Lumbar spine posterior corner detection in X-rays using Haar-based features - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Lumbar spine posterior corner detection in X-rays using Haar-based features

Résumé

3D reconstruction of the spine using biplanar X-rays remains approximate and requires human-machine interactions to adjust the position of important features such as vertebral corners and endplates. The purpose of this study is to develop a method to extract automatically the accurate position of lumbar vertebrae posterior corners. In the proposed method we select corner point candidates from an initial edge map. A dedicated pipeline is designed to discard unwanted candidates, involving polyline simplification, curvature thresholding and multiscale Haar filtering. Ultimately, we use a priori knowledge derived from an initial 3D spine model to define search areas and select the final corner points. The framework was tested on 21 biplanar X-rays from scoliotic children. Corner positions are compared with manual selections by two experts. The results report a localization accuracy between 0.7 and 1.6 mm, comparable to manual expert variability.
Fichier principal
Vignette du fichier
IBHGC_ISBI_2016_EBRAHIMI.pdf (485.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02181864 , version 1 (12-07-2019)

Identifiants

Citer

Shahin Ebrahimi, Elsa Angelini, Laurent Gajny, Wafa Skalli. Lumbar spine posterior corner detection in X-rays using Haar-based features. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Apr 2016, Prague, Czech Republic. pp.1-4, ⟨10.1109/ISBI.2016.7493239⟩. ⟨hal-02181864⟩
56 Consultations
320 Téléchargements

Altmetric

Partager

More