classical pattern description format proposed by Coplien [9]. This comprises many information among which are the name of the pattern, its context of use and the problem solved by the pattern, the strength and weaknesses of the pattern, a graphical model representation and many other information. We also rely on the work of Preschern et al. [START_REF] Preschern | Building a safety architecture pattern system[END_REF] where a set of architectural safety patterns are proposed for high level architecture definition. These patterns are connected to IEC 61508 standard methods for achieving safety and are extended with formal argumentation models. A simple example of such a pattern is provided in Fig. 3.

While this representation of a pattern is very interesting, it is nevertheless restrictive on the structural description of the pattern. It may be interesting to explicitly express the parameters of the pattern and its variability. In the context of the N-Version Programming pattern, N is a parameter meaning the number of times the software is developed. This parameter also impacts the implementation of the voting algorithm (Voter block). In addition to these, the links between the blocks described in the Solution section of Fig. 3 are a simplification of the actual possible links between blocks as there may be multiple links between these blocks: the N version of the block all have the same number of input values and output values. Both of these numbers are also parameters Fig. 3. N-Version Programming pattern extract from [START_REF] Preschern | Building a safety architecture pattern system[END_REF] of the pattern that shall be made explicit. We thus propose an extension of this model representation of patterns where these parameters are made explicit.

Figure 4 is our proposal for an alternative graphical representation of the N-Version programming pattern model. In this model, we rely on structural elements like components, ports, and links between components through ports, and multiplicity objects attached to components and ports. multiplicity objects are represented as small grey boxes in the figure. In this pattern model, three different multiplicity elements are defined: nb comp, nb in, and nb out. They respectively stand for the number of times the component is replicated, and the number of input and output ports of the replicated component. By selecting the model element to be replicated (Sub1 in Fig. 1), the last two multiplicity objects values are set (respectively to 2 and 1). The user shall then provide the value for nb comp which is set to 3 in this case. Based on the user selection and provided values, the pattern model is instantiated: (1) its root component will have two input ports and one output port; (2) the root component of the pattern will be renamed as Sub1; (3) the comp component will be replicated nb comp times as copies of the Sub1 component with nb in input ports and nb out output ports; (4) the dupl component will be instantiated nb in times with one input port and nb comp output ports; (5) the vote component will be instantiated nb out times with nb comp input ports and one output port; [START_REF] Basu | Rigorous component-based system design using the BIP framework[END_REF] links between components are elaborated depending on their connection pattern (detailed in the following section); Here, we use the Transpose pattern to connect port i of component j to port j of component i; [START_REF] Blazy | Mechanized semantics for the clight subset of the C language[END_REF] finally, the original Sub1 model element is replaced with the newly produced Sub1 component and its content. Figure 5 shows two instances of our N-Version-Programming pattern, the first one with (nb in=2 nb out=1 nb comp=3) and the second one with (nb in=2 nb out=2 nb comp=3). In our setting, a pattern model is thus a family (in the product line [START_REF] Kang | Feature-oriented domain analysis (foda) feasibility study[END_REF] terminology) of models. Each combination of multiplicities allows for the definition of a pattern instance. The production of design pattern instances and the application of the produced pattern instance on a model shall thus be implemented.

The object of the Event-B model proposed in this paper is first to formally define the previously presented structure of a pattern, and second to propose a formal definition of the pattern instantiation and application algorithms. We have also produced a formalization of the structure of component models and pattern models as Ecore1 metamodels that is a de-facto standard formalism for the specification of graph grammars2 . This second formalization is used in order to easily produce tools for the creation, edition and display of model instances used throughout this paper. We do not detail these elements here.

Pattern Application

Our starting point is a parameterized pattern of which parameters are the multiplicities attached to pattern elements (components and ports). This pattern is to be applied to a model. We distinguish three steps for pattern application: initialization, elaboration, and application of patterns as depicted in Fig. 6.

pattern initialization pattern instance elaboration pattern instance application

Fig. 6. Pattern application process

Pattern Initialization

During the initialization step, some of the pattern parameters are set and the root component of the pattern is identified. Patterns are parameterized by the multiplicity of their components and ports. These parameters must be fixed in order to create the pattern instance that will be applied to the model. Parameters of the pattern interface are defined through the mapping (Fig. 7) of pattern elements to model elements. This mapping constrains the multiplicity of some elements (nb in = 2, nb out = 1 in the figure). The nb comp multiplicity should be set by the user.

Pattern Instance Elaboration

The goal of the second step is to "elaborate" the pattern. This elaboration leads to a pattern instance where multiplicities have been suppressed and which can be directly applied to a given model. The elaboration of a pattern is a complex operation since a pattern can be considered as recursive along two dimensions: horizontally due to the multiplicities and vertically due to the nesting of components. This leads to the fact that the number of instances of a sub-component is the product of the multiplicities of all its ancestors including itself. When a component is replicated its contained ports are also replicated. Links between ports are unfolded depending on their semantics which specify how the multiple instances of the source and destination port in the pattern should be connected. It is illustrated in Fig. 8 where components s and t have respective multiplicities m s and m t and are linked through ports of respective multiplicities m p and m q . We note that these link semantics are called connection patterns in AADL [START_REF] Feiler | Model-Based Engineering with AADL -An Introduction to the SAE Architecture Analysis and Design Language[END_REF]. Also, frameworks like BIP [START_REF] Basu | Rigorous component-based system design using the BIP framework[END_REF] and Reo [5] provide expressive ways to define connectors between given components. However, our work is more concerned by the application of a pattern to an initial design.

Table 1 gives for each connection pattern the constraints on its elements multiplicities, and its textual and graphical mapping schemes. 

m p = m q ∧ m s = m t s i,j → t i,j s 1 . . . s i . . . s n 2 1 n1 t 1 . . . t i . . . t n 4 First (m p = 1 ∨ m q = 1)∧ m s = m t s i,1 → t i,1 (m p = 1 case) s 1 . . . s i . . . s n 2 t 1 . . . t j . . . t n 4 m p = m q ∧ (m s = 1 ∨ m t = 1) s 1,i → t 1,i (m s = 1 case) s 1 t 1 . . . t j . . . t n 4 Last (m p = 1 ∨ m q = 1)∧ m s = m t s i,1 → t i,n (m p = 1 case) s 1 . . . s i . . . s n 2 t 1 . . . t j . . . t n 4 m p = m q ∧ (m s = 1 ∨ m t = 1) s 1,i → t n,i (m s = 1 case) s 1 t 1 . . . t j . . . t n 4 Rotate m p = m q ∧ m s = m t s i,j → t (i+1)%n 2 ,j s 1 . . . s n 2 -1 s n 2 1 n1 t 1 t 2 . . . t n 4 Transpose m p = m t ∧ m s = m q s i,j → t j,i s 1 . . . s i . . . s n 2 1 j t 1 . . . t j . . . t n 4
This table can be extended to support additional connection patterns. For example, variants of Rotate could be parameterized by the number of shifts, shifting could be applied to ports or components or both. . .

Pattern Instance Application

In the final step, the unfolded pattern instance can be applied to the model. Applying a pattern instance comes to merging instance model elements into the user model while keeping mapped elements identical. In category theory, this operation can be seen as a pushout where mapped elements are identified. Our formal framework is modeled in Event-B which supports powerful data modelling capacities inherited from set theory and offers events as the unique control structure to define data evolution. After an overview of Event-B, we describe our methodology and our component model in an incremental way.

Formal Framework and Component Model

A Brief Overview of Event-B

The Event-B method allows the development of correct by construction systems and software [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]. It supports a formal development process based on a refinement mechanism with mathematical proofs. We take as example the framework we have developed to illustrate the structure of an Event-B project (Fig. 9). In this figure, boxes represent Event-B machines, rounded boxes contexts, and arrows relations between these elements. Static data models are introduced incrementally through a chain of context extensions (here, with cModel as root). Dynamic data updated by events are introduced in machines (here, with mComponent as root) and subsequently refined. Each machine can access context data through the sees link. Contexts define abstract data types through sets, constants and axioms while machines define symbolic labelled transition systems. The state of a transition system is defined as the value of machine variables. Labelled transitions are defined by events specifying the new value of variables while preserving invariants. Moreover, the theorem clause expresses facts that should be satisfied. Proof obligations for wellformedness, invariant preservation and theorems are automatically generated by the Rodin tool [26]. They can be discharged thanks to automatic proof engines (CVC4, Z3 . . . ) or through assisted proofs.

Notations. For the most part, Event B uses standard set theory and its usual set notation. Some notations are specific to Event B:

pair construction: pairs are constructed using the maplet operator →. 

∈ A ↔ B and r 2 ∈ B ↔ C is denoted as r 1 ; r 2 . -The direct product r 1 ⊗ r 2 of relations r 1 ∈ A ↔ B 1 and r 2 ∈ A ↔ B 2 is the relation containing the pairs (x → (y 1 → y 2 )) where x → y 1 ∈ r 1 and x → y 2 ∈ r 2 . -domain restriction: D ⊳ r = {x → y | (x → y) ∈ r ∧ x ∈ D} -range restriction: r ⊲ D = {x → y | (x → y) ∈ r ∧ y ∈ D} -overwrite: f ⊳ -g = ((dom(f )\dom(g))⊳f )∪g.
For instance, such a notation is used to denote a new array obtained by changing the element of an array a at index i: a⊳ -{i → e ′ }.

As already said, Event-B machines specify symbolic transitions through events. An event has three optional parts: parameters (any p1 . . . pn), guards (where . . . ) specifying constraints to be satisfied by parameters and state variables, and actions (then . . . ) specifying state variables updates. Guards are defined in set-based predicate logic.

Methodology

The aim of our work is to provide a formal semantics to the application of patterns with multiplicities. This formal semantics is obtained through horizontal refinements [START_REF] Abrial | Modeling in Event-B: System and Software Engineering[END_REF]. We first elaborate an initial machine dealing with our basic components. Then, through refinements, we introduce new machines dealing successively with components having properties, ports and links. The last machine can be considered as the specification of a pattern application and the starting point for code generation through vertical refinements [START_REF] Abrial | The B-book: Assigning Programs to Meanings[END_REF]. In the following, we first give a global overview of the considered development, then, we detail the Event-B machines underlying this development.

Incremental Description of the Component Model

Since our focus is on system engineering, our basic entity is a model denoted by the set Model. Each model has its own components which belong to the set Component. Patterns are introduced as a subset of Model. Except for these base sets, modeling elements are introduced through machine variables as we intend to build and update models. These modeling elements will be introduced incrementally using a horizontal refinement-based approach. At first, we introduce components in the machine mComponent. A model is related to a finite set of components. Each component belongs to at most one model. Furthermore, components associated to patterns have a multiplicity which will be used to parameterize the elaboration of pattern instances (c.f. Listing 1.13 ).

Listing 1.1. Models and components

@comp components ∈ Model ↔ Component @comp finite ∀m•finite(components[{m}]) @comp not shared components -1 Component → Model @c mult c multiplicity ∈ components[Pattern] → N
We adopt a hierarchical component model. We formalize the hierarchy property over the components of each model. The partial function container returns the parent of a component, if any. In order to be well defined, containment should be acyclic. To ensure this property, we assume the existence of an irreflexive superset of the transitive closure of the container function: it is represented by the existentially quantified relation f [START_REF] Damchoom | Modelling and proof of a tree-structured file system in event-b and rodin[END_REF]. Note that Event-B does not provide a transitive closure operator and even if it was available, using a superset is sufficient and leads to simpler proof obligations (c.f. Listing 1.2).

Listing 1.2. Hierarchy of components @cont ty container ∈ ran(components) → ran(components) @cont ctr components;container;components

-1 ⊆ id @acycl ∃f• f ∈ Component ↔ Component ∧ container ⊆ f ∧ f;f ⊆ f ∧ id ∩ f = ∅
In order to support modular descriptions, a component defines a set of input or output ports (c.f. Listings 1.3 and 1.4). A base set Port, partitioned into input and output ports (IPort and OPort) is introduced in an extension cPort of the context cComponent. Modeling elements related to ports are declared in a refinement, named mPort, of the root machine. A port belongs to at most one component. Ports of pattern components have a multiplicity. A base set Link is added in the context cLink. Our component model is refined (machine mLink) to add links between pairs of ports. A link is also defined through its source and destination ports. For this purpose, we introduce the src and dst functions (Listing 1.5).

Listing 1.5. Links @link ty links ∈ ran(components) ↔ Link @link finite ∀c• finite( links [{c}]) @src ty src ∈ ran(links) → ran(ports) @dst ty dst ∈ ran(links) → ran(ports)

The direction of links must be compatible with the one of its source and destination ports. A link can connect a component port and a sub-component port or two sub-component ports, which leads to four cases (graphically pictured in Fig. 10 and formalized in Listing 1.6). For example, if an input port is connected to an output port (case (1)), these ports belong to the same component. Thus, the source and destination ports, supposed to be an input and an output, are ports of the component to which the link is attached. In the same way, case (2) can be read as follows: if a link of a given component connects an input to an input, its source is a port of this component and its destination is a port of a direct sub-component.

Listing 1.6. Connection constraints

@link cio links ; (( src ⊗ dst) ⊲ (IPort × OPort)) ⊆ ports ⊗ ports @link cii links ; (( src ⊗ dst) ⊲ (IPort × IPort)) ⊆ ports ⊗ (container -1 ; ports) @link coi links ; (( src ⊗ dst) ⊲ (OPort × IPort)) ⊆ (container -1 ; ports) ⊗ (container -1 ; ports) @link coo links ; (( src ⊗ dst) ⊲ (OPort × OPort)) ⊆ (container -1 ; ports) ⊗ ports
We comment these constraints by expanding the formula labelled link cio4 ∀ c p 1 p 2 .

(∃l.c → l ∈ links ∧ p 1 =src(l) l → p 1 ∈ src ∧ p 2 =dst(l) l → p 2 ∈ dst ∧p 1 ∈ IPort ∧ p 2 ∈ OPort) ⇒ c → (p 1 → p 2 ) ∈ ports ⊗ ports ∀ c l. c → l ∈ links ∧ src(l) ∈ IPort ∧ dst(l) ∈ OPort ⇒ c → src(l) ∈ ports ∧ c → dst(l) ∈ ports
which can be read as the source and destination ports belong to the same c component.

The presence of links between components and ports with multiplicities impose constraints on these multiplicities. Multiplicities are attached to ports and components of the subset Pattern of Model. Pattern links must be coherent with these multiplicities and depend on the nature of the link. We only consider here (Listing 1.7) Transpose links which should connect instance port number i of instance component number j to instance port number j of instance component number i where i and j are in the range of pattern port and component multiplicities. In order to make unfolding possible, the multiplicity of the source port should be equal to the multiplicity of the target component, and conversely. Properties (e.g. requirements, tests, constraints...) may be associated to components, ports and links. We thus have defined the Property set, the elements of which are attached to components through the cProperties relation. We have only considered here properties attached to components.

The invariant properties we have introduced apply either to specific models (patterns when multiplicities are concerned) or to any model. The events we will present now let patterns unchanged, but create instances and update user models. They should thus establish or preserve these wellformedness properties. Three identifiers are introduced to designate these models: Pat for a pattern, Inst for a pattern instance and Mdl for a user model. These identifiers are declared as constants but they designate models defined through the variables introduced by the successive refinements, which allow them to evolve.

Pattern Application in Event-B

We study the application of domain specific design patterns to produce refinements of architecture models and ensure that the produced model including the instantiated pattern is a structurally correct refinement. We present the successive steps, illustrated by Fig. 11, needed to perform pattern application in an iterative way. In this figure, loops express the repeated firing of events during the top down traversal of the pattern structure.

Pattern Initialization Step

The initialize pattern event instantiates the parameters of the pattern and identifies the root components of the pattern. This event is enriched in each refinement: Component and ports level Component (resp. ports) mapping between the pattern and the source model are provided. They allow for the extraction of components (resp. ports) multiplicities based on the number of source model elements mapped to the considered pattern element. Additional explicit pattern components (resp. ports) multiplicities are also provided by the user.

Link level. Finally at the link level, link mappings are provided and multiplicity constraints are checked depending on the link semantics (c.f. multiplicity constraints provided in Table 1).

Instance Elaboration Step

This step is initiated by the unfold root c which marks root components to be unfolded. Then, the events unfold node c and clone c express the elaboration of a pattern along these two dimensions. Actually, these two events operate in a mutually recursive way. Auxiliary events and state variables are introduced to make the replication process iterative. These events are enriched in each refinement: Root components unfolding. The instantiation event sets the variable to unfold c with the set of pattern components without containers. The unfold root c event takes one such component c, creates the associated instance components. The number of the created component is the multiplicity of c. The event stores the couples (instance, c) in the function to clone c used as a temporary variable to fire the next step. Links between instance and pattern components are stored in i2p c (Fig. 12). Sub-component unfolding. This step (Fig. 14) is fired by a couple (c, dest) in to unfold c in.

Component level c n =⇒ c 1 . . .
It creates as sub-components of dest new instances c 1 , . . . , c n of c, the number of which corresponding to its multiplicity. The new sub-components are mapped to c in to clone c to pursue the unfolding process. Port level. The sub-component identification step is enriched by storing in to unfold p in ports to be unfolded with their destination component. A new event is added to unfold ports. It is fired by the presence of a pattern port in the relation to unfold p in. Ports are created with the same direction as the pattern port and linked to the instance component. The variable i2p p is used to store mappings between instance and pattern ports.

Link level. We fire link creation within a given instance component c after its sub-components unfolding. For this purpose, four injective mappings, indexed by multiplicities, are declared from pattern source and destination components and ports to sub-components of c and their input or output ports. As a consequence, we only consider here links between two sub-components, not redirection links between a component and a sub-component, or cross-links from an input to an output of a component. In the Event-B model, we only consider transpose links. The corresponding multiplicity constraint is added and the array of links is created (Listing 1.8). We can see the four mappings (sci, spi, dci, dpi) to source (s) then destinations (d) components (c) and ports (p) instances (i) and the newly created links (new l).

Listing 1.8. Link Unfolding @links links := links ∪ ({c} × ran(new_l)) @nsrc src

:= src ∪ {ip,ic• ip → ic ∈ dom(new_l) | new_l(ip →ic) → spi(sci(ic))(ip)} @ndst dst := dst ∪ {ip,ic• ip → ic ∈ dom(new_l) | new_l(ip →ic) → dpi(dci(ip))(ic)}
Properties. When elements (components, ports or links) are duplicated, their associated properties are also duplicated. This is done in the mProperty machine where the unfolding events are refined. An example of such a refinement for the unfold root c event is provided in Listing 1.95 . A similar refinement is applied for the replication of properties for ports and links in the respective events.

Listing 1.9. Properties replication for components event unfold root c extends unfold root c then @prop cProperties := cProperties ∪ (ran(new c)×cProperties[{c}]) end Instantiation properties. Properties of pattern instantiation are stated as invariants. We have already expressed that the instance model (as well as any model) is well structured. We have added additional properties stating that pattern and instance models seen as labelled graphs are bisimilar with respect to the component-to-component relation container, the component-to-port relation ports, the link-to-port relations src and dst and specified the semantics of transpose links: @inst2pat_cont inst2pat_c;container = container;inst2pat_c @inst2pat_comp inst2pat_p;ports -1 = ports -1 ;inst2pat_c @inst2pat_l_src inst2pat_l;src = src;inst2pat_p @inst2pat_l_dst inst2pat_l;dst = dst;inst2pat_p @transp_correct1 ∀l•l ∈ (components;links)[{Inst}] ∩ Transpose ⇒ p_index(src(l)) = c_index(ports -1 (dst(l))) @transp_correct2 ∀l•l ∈ (components;links)[{Inst}] ∩ Transpose ⇒ p_index(dst(l)) = c_index(ports -1 (src(l)))

Instantiated Pattern Application Step

Pattern application is specified by the event apply pattern initially defined for component-only models and then incrementally specified to support ports and links. This event applies the pattern instance obtained through the preceding step to the user-supplied model. This event is enriched in each refinement:

Component level. Pattern instance application (Listing 1.10) is fired by providing a mapping inst components from instance components to model components. Unmapped components (not belonging to the interface), designated by the new components identifier, will be created and inserted to the set of components of the model. The container function of the model is updated to take into account containment coming from the pattern instance (Fig. 15).

The main point is to show that invariant properties are preserved, one of them being the acyclicity of the containment relationship. Some hypotheses (@acycl inst and @acycl container) are needed to avoid merging a graph and its inverse: if an instance component is mapped to a model component and has a container, this container should be mapped to the container of the model component. The acyclicity proof is then quite automatic once the superset of the transitive closure of the new container function has been provided. Given supersets f and f0 of the pattern instance (resp. user model) containment function supposed to be closed for composition. The relation of Listing 1.11 contains the updated (after pattern application) model containment relation, it is closed for composition and is irreflexive. The added hypotheses ensure that the pattern instance is inserted as a subtree of the user model. Thus the two containment relations need not be interleaved. Properties. Properties attached to pattern components are transferred to their corresponding model components (Listing 1.12). However, if pattern properties are instanciated by model properties, these ones are used instead.

Port and link levels. Instance pattern application is extended to ports using the same code schema as for components. Container update is replaced by portto-component update. Furthermore port mapping and new ports should preserve port direction. In the same way, links are considered and link to port attachments are made consistent.

Related Works

A refinement pattern is a transformation rule that constructs a model refinement.

The generation of correct-by-construction B/Event-B refinements has already been studied. They either propose a dedicated language for the expression of patterns ( [START_REF] Requet | BART: a tool for automatic refinement[END_REF] for B, [START_REF] Iliasov | Patterns for refine-ment automation[END_REF] for Event-B), or a pattern is seen as a usual Event-B machine that is mapped on the Event-B machine to be refined [START_REF] Hoang | Event-B patterns and their tool support[END_REF]. However, rather than focusing on patterns applied on Event-B models, our objective is the formalization using Event-B of the instantiation and the application of patterns for system architectures expressed using component models. Let us remark that a pioneering work advocating a formal approach, especially for architectural design patterns, is [START_REF] Alencar | A formal approach to architectural design patterns[END_REF][START_REF] Dong | Composing pattern-based components and verifying correctness[END_REF]. Behavioral semantics of the patterns is considered thanks to TLA: the Temporal Logic of Actions [START_REF] Lamport | Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers[END_REF] and the behavioral correctness of the composition with respect to safety and fairness properties is proven. To the best of our knowledge, this work has not been mechanized.

We have chosen Event-B as a meta-level framework and used it to express a semantics for components models usually adopted by Model Based System Engineering frameworks [START_REF] Denney | Model-driven development of safety architectures[END_REF][START_REF] Voirin | Model-based System and Architecture Engineering with the Arcadia Method[END_REF]. Using this framework, we have defined a semantics for the definition, the instantiation and the application of patterns. As in [START_REF] Denney | Model-driven development of safety architectures[END_REF], patterns are defined by adding multiplicities to target models and a pattern application algorithm is proposed. However, we consider component models, not argumentation models and our formalization is incremental (horizontal refinement) and its dynamics has been formalized through Event-B events. Thus, pattern elaboration and application are not monolithic algorithms and can easily be extended through refinement. As a consequence, correctness proofs can also be of finer grain.

As we said in the introduction, patterns are used in many stages of the development process. Temporal patterns have been proposed by [START_REF] Dwyer | Patterns in property specifications for finite-state verification[END_REF] to promote the use of temporal logics for behavioural specifications. Also, in a context closer to ours, with respect to the underlying component model, [START_REF] Marmsoler | Verifying patterns of dynamic architectures using model checking[END_REF] consider dynamic properties of patterns. However, their approach is based on model checking and consequently follows a translation validation approach whereas we follow a transformation verification approach. It should be interesting to investigate how such dynamic properties could be combined with the static properties presented in this paper and evaluate well suited verification approaches.

Conclusion

As said in the introduction, the work presented here results from exchanges with safety system engineers. Safety concerns lead to applying some design patterns selected among those solving the identified safety issues. In order to make the pattern library reusable, we provide a limited form of variability management through pattern model element multiplicities. We have presented an Event-B specification of two main operations needed to support the process: pattern instantiation taking into account variability and pattern instance application to the user model. These operations are modeled in an incremental way based on horizontal refinements and are shown to preserve basic structural properties of the component model.

Additional work may also be done in order to prove relevant properties on the pattern instantiation and application algorithms especially regarding the correctness of the application of the pattern. Such correctness shall be defined properly in terms of preservation of replicated model elements properties. Extensions of the pattern instantiation/application mechanisms may allow the mapping of sets of components/ports/links to a single pattern model element. This leads to a more powerful instantiation mechanism allowing in our example to replicate the chain of components used as input of the replicated component. As said in the introduction, we have used Event-B mainly to assess the correctness of pattern application. We believe that this "correct by construction" approach is interesting for the elaboration of frameworks dedicated to, e.g. safety, engineers.
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  A pair is thus denoted a → b instead of (a, b). The set of pairs a → b where a ∈ A and b ∈ B is denoted A × B. -A subset of A × B is a relation. The set of relations from A to B is denoted A ↔ B = P(A × B). A relation r ∈ A ↔ B has a domain: dom(r) and a codomain: ran(r). When a relation r relates an element of dom(r) with at most one element, it is called a function. The set of partial functions from A to B is denoted A →B, the set of total functions is denoted A → B. The image of a set A by a relation r is denoted r[A]. -The relation composition of two relations r 1
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 13 Ports context context cPort extends cComponent sets Port constants IPort OPort axioms @part partition (Port, IPort ,OPort) end Listing 1.4. Port invariants @port ty ports ∈ ran(components) ↔ Port @port finite ∀c•finite(ports[{c}]) @port not shared ports -1 ∈ Port → Component @p mult p multiplicity ∈ (components;ports)[Pattern] → N
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 17 Multiplicity constraints@tsrc ∀l•l∈ (components;links)[{Pat}]∩Transpose ⇒ p multiplicity (src(l))= c multiplicity (ports -1 (dst(l))) @tdst ∀l•l∈ (components;links)[{Pat}]∩Transpose ⇒ p multiplicity (dst(l))= c multiplicity (ports -1 (src(l)))
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Table 1 .

 1 Connection patterns

	Name	Multiplicities constraints	Source to target mapping scheme	Graphical mapping scheme
	One To One			

  Listing 1.10. Instance application at Component level

	event apply pattern // transformation du mod\'{e}le	
	any inst components // instance mapping	
	new components	
	where	
	@ic inst components ∈ components[{Inst}] components[{Mdl}]	
	@nc new components ∈ components[{Inst}] \ dom(inst components) Component \ ran(components)
	@acycl inst components dom(inst components) ⊳ container;inst components ⊆ inst components;container
	@acycl container container [dom(inst components)] ⊆ dom(inst components)	
	then	
	@m components := components ∪ ({Mdl}×ran(new components))	
	container := container ∪ ((inst components ∪ new components) -1 ;container;	
	(inst components ∪ new components))	
	end	
	Listing 1.11. Updated superset of the model containment relation
	new components -1 ; f; inst components; f0 ∪	
	(new components -1 ; f; (new components ∪ inst components)) ∪ f0	
	Inst	Mdl
	inst comp	
	inst comp	
	inst comp	
	new comp	
	new comp	
	new comp	

  Listing 1.12. Instance application at Property level event apply pattern extends apply pattern any inst props where @inst prop inst props ∈ Property → Property // pattern properties to model properties then @prop cProperties := cProperties ∪ ((inst components ∪ new components) -1 ;cProperties; (id ⊳inst props))

https://www.eclipse.org/modeling/emf/.

Unlike abstract syntax which usually describe trees.

In Event-B, proposition labels are introduced by the @ symbol.

The equations over braces are deduced from the functionality of src and dst (Listing 1.5).

In Event-B, event action labels are introduced by the @ symbol.

project at IRT Saint Exupery.