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Abstract  

In animal sciences the number of published meta-analyses increases with a rate of 
15% per year highlighting an actual success. This current review focuses on the good 
practices and traps in the conduct of meta-analyses in animal sciences, nutrition in 
particular. The implementation of a meta-analysis is done in several phases after the 
definition of the study objectives. Clearly described rules and principles of traceability 
should be applied as soon as the publications are collected and selected with a 
target of meta-analysis. Then, the coding phase is essential because it determines 
the quality of the graphical and statistical interpretations of the database. Following 
this step, the study of the levels of orthogonality of factors and of the degree of data 
balance of the meta-design represents an essential phase to ensure the validity of 
statistical processing. The issue of the choice between fixed or random effect to 
study and to control heterogeneity is also discussed. It appears on the basis of 
several examples that this choice does not generally have any influence on the 
conclusions of a meta-analysis when the number of experiments is sufficient. Finally, 
reflections are presented on the potential interest of meta-analyses in the context of 
systemic approaches as well as to improve mechanistic modelling work. 
 
Keywords: Modeling, Database,  Meta-design, Random and Fixed effects, Nutrition 

Introduction 

To achieve better supported quantitative conclusions about a research question, 
researchers came up with the idea of grouping them together. Although a wonderful 
idea, the question of heterogeneity across experiments has in fact arisen. This 
concern appeared a long time ago in the medical field (Pearson K., 1904) and then in 
that of agricultural field experiments (Yates & Cochran, 1938). The term meta-
analysis came more recently from medical studies (Glass, 1976).As showed in 
Figure 1a there was an exponential evolution of the number of publications that have 
applied meta-analyses in animal sciences with a progress of 15 % year-1. This trend, 
which follows with a lag of 10-15 years the area of medical sciences (Sutton and 
Higgins, 2008) are likely to continue for several more years. This rapid evolution is 
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mainly due to the growing accumulation of experimental data per topic of interest 
(increasing numbers of publications / topic, and of measured data / publication...).  

In animal science, meta-analysis has proven to be an efficient way to renew already 
published data by creating new empirical models allowing to progress in both 
understanding and prediction aspects. The progress is allowed by (1) the reduction of 
all biases and imprecision and (2) enlarging a priori the domain of validity of the 
model.  

The publication of St-Pierre(2001) was an key step in the consideration, design and 
development of meta-analyses in physiology and animal nutrition. Indeed, it was the 
first publication, in a scientific journal, addressing the main "ins and outs" of meta-
analysis and proposing a series of reflexions and conceptualizations relative to this 
issue. In particular it highlights the importance of splitting inter- and intra-experiment 
variations. Logically, this work has been cited numerous times in the field of Animal 
Science, so a stepping-stone for this tool. Subsequently, Sauvant et al. (2008) mainly 
focused the debate on the question of good practices to be applied in the meta-
analysis in animal science. This second publication, carried out in collaboration with 
statisticians (N.St-Pierre and JJ.Daudin), insisted in particular on the good practices, 
on the graphical interpretation, on the choice between random and fixed effects of 
experiment, on the question of interfering factors and on that of the meta-design (see 
below). 

The publications of St-Pierre (2001) and Sauvant et al. (2008) are now respectively 
18 and 11 years old. Since these writings, many meta-analyses have been done and 
published (Figure 1a).  Beyond these publications, meta-analyses have also proven 
their usefulness for updating feed unit systems. For example, the recent book 
"Feeding System for Ruminants" (INRA 2018) was constructed on hundreds of meta-
analyses that allowed to propose more than 500 empirical equations calculated from 
more than 25 various databases.It seems important to try to take a profit on all these 
works to go a little further in the definition of good practices on the one hand and the 
limits of meta-analysis on the other hand. Our comments will be particularly based on 
the experience of the co-authors who published meta-analysis since early 2000 (see 
WOS...). Sauvant et al. (2008) proposed an heuristic cyclical generic approach with 
successive steps to conduct the meta-analyzes (Figure 1b). This heuristic approach 
is not questioned but it can be a bit updated thanks to different publications on the 
subject  and serves as a basis for the plan. This approach is rather similar to that 
proposed in Agronomy by Philibert et al. (2012). 
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Figure 1: Evolution of the numbers of publications when crossing the key words 
'Meta-analysis x Animal' in the Web of Science (1a).Graphical representation of the 
meta-analytic process, updated from Sauvant et al. (2008) (1b). 

1a 
 

 
 

1b 

 

 
Specificities of meta-analysis in Animal Science 
 
As indicated by St-Pierre (2001) and Sauvant et al. (2008), meta-analyses in animal 
sciences are generally quite different in terms of methods and objectives from meta-
analyses conducted in the medical domain. However, few meta-analyses have also 
been applied in animal sciences following a similar approach that the one used in 
medicine (Phillips, 2005; Hillebrand, 2009; Srednicka-Tober et al., 2016). 
Meta-analyses in Animal Science are mainly interested in relations between variables 
and are mainly aimed at predicting the average quantitative response (ΔY), within the 
experiment, to one or more independent quantitative explanatory/predicting variables 
(ΔX(s)) such as ΔY = f (ΔX). In such variance-covariance analysis, one of the benefit 
is that from intra-experiment variance one seeks to extract a generic empirical model 
ΔY = f (ΔX), for example of a causal feeding practice quantified by ΔX, which has 
been studied in a set of experiments. Under these conditions, the experiment effect 
corresponds to the variations between studies not taken into account by the 
covariables. In terms of design, we thus find a structure of repeated data (in intra-
experiment) in space (experiments) which makes it possible to take advantage of 
statistical processing programs for repeated data in space. The fact that the 
covariable is systematically calculated intra-experiment constitutes also a difference 
with the medical field where the meta-regression concern basically the use of a 
covariable to explain the heterogeneity across studies (Borenstein et al., 2009). 
 

First steps in meta-analyses 

Selecting the  publications. 
One of the hallmarks of meta-analysis compared to conventional literature reviews is 
its comprehensiveness on a subject with an exhaustive collection of candidate 
publications based on a set of key words that are closely consistent with the 
objectives of the work. These key words can concern either certain factors or 
experiment or specific measurements. This harvest must start with the most generic 
keywords that are refined gradually to arrive at the list of publications to be eligible for 
the analysis. Through that phase the reduction of the number of candidate 
publications may be important. For instance, d'Alexis et al. (2014) conducted a meta-
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analysis on mixed grazing on 9 publications after starting from an initial set of 8044 
references, reduced to 117 eligible candidate with "mixed grazing" as a first filter. 
Candidate publication filtering is based on critical assessment of each of them, 
focusing on the detection of obvious important errors; data quality step (mainly based 
on the expertise of the analyst). Doubts will generally subsist for some publications 
and it may be wise to enter them and compare them to the rest of the data and 
decide from there to keep them or removing them. This visualization is indeed helpful 
as an ultimate quality screening. One important aspect during this selection step is to 
explicitly mention the reasons for the exclusion of the publications that are removed 
at the last steps of the selection process. This is good practice and allows the reader 
to understand why some candidate articles have not been included. In medical 
science proposals of flow diagrams to be applied, such as the Prisma one 
(http://www.prisma-statement.org/) have been made, they are globally consistent with 
our current description. 
 
Data structure challenges. 
The result of pooling publications is a table of data where rows represent treatments, 
while the columns consist of the measured variables and characteristics. One of the 
features of this dataset is to present numerous missing data. This seriously limit the 
possibility of using multi-variate statistics such as the principal component analysis 
(PCA). Therefore analyses must be performed by successive steps on small subset 
of independent variables, generally two by two to minimize the loss of information. 
Missing data are particularly numerous when the target is to focus on rarely 
measured characteristics or factors, due to difficulty or high cost of the measures. 
The presence of this missing information leads to a significant and variable 
information loss before being able to answer certain questions related to the 
objectives of the work. For instance in a recent meta-analysis focused on grazing 
behaviour of ruminants (Boval and Sauvant, 2019) an as exhaustive as possible 
database of 109 publications, 263 experiments(nexp) and 905 treatments (n) was 
gathered, the most measured behaviourial item being the bite mass (documented in 
64% of treatments).But, to study bite depth, the corresponding numbers were only 
21, 74 and 225. Moreover, for testing the influences of variables such as sward 
height or herbage bulk density, the numbers of experiments and treatment available 
decrease even more(nexp=53 or 22, and n=126 or 69).  
 
From a table of data to a database by encoding. 
Once all the publication's data has been entered, we have a table of data that cannot 
be exploited as such. It is necessary to transform the initial dataset into an organized 
database suited for a meta-analysis process. Indeed, a preliminary step of coding the 
data is essential because, by this way, data are becoming accessible and useable. 
Such coding will also be involved in either graphical and/or statistical procedures 
(Figure 1b). Therefore this coding step is crucial to make a meta-analysis that will 
ultimately generate new reliable and generalizable knowledge. This coding can only 
be successful if not successful, only if the person doing the meta-analysis has true 
expertise on the  subject and well aware of coding methods. To summarize, the 
scientific value and even the "art" of meta-analyses directly depends on the quality of 
this coding. 
A first step, whatever the objective, is to code all the publications and all the 
experiments (or studies) carried out in each publication. As such this ‘’experiment’’ 
code is complete but it contains ambiguity in the sense that it mixes experiments that 

http://www.prisma-statement.org/
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may have various objectives. Therefore, for an in-depth analysis, it is necessary to 
code each experimental objective in a separate columns. Each of these codes 
corresponds to a factor of variation which can be studied in the meta-analysis. Such 
codes are without any ambiguity and, by this way, numerous columns will be 
gradually added. The list of these factors trace a quick and interesting portrait of what 
has been studied and vice versa from what has not been studied and could merit to 
be. This is an important step to assess the degree of validity of the empirical models 
proposed at the end of a meta-analytic process. These specific codes of factors are 
necessary to study the meta-design (see below). They can also be combined to 
model responses to various factors after having checked their mutual orthogonality 
(see below). Otherwise, according to the objective of the work it can be necessary to 
create new codes. For instance if the objective is to study the interaction between two 
factors A and B, it is necessary to create, beyond coding of A and B, a new code able 
to consider all data candidate to study the interaction AxB. Directly based on data 
encoding, graphical examinations of the data are recommended all along the process 
of meta-analysis to enhance a global view as well as to identify specific relationships 
to be investigated. These aspects have already been developed by Sauvant et al. 
(2008). 
 

The much talked about meta-design 

Classically, experimentation conception involves a careful thinking of the 
experimental design to ensure the independence of the studied factors.In meta-
analysis the structure of the data corresponds to a design which is a priori neither 
orthogonal (independent) nor balanced. This can lead to important statistical 
estimation problems. The major trap concerns collinearity between explicative 
variables, which may bias the interpretation of results, if not carefully considered. In 
particular one cannot estimate separately  the effects that are more or less 
completely confounded with others. Therefore, a critical study of the meta-design is a 
key step in meta-analyses (Figure 1b). These aspects were already evoked by 
Sauvant et al. (2008), so only some new considerations or examples will be 
presented. To characterize the meta-design, several steps must take place before 
and after the statistical analyses.  
 
Relations between qualitative factors and independent variables X 
First, it must be checked that the experimental factors and covariates are 
independent before interpreting them. Misuses linked with this aspect were already 
evoked by Sauvant et al. (2008) with an example of a curvilinear intra-experiment 
relationship associated with a non-independence between X  and the meta-design, 
other examples are considered further. 
 
This situation can arise when there is continuous and categorical covariates to study. 
In that case, it is particularly important to make sure that variation of continuous X is 
similar between each category. As an example, a meta-analysis (Létourneau-
Montminy et al., 2018) studied the effect of crude protein supply on daily water 
consumption in broilers of different age. However in this dataset, age was expressed 
as a categorical variable (0-21 days and 22-42 days) and because  variation in crude 
protein were not similar between the two age categories, it was not possible to take 
into account the effect of age. Adding the effect of age, showed highly significant 
model, but not in concordance with bird response within the publications.  



6 
 

 
Relations between the quantitative independent variables X 
When there is only one covariable, major aspects to be considered (histogram, study 
effect, lever effects...) were already listed by Sauvant et al. (2008). The complexity 
increases even more when two or more independent variables are considered 
together, especially if their interactions are also studied (see below). In such case, 
plotting independent variables against each other’s and quantifying their correlation is 
needed to assess degree of  multi-collinearity, situation that may occurred when two 
or more predictor variables in a regression model are redundant. This is quite usual 
in animal nutrition especially in monogastric receiving complete diet because of feed 
formulation practice that involves many ratio [e.g. amino acid, calcium (Ca) and 
phosphorus (P), dietary electrolyte balance]. 
 
In this case it is important to study carefully the orthogonality between the candidate 
factors and to estimate the intra- correlation between them. For example, Daniel et al. 
(2016) have pooled experiments on dairy cows dealing with either net energy or 
metabolisable protein supplies to model their productive responses and to test 
eventual interactions between both nutrients. In this work, the intra-experiment 
correlation between daily net energy supply and daily metabolisable protein supply 
was naturally high (R²=0.42) due to simultaneous variation of feed intake within 
experiment. The consequence of this correlation is that the coefficient of the milk 
response attributed to protein and that attributed to energy cannot be interpreted 
independently. However, when the number of experiments on a specific subject is 
large, it is possible to reduce this correlation by selecting only the experiments with 
low correlation between the two factors of interest. As an example by selecting 
experiments with low variation in intake, the correlation between net energy and 
metabolisable protein supplies was reduced from R² = 0.42 to 0.13 (Daniel et al., 
2017). In this case, the estimate of the effect of metabolisable protein supply on milk 
response approximate the "true effect". 

Specificity of dynamic data 
Publications with meta-analyses have so far mainly concerned static data. 
Nevertheless it is quite possible to apply them to dynamic data, that is, evolving over 
time. It was for instance the case of published kinetics such as lactation curves 
(Martin and Sauvant, 2002) or postprandial changes in rumen pH (Dragomir et al., 
2010). A difficulty related to this type of approach is that the different kinetics taken 
into consideration are not consistent because of the different time measurements and 
intervals from one publication to another. It is therefore necessary to make a 
preliminary adjustment of the data in order to be able to conduct the analysis, the 
adjustment model can be continuous (Dragomir et al., 2010) or by segments when it 
makes sense with respect to the objective work (Martin and Sauvant, 2010). 
 
Interactions between the effects of factors or covariables X 
Studying the interactions across factors or covariables is an important challenge in 
meta-analysis. When a database contains only experiments designed according to 
simple factorial designs (2x2 or 2x3...), as stated earlier a specific column can be 
consecrated to code the interaction and the interpretation can be based either by 
analysis of variance or by two covariables representing measures on both factors. 
For instance such an approach has been applied to study the interactions between 
chemical and physical fibre in cattle (Sauvant and Yang, 2014), the interactions 
between P and Ca in broilers and pigs (Létourneau-Montminy et al., 2010, 2012) and 
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the interactions between leucine and valine in chicken (Zouaoui et al.,2019). 
Unfortunately this type of situation is fairly rare because within a topic the number of 
factorial useable experiments is generally insufficient. More generally the purpose is 
to study an interaction between factors from a database where no, or only few, 
experiments following a factorial design and several situations can be encountered. 
Often, but not systematically, the code of the publications can be used to help 
studying an interaction. For instance, Boval and Sauvant (2019) studied the marginal 
influences of sward height (SH) and herbage bulk density (HBD) on bite mass 
through two types of independent experiments focused on either SH (nexp= 51, n = 
296) or HBD (nexp= 15, n = 45) impacts. To model the interaction, a set of 30 
publications (n = 339), including not only these two types of experiments but also 
some other experiments with both data were selected. Otherwise, if the number of 
experiments is important and fairly balanced between two factors, an interaction can 
be extracted with a satisfying degree of precision. Thus Sauvant et al. (2011) pooled 
158 experiments (n=450) focused on either influence of level of Dry Matter Intake 
(DMI) or on impact of proportion of concentrate(PCO) to predict CH4 production 
including an interaction between DMI and PCO and quadratic terms for these 2 
variables. 
 
Responses of the dependent variable Y to independent X variables 
These aspects were largely depicted by Sauvant et al. (2008). Briefly the analyst 
must examine graphically and then statistically the inter- and intra-experiment(or 
within-study) relationships between the predictor variables. 
 
Interest of exploring a database from different angle: Y as a function of X and X as a 
function of Y 
In some situations the question arises whether it could be possible for the same 
database to be valued for different purposes under various meta-designs, i.e. for 
studying both intra-experiment and inter-experiment variation. For example, 
calorimetric experiments have provided measurements for metabolisable energy 
(ME) and net energy (NE = ME - Heat Production = k x ME, k being efficiency of use 
of ME to NE). From these measurements, numerous authors have proposed some 
empirical models that estimate NE from ME and some other models that estimate ME 
from NE. This was mostly performed by grouping all the available treatments without 
any distinction of heterogeneity factors (publication, experiment ...). As a result, there 
is some confusion in the interpretation of the results obtained. This is inconvenient 
since the animal maintenance requirement and the efficiency of ME to NE, derived 
from these equations and applied in the feeding unit systems, are sensitive to the 
type of approach. Thus it was suggested by Salah et al. (2015, 2016) and Sauvant et 
al. (2018) to use from a same database different approaches specific to the objective. 
If the aim is to estimate animal responses to ME supply (e.g. Figure 2b), then the 
equations should be adjusted for the effect of experiment in order to focus on the 
within-experiment variation, expected to be mainly driven by the "push effect" of the 
level of ME (assuming the data were properly coded, see section above). However, 
when the objective is to estimate animal requirement, within-experiment variation are, 
in most cases, of limited value. This is because within an experiment, animal factors, 
such as body weight, are made homogenous by the investigators, so that differences 
between treatments are only attributable to the experimental factors being under 
study (i.e effect of different level of ME). In contrast a large variability may be 
expected in animals factors between experiments, and this "pull type" variation is a 
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priori of great value to derive equations that can predict animal requirements (Figure 
2a). For instance, from 87calorimetry experiments (n=239treatments) on lactating 
cows (n=187) and goats(n=52), three modelling approaches were compared: 
-(1) an inter-experiment GLM procedure (Figure 2a):  
ME/BW0.75 = SP + MEm/BW0.75 + (1/kl) (NEL±R)/BW0.75  

calculated across experiments (1 point = 1 experiment, MEm is the ME maintenance 
requirement, NEL is milk energy and R is the body retention/mobilisation of energy) 
within  species SP as fixed factor without (Table 1, model 1a)or with (Table 1, model 
1b) weighing each experiment as suggested by St-Pierre (2001). This model could be 
considered as a meta-regression in the sense of medical science. 
 -(2) an intra-experiment GLM procedure (Figure 2b): 
(NEL±R)/BW0.75 = a + kl(ME)/BW0.75 

adjusted for the fixed effect of experiment (1 point = 1 treatment) nested  by species. 
 -(3) a Mixed procedure(covariance matrix VC) similar to model (2a) except for the 
effect of experiment considered in this case random instead of fixed. 
 
Figure 2: (2a) Inter experiment relationship between ME intake and the sum of net 
energy partitioned into milk and to/from the body (with 1 point = average of all of the 
treatment of one experiment)(2b) intra-experiment relationship between the sum of 
net energy partitioned into milk and to/from the body with ME intake (with 1 point = 1 
treatment). Both relationships were obtained using the same database consisting of 
lactating cows and goats.  
 
2a 2b 

 
 
 
The Table 1 summarizes the estimated maintenance (MEm/BW0.75) and efficiency 
from ME to NE (kl) obtained from the 4 different models tested with data from 
lactating cows and goats. From this data, it is evident that the choice of the model 
influences these estimations. In particular the estimation of maintenance 
requirements and ME efficiency are higher with models (1a and 1b) compared to 
models (2 and 3).Moreover the best precision, assessed with RMSE, is achieved for 
the models which adjust for the effect of experiments (2and 3). Otherwise, if data 
from dry cows and dry goats are added to this lactating dataset (as a mean to include 
feeding practice closer to maintenance), then the same models give different 
estimations (unpublished data).The diversity of these results highlight the importance 
of the approach taken for estimating these key parameters of energy unit systems. 
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This also demonstrates that the interpretation of such results need to precisely 
consider the type of approach used. 
 
Table 1. Comparative estimations of maintenance requirements and efficiency of ME 
into NE of milk and body reserves (kl). 
 

Model Maintenance for 
cows & goats (±SE) 

(kcal ME/ BW0.75) 

Efficiency of ME to 
NE 

kl = NE/ME (±SE) 

RMSE 

(1a) Inter-experiment 
(nexp=85) 

162.5& 
125.7(±7.61) 

0.705(= 
1/1.419±0.057) 

26.0(kcal ME/ 
BW0.75) 

(1b) Inter-experiment 
(weighted by n1/2/σ) 

166.6&130.6(±6.80) 0.782(= 
1/1.371±0.048) 

21.5(kcal ME/ 
BW0.75) 

(2) Intra-experiment 
(fixed) 

149.9 & 116.3 
(±5.0) 

0.660(±0.016) 6.9(kcal NE/ 
BW0.75) 

(3) Intra-experiment 
(random) 

147.0 & 114.2 
(±7.6) 

0.654  (±0.014) 6.9(kcal NE/ 
BW0.75) 

 
Evaluation of models obtained from meta-analysis 
 
First it must be recall that the rigorousness of the meta-analytic approach is essential 
insofar as certain aspects may be the result of subjective choices or questionable 
"expert statements". In this context, a first essential point is to provide clearly the 
justification of the successive choices made during the analysis. Another aspect 
concerns the traceability of the whole approach, on this point of view some software 
(i.e. Minitab, SAS, R...) systematically report the work history. Beyond this question 
on the rigor of the approach is that of the repeatability of the work according to the 
person or the team that performs it. In fact, depending on the degree of knowledge of 
the subject and the expertise of the analyst, most of the major results will be similar, 
but in some minor aspects the approaches may diverge depending on the studies. 
 
A priori the validation of a model resulting from a meta-analysis has to be conducted 
on an exogenous dataset that did not contribute to the model calibration. However 
this is a tricky approach since such comparison must be done on a dataset with very 
similar characteristics in term of experimental factors (i.e. experiment varying energy 
level) and range of data studied (i.e. range of energy variation). Obviously this 
approach is not possible for data rarely measured for reasons of cost or technical 
difficulties. In fact, if the principle of exhaustive data collection is applied, there is no 
other exogenous data available. In such a context it seems that the assessment of 
validity of the model resides first in the precise study of the representativeness of the 
collected factors and data used for the meta-analysis are: 

• the factors present in the database representative of what is observed in 
practice in terms of existence, intensity, range of actions....?  Is it possible to 
study the interaction of certain factors which are known to interact in field 
conditions ..?.All these aspects are frequently neglected despite they are 
strong determinants of validity of a meta-analytic work. 

• for each factor, the data representative of the corresponding ones which are 
known in practice (range, frequency, statistical distribution...) ? How are they 
situated in function of the possible and plausible areas for each variable ? 
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The assumptions of nature of experimental heterogeneity 
 
The debate between the choice of considering heterogeneity across experiments 
with either a random or fixed effects is not new and many papers have addressed 
this issue, particularly in the medical field where this choice can lead to opposite 
decisions, such as authorizing or not a drug to be marketed (Thompson, 1994, Petitti, 
2001, Higgins et al., 2003, Borenstein et al. , 2007). This debate reflects the fact that, 
even if global principles are admitted, it appeared there is no objective (and 
unambiguous) method universally accepted for choosing between fixed and random 
effects models. Moreover, it must be indicated that in medical science Higgins et al. 
(2003) proposed to calculate an index of inter-experiments heterogeneity (I² index) 
which is an index of dispersion between studies for the measured item. This method, 
however, do not seem to be consensual and no similar test have been proposed 
sofar in Animal Science. 
 
Random effect 
 
In this case the heterogeneity between experiments is considered as the result of a 
random sampling within a large population. Experiments are therefore assumed to be 
independent and therefore they cannot share a priori a common objective (see 
unambigous coding and part 2.1). The objective is essentially to control and model 
the heterogeneous variance and to achieve a prediction taking into account the intra- 
but also at least partly the inter-experiment variability. This last random variation 
induced by studies can largely increase the confidence interval (CI) values of 
parameters and therefore reduce the value of the regression for prediction purposes. 
The variations induced by this heterogeneity are supposed to follow a known random 
distribution, in preference a Gaussian one (e.g. normal). The ambition is to be able to 
apply the results obtained to predict or infer any future experiment from the entire 
population (whole area of inference). In such a context it is logical to take into 
account not only the random residuals of the regression but also, at least partly, the 
variations across studies assumed as random. 
This principle has inspired many authors of publishing meta-analytical work, in which 
the experiments were considered random. However, in most cases, this choice has 
not been justified, and the only argument for this choice was to refer to Saintt-Pierre 
(2001)’s publication, which is by construction a random one.   
On the other hand, it seems important to remember that the choice of a random 
factor leads to renounce, at least momentarily, to any explanatory examination of the 
experimental heterogeneity. Additionally, one can also wonder about the meaning to 
give to an interaction between an intra-covariate which is a fixed factor with a 
randomized experiment effect ? Finally, it is good to keep in mind that somehow the 
choice of a random effect is easy for the analyst given that there is no more question 
about experimental heterogeneity. 
 
Fixed effect 
 
Conceptually the choice of a fixed effect is when it is wanted to have both a mean 
prediction and to understand and interpret the causes of the heterogeneity across 
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experiments. It is close to the statement of Van Houwelingen et al. (2002) and from 
other comparable ones (Greenland, 1987; Berlin, 1995): « In the case of substantial 
heterogeneity between the studies, it is the researcher’s duty to explore possible 
causes of heterogeneity». Practically several contexts can justify the choice of a fixed 
effect: 
 
Case of a "homogeneous" experimental context. Conceptually this case is close to 
the situation of the "single common effect model" described in medicine (Borenstein 
et al., 2010). In this situation the collected experiments share a common objective 
and factor and they are carried out in comparable working contexts. It is then 
assumed that there is no important heterogeneity on this aspect. A questionable 
aspect is which situation can be considered as a "no important heterogeneity" ?The 
goal can be, for example, to have an estimate of the average impact of the level of 
dietary protein supply on a given type of animal performance by selecting 
experiments that were all designed to study this aspect. In this case, the variation 
studied and tested is assumed to come a priori essentially from a sampling variability 
between the tests and the choice of a fixed effect is then recommended. In this 
context, the fixed effect is considered to be more powerful and precise since it relies 
essentially on the intra-experiment variability. For example, in the recent Systali 
project (INRA 2018) specific codings of experiments having the same objective within 
the same database "Bovidig" allowed to split and model the digestive influences in 
cattle through specific dietary factors such as protein, starch, cell wall, fatty 
acids...(Sauvant and Nozière, 2016).However, under this assumption, the effect can 
be applied only to comparable data or in the same overall context (inference). Thus 
obviously, the quality of inference would be better if the levels in the study represent 
all possible levels of the factor encountered in practice, or at least all levels about 
which inference is to be made (Littell et al., 1996). 
 
Case of a large and partly explicable experimental heterogeneity:  
- Creation of subgroups. If within a set of experiments major causes of inter-
experiment heterogeneity are identified and sufficiently represented, it is suggested 
to return to the situation above by making subgroups of experiments having common 
contexts and low internal variability to apply fixed-effect to the subgroups. In this case 
the variance inter-experiment-intra-group is used as residual to test the fixed effect, 
through a nested model, and then it is considered as random for the F test. For 
example in a meta-analysis studying interest of mixed grazing, D'Alexis et al. (2014) 
proposed, after studying the database, the following nested structure: climate (1 DF) 
< publications intra-climate (7 DF) < replications within publication (8 DF) < types of 
associated animals (10 DF) < treatments. In such a situation the meta-design has to 
be carefully considered, particularly if the objective is to study the interactions 
between the subgroups and the covariables. 

 
- Creation of an inter-experiment covariable. In a similar context, if the inter-
experiments variance is largely explained by a covariable, it corresponds a priori to a 
situation comparable to that of meta-regressions in medicine (Borenstein et al., 
2009). For example, we have carried out a meta-analysis of 169 experiments (420 
treatments) focused on dairy cows milk yield (MY=30.5 ± 7.0 kg/d) responses to dry 
matter concentrate supply (DMIc =9.7±0.16 kg/d).Variations across experiments are 
important (Figure 4a) and largely explained by the potential milk yield (MYpot) of 
each experiment (= common value between the treatments within a given experiment 
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= 30.8±0.3 kg/d) (Sauvant and Daniel unp.)). In this example the inter-experimental 
effect on MY is tremendous (R²=0.95) and MYpot is also highly influencing (R²=0.93). 
In such a situation, the analyst has a priori the choice between considering an 
experience effect or replacing it with a covariable equal to the production potential of 
each experiment. However in this case to interpret the coefficients of regression, it is 
important to ensure, as stated before, that the covariable is not linked with the 
independent variables (DMIco and DMIco²). Several statistical models were fitted on 
this dataset (Table 2). When the effects of experiments (fixed (1a) or random (1b)) 
were replaced by the MY potential of each experiment (model (2),the intercept 
became non-significant, which is logical, and the coefficients of DMIco and DMIco² 
were largely different from the corresponding values of fixed (1a) and random (1b) 
effect assumptions, these last values having a concrete sense in term of animal 
response and diet formulation (Faverdin et al., 2018).Moreover the coefficient of 
DMIco² became non-significant and, based on the RMSE, the precision of the model, 
was less. These large modifications in the values of these two coefficients are mainly 
due to the fact that there is a significant positive inter-experiment relationship 
between the potential milk yield and level of concentrate supply (R²=0.40). This 
relation is logical in the sense that cows having a higher potential must receive more 
concentrate to meet their energy requirements. Finally, when model(2) is compared 
to model (1) the adjusted values are globally similar (R²=0.98 and not different from 
Y=X) with a significant remaining influence of the experiments not tackled by the 
covariable MYpot, the residuals are less linked between (1a) and (2) (R²=0.47) with 
also a significant influence of the experiments. Therefore it is important to carefully 
check the data to avoid the consequences of a correlation between a covariable 
candidate for representing the experimental heterogeneity and the intra-experiment 
covariables. 

 
Table 2: Results of intra-experiment fitting milk yield response of dairy cows to 
concentrate supply (±SE) 
 

Model Cste Coef. 
ofMYpot 

Coef. of 
DMIco 

Coef.of 
DMIco² 

RMSE 

Fixed 
(1a) 

24.18 
(±0.420) 

 0.827 
(±0.086) 

-0.016 
(±0.004) 

1.10 

Random 
(1b) 

23.90 
(±0.618) 

 0.870 
(±0.086) 

-0.017 
(±0.004) 

1.10 

MYpot cov 
(2) 

 0.899 
(±0.011) 

0.296 
(±0.070) 

-0.001 ns 
(±0.003) 

1.60 

Fixed (3) 30.6 
(±0.085) 

 0.499  
(±0.022) 

-0.023 
(±0.010) 

1.12 

Fixed (4) 30.02 
(±0.077) 

 0.526 
(±0.022) 

-0.018 
(±0.004) 

1.06 

 
Another important aspect concerns the mode of expression of the independent 
variables X. Indeed these variables can be expressed as such (models (1) and (2) or 
with respect to a value of practical interest. For example, we adjusted the data with a 
fixed effect but according to two other modes of expression of DMIco: model (3) by 
centering it on the mean value within each experiment and model (4) by calculating 
the difference between DMIco and its adjusted value corresponding to the energy 
balance = 0, a meaningful nutritional pivot (Faverdin et al., 2018). Table 2 gives the 
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value of the two adjustments. Intercepts and coefficients of regressions are different 
from those of the model (1a) and these differences can be explained. For instance 
the marginal response of MY to concentrate is high (0.83 g/g DMIco) when DMIco is 
close to 0, but much less (0.53 g/g DMIco) when energy balance = 
0.Moreover,between models (3) and (4) the adjusted (or predicted) values are similar 
(R²>0.999, close to Y=X) and the residuals are highly correlated (R²=0.91).Both 
criteria being closely related (R²=0.91) with the corresponding values of model 
(1a),(R²>0.998 and R²>0.84) and model (1b) (R²>0.998 and R²>0.89).These results 
shows the importance of having a close consistency between the future practical use 
of a model and the mode of expression of independent variables. In this way models 
issued from published meta-analysis cannot be used without a careful consideration 
of their process of construction.  
 
Case of a large but non-easily explicable experimental heterogeneity. 
Several reasons can lead to this type of situation: (1) if experimental variations are 
caused by well-known causes, the meta-design can be too imbalanced and/or non-
orthogonal to take these effects in the analysis without risk (2) if the meta-analysis is 
performed on a dataset of experiments having diverse objectives with no possibility of 
doing sub groups of experiments with a common target (3) if measurement methods 
across studies are not sufficiently standardized etc.... 

Misuse linked with an heterogeneous situation that is not easily explicable and 
treated as a fixed effect: it is generally considered that, when the inter-test 
heterogeneity of the effects is important, and not easily explicable, and treated as a 
fixed effect, the confidence intervals of the intercept are too narrow (illustrative 
examples are given below in the text).Another point of view (Saint Pierre, 2001) is 
that an effect can be  considered fixed if the levels in the study represent all possible 
levels of the factor, or at least all levels about which inference is to be made (Littell et 
al., 1996). 
 
Comparisons between random and fixed effects 
In fact, according to the objective, the choice of a random or fixed effect can be 
justified. For example, in the case of a Latin square associating n diets, n periods and 
n animals, it is possible to decide that the animal effect is random if the goal is only to 
control the variance to make a priori the test on the diets more powerful. In contrast, if 
it is wanted to understand differences between animals, for instance for phenotyping, 
a fixed effect could be considered. 
 
Otherwise it must be recalled that, the inference range for the fixed model is strictly 
limited to those studies that are part of the regression while the inference of a random 
model is a priori applicable to a larger population. To give ideas of the differences to 
be expected in practice from the consequences of the choice between a fixed or 
random effect, it seems simpler to briefly describe some examples. 
 
-Example 1:meta-analysis with numerous heterogeneous experiments. 
In the published comparisons between the two types of effects with numerous 
experiments it has been pointed out several times that the intra-experiment 
regressions and the adjusted values of the parameters were very similar (see 
annexed documents of Loncke et al., 2015, and of Daniel et al. , 2016). Moreover, 
the results presented in Tables  (models (2) vs model (3)) and Table 2 (models (1a) 
vs (1b) confirm that when the number of experiments is important (about>30 ) the 
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intra-experiment regressions, the adjusted values and the residuals are very close 
between fixed and random effects assumptions. From all these examples treating 
numerous experiments, CIs were systematically more important in the case of the 
random effect for the intercept, in contrast for the coefficients of intra-experiment 
regression values of CIs were almost the same with random assumption being equal 
or slightly higher. 
 
- Example 2: further study of the experiment effect in the dataset of Saint Pierre 
(2001) 
Saint Pierre (2001) did a comparison between fixed and random effects on a 
theoretical data set of 20 studies (108 treatments) where effects of study on intercept 
and slope were correlated. To go a bit further in this interesting work we have 
reconsidered his data set by comparing 4 approaches: 
(1) Separate individual fittings of the 20 experiments by 20 linear regressions (IND). 
(2) GLM procedure (with experiment effect as fixed effect) including interaction 
between experiments and covariable X (GLM) with a fixed effect. 
(3) Mixed model with study effect as random effect with the hypothesis of "Variance 
component" (VC) structure of covariance matrix  including interaction between 
studies and covariate as random effect. 
(4) id. than (3)with the "unstructured" structure of covariance matrix (UN). 
 
Table 3: Comparison between the major parameters with the fixed and mixed 
models: 

 
1Means  (standard error) 
 
The major aspects concerning this comparison are: 
- Slopes and intercepts values of experiments are exactly the same for (1) and (2). 
- The mean intra-experiment slopes are close for the models (2), (3) and (4), 
particularly for the two mixed ones (Table 3). 
- The confidence intervals (CI) are larger for the mixed models: more than x2 for the 
intercepts but only x1.2 to 1.3 for the slopes (Table 3). This confirms the above 
mentioned observations in examples 1. 
- Compared to IND and GLM, the slopes per experiment are different in the sense 
that the range of them is narrower for both random models (Figure 3). So the random 
effect assumption tend to reduce the range of intra-experiment slopes compared to 
the true intra-experiment values (canalisation effect). A major differences between 
fixed and mixed procedures concerns the experiments with 2 treatments with 
assumed values very different from the true one (IND) for mixed. 
- Results obtained with both random hypotheses are very similar, may be because 
the dataset was not conceived to show differences between VC and UN. 
 
Figure 3: Comparisons of values of the intra-experiment slopes (b1) with the dataset 
of SaintPierre (2001) 

 Model 1 
(IND) 

Model 2 (GLM) Model 3 
(Mixed 

type=VC) 

Model 4 (Mixed 
type=UN) 

Intercept -0.469  -0.469 (0.264) -0.588 (0.606) -0.608 (0.563) 
Slope 1.0797  1.0797 (0.047) 1.0995 (0.061) 1.0974 (0.056) 
RMSE NA 0.50 0.49 0.50 
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(1) open circles concern experiments with 2 treatments, large black circles 
experiment having 7, 8 or 9 treatments. 
 
- Intercepts of experiments are mutually well correlated across the models (R²>0.87) 
with a relationship not different from Y=X. 
- No relationship appeared for fixed effect between intercept and slope while the 
random ones show a positive correlations (R² = 0.24 for VC and R² = 0.30 for UN). 
This isquite consistent with the way to construct the database assuming R² = 0.25 
between slope and intercept values (St Pierre, 2001). 
- Adjusted, or predicted, values of treatments are exactly the same whatever the 
model with R²>0.999. 
- Residuals of treatments are positively and well correlated (R²=0.84 and 
0.90between GLM and VC and UN, and R² = 0.98between VC and UN) and the 
relationships did not differ from Y=X. The differences between the residuals of 
random vs fixed effects hypotheses are largely explained by the lever effects (HI) 
attached to each treatment . 
- Averaged values of residuals of each experiment are equal to 0 in the case of GLM 
while they are equal to 0.0019±0.031 and 0.0013±0.030 for the mixed model (VC and 
UN respectively). Moreover, whatever the mixed model considered, the averaged 
value or residual for each experiment is largely explained by the averaged value of Y 
and the number of treatments per experiment, the slope being much higher for 2 
treatments/experiment (Figure 5a). Therefore, a part of the differences between 
studies of Y is recovered in the residual variance for mixed procedures. 
- Globally the HI of treatments are positively correlated (R² = 0.62 and 0.46between 
GLM and VC and UN, and 0.96 between VC and UN) 
 
-Example 3:experiment effects and post analytical study in a practical situation 
As the example of St-Pierre was a theoretical one we did a similar approach with the 
above example of dairy cows milk yield (MY) responses to concentrate supply 
(Figure 4a, nexp=160, n=420) with the comparison between models 1a (fixed) and 
1b (random, VC) of Table 2. In this case the mean slopes of individual experiments 
were highly correlated (R²=0.99) and the relation was not different from Y=X. 
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Residuals were highly correlated (R²=0.986) and the global relation was not different 
from Y=X. The differences between residuals of random and fixed effects are related 
with MY, positively inter-experiment and negatively intra-experiment (Figure 4b). 
 
Figure 4: Responses of milk yield (MY) to concentrate supply (4a) and relationships 
between MY and difference between residuals of random - fixed models (4b). 
 

 
 
When residuals are averaged for each experiment, for both models the distribution of 
the mean residual standard errors for the different studies were not symmetric (χ² 
distribution), values were similar (0.91±0.62 kg milk) and highly correlated (R²=0.996 
around Y=X). Consequently, if the analyst wants to remove experiments because of  
a high averaged residual value (Sauvant et al., 2008), these experiments would be 
the same whatever the type of effect. The analyst could also use these averaged 
residuals to weight the experiments in a re-run process to assess the stability of the 
results. Otherwise, with GLM (model 1a) residuals within all the experiments were 
centered on 0 while for the mixed procedure (model 1b), as in example 2, it remains 
an effect of experience because averaged values were different from 0 
(0.004±0.096). Practically, these variations across experiments were not linked with 
the averaged residuals mentioned just above, but as expected from Figure 4b, they 
are largely explained by the mean MY and by the number of treatments per 
experiment (Figure 5b).These results are quite consistent with what was observed 
just above on the example of Saint Pierre (Figure 5a). In both Figures 5a and 5b the  
mean dependent variable has a stronger influence on the mean residual values for 
experiment that contains only 2 treatments. 
 
 
Figure 5: Influence of the mean value of the dependent variable on the averaged 
values of the residuals per experiment in a random model (VC) for the examples 2 
(5a) and 3 (5b). Black circles are experiments with only 2 treatments, white circles 
experiments with more than 2 treatments. 
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a b 

 
 
The knowledge of lever effects (HI) per treatment can be used to point at influent 
treatments (Sauvant et al., 2008) and are a good complement for the analysis of 
treatment with high residual (and thus potential candidate for outlier).. As seen above 
in the example of Saint Pierre (2001), HI values are much higher for the GLM than 
the mixed model, moreover they are much more influenced by the number of 
treatments per experiment with fixed compared with mixed model. When HI values 
from the fixed model are multiplied by the number of treatments,the relationship 
between these adjusted HI value and the one obtained from the random model are 
significantly related (R²=0.715). However, there is a close intra-experiment 
regression between the two HI values: HIfixed = 1.00 + 1.98 HImixed (R² = 0.873, 
RMSE = 0.012) showing that, independently from the effect of the ratio  
treatment/experiment, treatments with highest HI values are very similar inboth 
models. In addition to the number of treatment (in fixed only), the independent 
variable DMIco had a major influence on HI in the two models. Highest HI values 
were found for treatments with either a low DMIco (<5kg/d) or a high DMIco 
(>15kg/d).  
When HI values are averaged per experiment to detect those having important 
influence on the regression, it appeared that for both models the number of 
treatments has an influence but it is much more marked and negatively ranked 
according to the number of treatments/experiment for the fixed effect. When 
averaged HI values per experiment were adjusted by the number of treatments, the 
major factor was the standard deviation of the level of  DMIco per experiment 
(3.0±1.6 kg DMIco/d) showing that the positive influence of the range of DMIco per 
experiment on the coefficient of MY response to concentrate. When HI are corrected 
from DMIco impacts, there is a very close relationship between both corrected 
values: corHImix = - 0.033  + 0.97 CorHIglm (R²=0.999). That means that ultimately 
both effects led exactly to the same conclusion to eventually remove aberrant 
treatments or experiments on the basis of low/high residuals and HI. 
 
 
 
-Example 4:case with a curvilinear response and an unbalanced design. 
Loncke et al. (2015) have studied of the flux of β-hydroxybutyrate from the liver in 
ruminants as a function of energy balance. The database pooled 6 experiments with 
dairy cows (n=12), 9 with growing ruminants (n=22) and 8 with non-productive 
ruminants fed at maintenance (n=20). The intra experiment response was curvilinear 
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and it appeared that there are some differences between the two types of models 
(Figure 6). The major one concerns the dairy cows with predicted values much 
higher for random model when energy balance was either low or high. Indeed, the 
differences between GLM and Mixed models were mostly apparent when the 
interaction between the effect of energy balance and the animal physiological status 
(lactation, growing, maintenance) was taken into account. When this interaction was 
removed , the models were statistically non different. One explanation of the 
differences between GLM and mixed models in the present case couldbe the number 
of observations in each physiological status which is unbalanced (Figure 6). 
Moreover, the number of available data in particular in lactation (when the cow 
mobilized energy) is low. 
 
Figure 6: Observed and adjusted net hepatic release of β-hydroxybutyrate relative to 
energy balance for dairy cows (red) growing cattle (blue) and maintenance (green). 
The dotted line represent the adjustment with the fixed model and continuous line 
represent the adjustment with the random model. 
 

 
 
 
Interfering factors  
 
The issue of interfering factors (IF) is also sometimes an object of debate (Sauvant et 
al., 2008). Originally, the research for interfering factors consisted in investigating 
whether qualitative factors, or continuous but incomplete variables (because of 
missing values in the dataset), that are, for this reason, not incorporated into the 
adjusted statistical model, could explain a significant part of the variation in the data. 
More precisely, when the better independent X variable(s), which can be considered 
as the primer driver(s) has been found, based on statistical (and eventually on 
mechanistic) criteria, it is advisable to check if any secondary variation factors or 
variables could influence the response equation. However this approach can also be 
made for complete but a priori not essential parameters. The study of the IF can be 
carried out at various levels (1) on the LSMEANS (2) on slopes of the intra-
experiment relationships and (3) in the residual variation. 
A systematic study of interfering factors allows to have a more complete knowledge 
of the treated data, some examples were published in the literature (Loncke et al. 
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2009 and 2015; Agastin et al. 2014). In a meta-analysis (Loncke et al.,2015) using 
published data compiled from the FLORA database (FLuxes of nutrients across 
Organs and tissues in Ruminant Animals; Vernet and Ortigues-Marty, 
2006),response equations were proposed that predict hepatic uptake or release of 
ketogenic  nutrients to their supply to the liver. The study of interfering factors 
showed that the general response equations can be significantly affected by another 
nutrients or by the diet characteristics. For example, the net hepatic uptake of acetate 
could be predicted by its net portal appearance, but it was shown that the within-
study slopes significantly decreased when net portal appearance of propionate 
increased. On the same database, they showed that the hepatic release of glucose 
was related to the net portal appearance of nitrogen (Loncke et al., 2019), but the 
average level of glucose release (LSMeans) was also positively and logically 
influenced by the dietary starch concentration. 
In general, it is necessary to consider all factors and variables as potential interfering 
factors, and to test their influence on the parameters (LSMeans, residuals and within-
study slopes). To give an example, Loncke et al. (2009, 2015, 2019) tested on 
average 50 potential interfering factors for each equations published. This type of 
analysis gives more information about the equations proposed, by identifying if the 
main independent variables have consistent effects across various scenarios or if 
those effects are function of specific conditions. This strengthens the importance of 
completeness when building a dataset. Indeed some variables that may seem 
secondary at first may be relevant for such test. It is therefore highly advisable to 
enter all reported variables from a selected publication into the database. 
 
Meta-analysis and systemic approach 
 
The modeling of biological systems is a difficult task as these systems are complex. 
Thus a challenge is to represent the main properties emerging from such system into 
a model. For that it is first necessary to know as precisely as possible the structure of 
such systems and the relationships between its elements and also its various levels 
of organization. In this context meta-analyses can be applied to understand the 
places and roles of the multiple scales within the spatio-temporal organization of 
systems. They can thus make it possible to highlight the key relationships associating 
the various elements and scales as well as their diversity of situations and their main 
factors of variation. Thus it can be particularly useful to help understanding emerging 
properties of complex systems. Such examples remained fairly rare despite their 
interest. 
 
 
Offner and Sauvant (2004) have focused on the digestive system of starch in 
ruminants by pooling into a database a set of experiments exclusively focused on 
factors of variation of digestive flows of starch in ruminants. In this digestive system 
characterized by 3 successive compartments (rumen, small intestine, and 
hindgut),the meta-analyses performed have allowed to quantify the mean flows of 
starch between these 3 organs and thus the digestive partition of starch within each 
of them. Thus, Figure 7a presents the substitution between starch digested in the 
rumen (in g/kg Body Weight), providing VFA, and starch digested in the intestines, 
providing mainly glucose. This Figure highlights the importance of controlling ruminal 
starch degradability to control its digestive partition (Sauvant and Nozière, 2016). In 
addition Figure 7b presents the influence of flow of by-pass starch on starch losses 
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through feces which can be non negligible. These two figures also emphasize the 
large heterogeneity of situations across the diversity of the experiments. All the intra-
experiment regressions on this starch digestive system were included in the recent 
INRA 2018 system.  
 
 
Figure 7: Substitution between Starch digested in the rumen and in the intestines 
(7a) and influence of by-pass starch on starch losses in feces (7b). 
 

(1) open circles are treatments presented as quickly degrading starch and black 
circles are with slowly degrading starch. 
 
 
Otherwise, meta-analysis can help to understand relationships between several 
levels of organization. Thus, in a recent meta-analysis focused on grazing behaviour, 
we studied the relationships between 3 spatio-temporal scales to better understand 
the organization of the short-term feeding and physical behavior of grazing 
ruminants; the 'bite', the 'feeding station' (FS = set of bites without moving front legs) 
and the 'feeding patch' (set of successive FS). A database including experiments with 
data at the 3 scales was created and interpreted accordingly (Figure 8). The meta-
analysis shows that spatio-temporal areas of these 3 behavioral events are partly 
overlapping and follow globally the same simple allometric relationship (log10DMI = 
log10Time duration), moreover within each level the response to a given factor such 
as the sward height tends also to follow this same allometric law (unpublished data). 
Moreover it appeared that sheep (close figures) and cattle (open figures) can be 
differentiated at the bite level. 
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Figure 8: Meta-analysis of spatio-temporal scaling of Dry Matter Intake (DMI) and 
Time in grazing ruminants 
 

 
 
Meta-analysis and mechanistic modelling 
 
One of the main interest of meta-analysis is found in its possibility of combination with 
mechanistic modelling as Sauvant and Martin (2006) have pointed out. In this 
publication it was suggested to apply meta-analysis at the two different phases of 
construction and evaluation of the developed mechanistic model (Figure 9a). First, at 
the underlying level meta-analyses of a first database allows to obtain mean and 
realistic values for the key parameters and relationships used to build the 
mechanistic model.  Secondly, at the most integrated level, meta-analyses of a 
second database obtained at this level where the system is only a subpart or an 
element allows to assess the global validity of the model.  
 
Figure 9: Articulations between mechanistic modelling and meta-analysis(9a) and 
principle of mechanistic modelling of digestion of ruminal NDF based on structural 
equations (9b). 
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Since then, other synergies have been proposed between mechanistic modelling and 
meta-analytic approaches. Thus, it is possible to build mechanistic models using a 
top-down approach by relying on intra-experiment regressions Yi =f(Xi) used as 
"structural equations" to adjust values of the underlying parameters related to flows 
and compartments (Figure 9b). These structural regressions are established  from 
meta-analyses of databases of flows of inputs and outputs. Such an approach has 
already been used to construct a simple mechanistic models of fiber digestion in the 
rumen (6 compartments) associated with meta-analyses of a database of nexp=219  
and n=552 (Sauvant and Mertens, 2009). A more recent and complicated example 
concerned a mechanistic model of the liver (Bahloul, 2014 and submitted).In this 
context, the domain of validity of such models is directly linked to the range of data 
included in the meta-analysis, and thus, used for the calibration of the structural 
equations, integrated into the mechanistic model..In the first example of fiber 
digestion, the levels of dry-matter intake (expressed as percentage of BW) 
determines this domain of validity whereas in the second example (liver model), this 
domain is defined by the range of major splanchnic flows of nutrients. 
Another example is the modeling of dietary calcium and phosphorus fate in growing 
pigs (Létourneau-Montminy et al., 2015), where meta-analysis has been used to 
parameterized phosphorus and calcium digestive absorption (Létourneau-Montminy 
et al., 2012) and then to validate the model. 
The recent INRA 2018 feed unit system is another example of synergy between 
meta-analyses and mechanistic modelling. Indeed, to update the system specific 
regressions were obtained from meta-analyses of sub-databases focused on various 
feeding factors: for instance a database with experiments focused on the effect of 
various nutrients (starch, protein, lipids…) to build regressions of those respective 
nutrient digestive flows (see example of starch mentioned above)The consistency of 
these equations was checked on a digestive mechanistic model that was calibrated 
on structural equations of fluxes derived from meta-analysis of the literature (Sauvant 
and Nozière, 2012, 2016). Moreover if the data and meta-analysis are representative 
of the feeding practices encountered in field conditions, this model is capable of 
application to a wide range of practical situations. In addition, it makes it possible to 
tackle issues linked with efficiency and robustness (Sauvant 2019). 
 
The futures of meta-analysis 
 
The future of meta-analysis will depend on their ability to generate progress in 
evolving areas of animal sciences. One can think of the Livestock Farming System 
domain because the data collected in the field are likely to be rather heterogeneous 
because they come from many different sources and time frequencies (Gonzalez et 
al., 2018). In this area an interest of meta-analyses could be, thanks to the proposed 
empirical models, to diagnose in real-time the measurements. In addition, it is likely 
that meta-analysis will highlight some key  parameters that could stimulate 
technology to progress at capturing these parameters. . 
Another rapidly evolving sector concerns all genome-focused studies, so far the 
information is sufficiently sectored, homogeneous and standardized to be processed 
by multivariate statistical analysis methods. It is possible that the search for ever 
greater integration of data will require specific processes of data-fusion using 
methods already applied in the context of meta-analysis (Zhao et al., 2019). 
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Another phenomenon will increase the interest of the meta-analysis in the future. 
Indeed certain experimental techniques are considered too invasive for the animals 
and will most likely not be authorized to be practiced any more (i.e. digestive 
cannulas ...). As a result, the data published before with these techniques have a 
priori an increased scientific value and the challenge is to be able to interpret them 
with great completeness by meta-analysis. 
In the longer term, one of the challenges of meta-analysis will be related to the 
possibility of automating some of the key steps through the use of artificial 
intelligence methods. 
 
Conclusions 
 
The results of numerous publications incorporating meta-analysis approaches show 
that these methods are now widely accepted and applied in animal sciences, 
especially in nutrition. The methods applied remain largely the same, however the 
required levels of reporting, traceability, statistic increases and this will  ensure more 
transparency in the process and a better repeatability between analysts. In particular 
this requirement relates to the choice of the selected publications, as this defines the 
degree of representativeness of the work with respect to the applications, to the 
construction and the coding of the database, and to the study of the meta-design. It 
also relates tothe systematic analysis of interfering factors in situations where many 
candidate independent variables are available.  
The debate about the choice between fixed and random effects remains, however 
our comparisons show that in the vast majority of situations the adjusted values are 
the same and ultimate conclusions are not influenced by this choice. In concrete 
terms it is mainly the partition of variance across the effects which seems to be 
altered by the choice.  In particular, we have shown that treatments and experiments 
that may be identified as outliers are the same independently of the choice between 
fixed or random. One promising aspect of the development of meta-analyses is 
related to their implications in other modern approaches such as help in systemic 
approaches and mechanistic modeling as well. One of the future challenge for meta-
analyses will be to demonstrate their interest in the development of precision 
livestock farming as well as in the processing of large data sets when they faced to 
heterogeneity and lack of data linked to variations in measurement methods. 
Otherwise, until now, meta-analysis has mainly been applied to treatments that 
represent averages of several individuals. It seems that, given growing the interest of 
phenotype studies, it would be desirable to be able to assess the advantages and 
limits of meta-analyses to interpret individual laboratory databases by grouping the 
results of various experiments in which the measured characters are not 
systematically the same. 
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