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Comparison of methods to calculate the Dark Current Non 
Uniformity  

M.C. Ursule, Student Member, IEEE, C. Inguimbert, T. Nuns and J. Morio 
 
Abstract – Analytical and Monte Carlo DCNU prediction 
methods are compared. The difference is studied according to 
the different assumptions used for the calculations. The analysis 
is performed as a function of the incident proton fluence. The 
convergence of the DCNU toward a Gaussian distribution 
predicted by the central limit theorem is also investigated. 
 
Index terms − Space environment, Displacement damages, 
DCNU, Image sensors, Monte Carlo. 

I. INTRODUCTION 
  

he space environment is hostile for satellites and their 
payload. They can suffer from significant degradations 
leading potentially to critical failures. Cosmic rays, 

radiation belts, solar flare and solar wind are sources of 
particles able to initiate various types of degradation in the 
electronic components of satellites. Energetic particles are 
able to reach and degrade solid state sensors (CCD, CIS) used 
in various applications such as star trackers, sun sensors or 
earth observation systems. By depositing energy in the sensor 
arrays, space particles cause interactions with electrons of the 
medium (SEE, ionizing dose) or atomic displacements 
(Displacement Damage Dose) [1]. Here, the creation of 
atomic displacements is only considered. Those displacements 
lead to some specific degradation in image sensors such as the 
increase of the dark current. This intrinsic parasitic current 
creates a reading noise affecting the images. The dispersion of 
the dark current from pixel to pixel called the Dark Current 
Non Uniformity (DCNU) is known to be critical for some 
applications that require a low noise level such as star 
trackers. The prediction of this degradation is essential for 
space missions.  
The calculation of the DCNU consists in evaluating, 
consecutively to an irradiation by incident particles (protons, 
electrons, neutrons), the dark current induced by the amount 
of damage produced in each pixel of an array. For each pixel 
the damage is the sum of the damage produced by different 
interactions. Each interaction initiates a damage cascade 
depending on the energy of the Primary Knock on Atom 
(PKA). The probability to get a given amount of damage is a 
combination of the probability to get a recoil atom of a given 
energy, by the amount of atomic displacements produced by 
this PKA. This probability is known as the individual 
Probabiliy Density Function (individual PDF). At the array of 
pixels level, the convolution of the damage produced by 
different PKAs can be solved by a Monte Carlo algorithm. 
That means, randomly selecting the energy of the PKA in the 
differential interaction cross section [2, 4], and calculating for 
each PKA the amount of produced damage. This calculation is 
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repeated for each pixel, according to the number of 
interactions that have occurred in each pixel. But this Monte 
Carlo algorithm [2-4] is CPU time consuming, and this 
convolution can be performed [5-12] by a direct numerical 
integration [13]. Such alternative way of calculation has been 
developed first, and was very successful over the years. This 
method has the benefit to be very fast, if the product of 
convolution leads to a known function, avoiding this way to 
perform the convolution product itself. It is why, originally, 
Gaussian functions [5-7] were used to describe the differential 
damage distribution of the individual interactions (individual 
PDF). But, Gamma functions have also been adopted [8-10], 
because at low fluence level, they better represent the 
differential interaction cross sections. 
Analytical and Monte Carlo calculation methods are thus 
equivalent in the limit of the assumptions made to simulate the 
differential interaction probabilities. The impact of the use of 
different probability density functions, on the DCNU 
calculation shall be investigated. This paper aims at evaluating 
this impact by comparing the full Monte Carlo calculation with 
some methods based on the use of approximated PDF. The 
differences will be analyzed according to the incident fluence. 
In addition, at high fluence level, the DCNU converge towards 
a Normal distribution having a known mean and standard 
deviation. But this speed of convergence is closely dependent 
on the chosen differential interaction probability. This will also 
be analyzed. However, it was noted that, all these methods do 
not take into account some physical processes such as the 
Electric Field Enhancement effect (EFE), or the impact of the 
Total Ionizing Dose (TID) on the DCNU. These degradation 
mechanisms, that are neglected by the different methods will, 
therefore, not be discussed in this work.  
For this study, a method based on the same assumption as the 
methods of references [6-8] have been developed and 
compared to the full Monte Carlo calculations. The 
experimental data of the Jade device [14] from e2v will serve 
as reference for comparison. 
In the first part, both the analytical and Monte Carlo DCNU 
models will be presented. Then, the second part will be 
devoted to the description of the method implemented in our 
toolkit. The third part shows a comparison of these different 
methods of calculation. The limits beyond which the DCNU 
converge to a normal distribution having a known mean and 
standard deviation will also be established. 

II. DCNU METHODS OF PREDICTION 

A. Monte Carlo approach 

A priori, the most straightforward way to predict the DCNU 
consists in a Monte Carlo algorithm [2-4] that directly 
reproduces the damage process. But historically, because the 
Monte Carlo method is CPU time consuming, faster alternate 
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ways were preferred [5-12]. The principle of these two 
approaches is similar but the methods of calculation differ 
slightly [13]. The method of prediction based on the Monte 
Carlo algorithm used in this study has been presented and 
compare to experimental data in detail in [3, 4], but for the 
sake of clarity and the understanding of the study, the key 
points are reminded briefly here (cf. Fig. 1, Monte Carlo 
method). According to the incident fluence a different number 
of interactions (Coulombic, nuclear elastic and nuclear 
inelastic) is produced in each pixel. The distribution of this 
number of interactions follows a Poisson distribution at low 
fluence levels and then tends to a normal distribution for 
higher fluences with an average �: 
 

 � = ���Φ��	
��
� (1) 

Where � is the atomic density of the target material (����/���), �	
��
 the volume of the pixel (���) and � the 
proportion of interaction produced in the pixels that lead to a 
degradation of the depleted region. Each interaction will 
produce a Primary Knock on Atom PKA of a given energy 
[keV, MeV] that will initiate a damage cascade resulting in a 
given number of atomic displacements. The DCNU can be 
estimated by defining randomly for each pixel the number of 
interactions �
, and then evaluating the number of atomic 
displacements generated by each interaction with a second 
random draw. The number of atomic displacements generated 
by each interaction is then evaluated randomly. Thanks to the 
characteristics of the recoil nuclei of coulombic interactions 
(low energy ~���, short range), the number of atomic 
displacements can be deduced with the Lindhard energy 
partition function after estimation of the recoil energy of the 
PKA [15]. For nuclear interactions, because of the recoil 
nuclei range, a GEANT4 application [16, 17] has been 
developed to model the non-negligible number of 
displacement cascades entering in the depleted volume after 
being initiated outside. This application models and records in 
a database the displacement cascades that spread over 
neighbor pixels created by thousands of interactions [16]. In a 
given pixel, the number of atomic displacements created will 
be randomly selected in this database. This method allows 
taking into account border crossing effects. But, previous 
works show that the border crossing effect is negligible when 
the ranges of recoil ions are much smaller than pixel 
dimensions [4]. However, if the dimensions of the depleted 
volume are in the order of the micrometer, this effect needs to 
be considered in the simulations [4]. Finally, the dark current 
is estimated by assuming its proportionality to the number of 
atomic displacement thanks to the use of the Universal 
Damage Factor (UDF) ����� [18]. Mechanisms such as 
Electric Field Enhancement effect (EFE), or the Total Ionizing 
Dose (TID) is not taken into account in this study. 
 
 

B. “Analytical” method 
 
 

As described in the previous section, many random draws, in 
both the interaction cross sections and the Poisson’s law are 
required for the full Monte Carlo algorithm calculation. But 
this convolution product can be performed thanks to a direct 
numerical integration [13]. The DCNU is the result of the 
convolution by itself of the probability density function of the 

number of displacements generated by a single interaction 
(individual PDF). The individual PDF is a function of both the 
interaction cross section and the Lindhard energy partition 
function. The distribution of damage of a population of pixels 
undergoing λi interactions is the λi convolution of the 
individual PDF. As the distribution of the population of pixels 
undergoing λi interactions is governed by a Poisson’s law, the 
final DCNU is simply the sum of the distributions previously 
calculated for different λi values, weighted by this Poisson’s 
law. Historically this way of calculation has been developed 
first [5-7] and have been very successful along the years [8-
12]. A detailed description can be found in ref. [7] (Fig. 1a & 
1b in [7]). The salient points of this method are reminded here. 
It differs from the Monte Carlo approach only by the 
assumption made on the shape of the individual PDF (Gamma, 
Gaussian) used to calculate the number of displacements 
generated by a single interaction. The analytical convolution 
product also does not take into account the existing statistical 
noise of this stochastic damage process. But, the convolution 
product leads to an exact distribution neglecting any statistical 
noise, toward which the DCNU tends at very high fluence 
level. In return, this method is significantly faster than the 
Monte Carlo one, explaining its success over the years.  
If the number of interaction per pixel λi is big enough, the 
damage produced becomes proportional to the Non Ionizing 
Energy Loss (NIEL) of the incident particle. The average 
number of interactions in a pixel is given by the following 
formula: 
 � = ����Φ� �!"  

(2) 

 

Where ��� is the interaction cross section (��#), � the density 
of silicon ($/���), Φ the incident fluence (%�&�'�(�/��#), �  the depletion volume (���), �! Avogadro’s number 
(��()*) and " the atomic mass of the target material (" =28	$/��( for silicon). 

The mean and the standard deviation of the individual PDF 
will be called respectively .�
�	 and ��
�	 in the rest of this 
paper. Each interaction (Coulombic, nuclear elastic and 
inelastic) are treated separately with different individual PDF. 
In the case of elastic Rutherford scattering, considering a high 
number of coulombic events per pixel, Marshall et al. 
approximated the individual PDF by a Gaussian distribution of 
mean .�
�	 and variance ��
�	# . As we will see further in the 
paper, this approximation is only valid when the average 
number of interactions per pixel is large enough so that the 
final DCNU tends also to a Normal law (appendix A & B). In 
that case where a large number of interactions is produced, 
Marshall [6, 7] shows that the convoluted damage distribution 
can tend to a Gaussian distribution defined by a mean which is 
the product of the average number of interactions and the mean 
of this individual PDF (�.�
�	), and a variance which is the 
product of the average number of interactions and the variance 
of this individual PDF (���
�	# ) (Demonstration in appendix A 
& B) [6, 7] (appendix A & B). But, before converging towards 
a Normal law the DCNU is driven by the shape of the 
Rutherford scattering density probability function. Robbins [8] 
proposed to simulate the individual PDF with a gamma 



distribution, which closer reproduce the Coulombic case. The 
individual PDF of Coulombic interactions has a very sharp 
dissymmetric shape that converges very slowly toward a 
Gaussian function. Robins [8] chose to describe by this 
gamma function both inelastic and elastic interactions, in 
order to increase the accuracy of the prediction for low 

fluences, but also because of the existence of the negative dark 
current with Gaussian distribution [8]. For its part, Germanicus 
reevaluated the parameters of the gamma distribution of 
damage for a better fit of the prediction [10]. The 
demonstration is provided in the appendix of this paper 
(appendix A & B). 

 
Fig. 1: Flowchart of the different methods presented in this study. For each pixel, the degradation is computed with one of the three presented methods. 

III.  IMPLEMENTATION OF THE DIFFERENT DCNU 

PREDICTION METHODS 
 

A similar method to the one of Marshall et al. [7] has been 
developed in this work (method 1 of Fig. 1). The difference of  
this method with the Monte Carlo approach is that, in the 
latter case, the convolution is performed by a random process, 
while in the former case, the characteristics of the convoluted 
distribution is determined according to the NIEL and the 
standard deviation of the NIEL. 
The convergence toward the normal distribution (method 2) is 
also investigated. The speed of convergence have been studied 
as a function of the fluence level, for the three different 
interaction types (Coulombic, nuclear elastic and inelastic). 
Indeed, it is closely dependent on the shape of the energetic 
spectra of the recoil nuclei which are quite different from a 
type of interaction to another. The method based on the 
approximated PDF (method 1 of Fig.1) is described in the 
following section III-A The DCNU calculation for large 
fluence levels (method 2 of Fig. 1) is presented in section III-
B. 
 

A. Method1, based on approximated PDF  
 

 

The population of pixels undergoing λi interactions is given 
by the Poisson’s law (D1) governing the statistics of λi. λi 
ranges from 0 up to a maximum value that can reach ten for 
nuclear reactions, but can overpass a thousand for coulombic 

interactions. The damage distribution produced by these λi 
interactions will be denoted D2 in this paper. As mentioned 
before, D2 can been chosen as a Gaussian or a Gamma 
function [5, 7, 8-10]. The asymmetric tail of the gamma 
distribution has the advantage to better describe the Rutherford 
scattering cross section. In this work, the DCNU calculated 
assuming both Gaussian and Gamma distributions have been 
compared. This method 1 developed here is based on the same 
assumption as the analytical approaches proposed by Marshall 
[5-7] and Robbins [8] on the basis of a convolution 
calculation. These methods are equivalent, exception that the 
method 1 described here, takes into account the intrinsic 
statistical noise of the stochastic damage process, while the 
“convolution” methods [5-12] provide the theoretical 
distribution towards which the DCNU tends at very high 
fluence level. 
According to that simplification, compare to the full Monte 
Carlo algorithm, the necessary number of random draws is 
then reduced here to two per pixel (Fig. 1, method 1). In brief, 
as can be seen in Fig. 1, for each pixel, the number of 
interactions �
 is randomly drawn in the normal distribution /1. The mean degradation per interaction is then randomly 
drawn in the gamma distribution /2 defined by its mean .�
�	 

and its standard deviation 
12345673 . The total number of 

displacements S created in the pixel ', is obtained by 
multiplying the number of interactions �
 with the mean 
number of displacements created per interaction.  



The first and second moment of the individual PDF (.�
�	, ��
�	) are proportional respectively to the mean deposited 
energy 8��	 to create atomic displacements and its standard 
deviation. For coulombic interactions, it has been evaluated 
thanks to the NIEL of NEMO code [19]. The number of 
atomic displacements is simply deduced knowing the 
threshold displacement energy 9� according to the formula 1. 
For nuclear interactions, these momentums that correspond to 
the nuclear NIEL are estimated thanks to a database evaluated 
with GEANT4 (DBG4, cf. equation 2). 
 .�
�	 = E;<=����>�>29� 						�?@					��
�	 = �A2B5����>�>29� 

(1) 

 		.�
�	 =< /DE4 > 							�?@					��
�	 = � HIJ (2) 
Where > is the depth of depleted volume (��) and 9� the 
threshold energy (K��). 

 
B. method 2, limit at high fluence level 

 

 

One can show (appendix VI.B) that the result of the method 1 
is a DCNU of a known mean λµdisp, and standard deviation L���
�	# + �.�
�	#  . But the shape of this distribution is not a 

priori known. It is affected by the shape of both the chosen 
individual PDF and the Poison’s law. But, when the incident 
fluence increases, or in a large geometry, the number of 
interaction per pixel λi reaches a level for which some 
statistical simplifications can be applied. In that case, for each 
pixel, according to the central limit theorem and regardless of 
the shape of the individual PDF, the damage distribution on 
the pixel array tends to be normally distributed around this 
average value �.�
�	, and having a standard deviation L���
�	# + �.�
�	#  ([8] and proof in the appendix VI.A). This 

distribution is noted D3 in Fig. 1 (method 2). The method 2 is 
simply a random draw within the D3 distribution, to take into 
account the statistical noise which otherwise does not appear 
in this theoretical distribution.  
For lower fluences, below the convergence level of the DCNU 
towards a Gaussian distribution, the discrepancy between the 
DCNU and a Gaussian distribution has been investigated. 
Thus, for the same reasons than in the alternative method 1, 
both Gamma and Gaussian distributions have been studied. In 
the next section, both methods 1 & 2 will now be compared to 
the Monte Carlo approach. Some measurements performed on 
the Jade device will also serve as reference. 

 

IV. COMPARISONS OF THE PREDICTION METHODS 
 

A comparison was made between the Monte Carlo method, 
and the two simplified approaches 1 and 2. Comparisons with 
experimental measurements performed on JADE (E2V) 
devices [20] are also made. The fluence has been adapted to 
vary the average number of interaction per pixel λ in the range 
[0.381, 5531]. Four energy and five fluences per energy were 
then considered (cf. Table 1).  
 
 

8?�&$S	(K��) V(W�?�� (%X/��#) �
Y�
��Z
� ��
��Z
� ��[\
[]^
� 
30	 4.23 ∗ 10`→ 4.23 ∗ 10*# 0.00142→ 14.2 

0.000734→ 7.34 
0.551→ 5	510 60 

7.28 ∗ 10`→ 7.28 ∗ 10*# 0.00197→ 19.7 
0.00128→ 12.8 

0.482→ 4	820 120 
1.20 ∗ 10e→ 1.20 ∗ 10*� 0.00292→ 29.2 

0.00117→ 11.7 
0.408→ 4	080 185 

1.66 ∗ 10e→ 1.66 ∗ 10*� 0.00406→ 40.6 
0.000898→ 8.98 

0.376→ 3	760 

Table 1: Characteristics of the simulations realized in this study. For an 
energy, the fluence, the mean number of nuclear interactions (inelastic and 
elastic) and the mean number of coulombic interactions per pixel are 
presented. For coulombic interactions the cross sections have been calculated 
according to the ZBL model [21]. Both nuclear elastic and inelastic cross 
sections are extracted from GEANT4 [16, 17]. 
 

As explained in the previous sections, the shape of the final 
DCNU is a compromise between the individual PDF chosen 
for the calculation and the speed of convergence of the DCNU 
towards a Normal distribution. Two types of functions 
(Gaussian, Gamma) have been tested for individual PDF to 
confirm the interest of gamma distribution raised by Robbins 
[8]. The contributions of the three interactions have been 
considered but the paper presents only the results of 
Coulombic and inelastic interactions. Indeed, the case of 
nuclear elastic is quite identical to the degradation caused by 
nuclear inelastic interactions. Moreover, only DCNU 
generated by 60	K�� protons are presented because the trend 
is the same for other irradiation energies. All these prediction 
methods have a completely different CPU time. Simplified 
methods 1 and 2 estimate the DCNU of a sensor array of 500	000 pixels in a few minutes regardless the fluence, when 
the Monte Carlo approach may need several hours or days for 
the most critical configurations (i.e. large fluences or large 
geometries). The Coulombic interactions are the most CPU 
time consuming, as several thousand of interactions can occur 
per pixel. The results are presented according to three groups: 
large fluences generating in average thousands of interactions 
per pixel, intermediary fluences generating in average between 1 and 1000 interactions per pixel, and weak fluences 
generating in average less than a single interaction per pixel.  

A. High fluence regime 
 
For the largest fluences considered in this study (60	K��, 7.28 ∗ 10*#	% +/��#, �
Y�
��Z
� = 19.7, ��[\
[]^
� = 4820), 
the three methods converge toward the same Gaussian 
distribution (cf. Fig. 2). Those largest fluences were 
considered in order to work with � close to those used in the 
literature with analytical methods. The use of a normal 
distribution instead of a gamma distribution for both methods 
(1 and 2) provides, at low degradation level, worse results than 
the use of a gamma distribution. This phenomenon can be 
observed for both the Coulombic and nuclear inelastic 
interactions (Fig. 3 & Fig. 4). Surprisingly, even if the average 
number of nuclear interactions per pixel remains relatively 
small (�
Y�
��Z
� = 19.7), the final degradation distribution 
tends to a Gaussian (Fig.4). The statistical noise at low damage 
level (Fig.4) is due to this relatively low value of  λinelastic. 



 
Fig. 2: Total degradation generated by an incident flux of protons (60	K��; 7.28 ∗ 10*#	% +/��#). 

 
Fig. 3: Degradation caused by coulombic interactions for an incident flux of 
protons (60	K��; 7.28 ∗ 10*#	% +/��#) with ��[\
[]^
� = 4	820. 

 
Fig. 4: Degradation caused by nuclear interactions for an incident flux of 
protons (60	K��; 7.28 ∗ 10*#	% +/��#) with �
Y�
��Z
� = 19.7. 

 

The convergence speed towards a Gaussian distribution 
depends on the shape of the individual PDF. It is thus different 
for each type of interactions. This can be demonstrated by the 
inequality of Berry Esseen [21]. The Berry Esseen inequality 
allows the quantification of the discrepancy between the 
distribution of the individual PDF and a normal distribution: 
 fW%� ggh i

j k l �	.�
�	L�m��
�	# + .�
�	# n < op
q l ξ(o)gg s tu*�√� 	 (3) 

 u*� = w|y*|�m.�
�	# + ��
�	# n�/# (4) 

Where z(o) is the cumulative distribution function of a normal 
random variable, t a constant (here equal to 0.7655 according 
to [22]) and 8|y*|� the third order moment. The right-hand 
term is an upper bound of the discrepancy between the 
modelled distribution and the Gaussian distribution. The 
different convergence speeds have been evaluated by 

calculating 
{|}~√7  for different �. The more this term tends to 0, 

the more the distribution tends to a Gaussian distribution 
(0=Gaussian). The calculation of this limit (cf. Table 2) proves 
that the nuclear inelastic and elastic interactions converge 
faster than coulombic interactions towards a normal 
distribution. In order to obtain a coulombic limit equivalent to 
a nuclear limit, ��[\
[]^
� needs to be a thousand time higher 
than �Y\�
���. The speed of convergence is closely dependent 
on the asymmetry of the individual PDF. The differential 
Rutherford interaction cross section is a very steep decreasing 
function while the energy distribution of inelastic recoil nuclei 
looks more like a Gaussian. That explains the good speed of 
convergence of the inelastic interactions. For this level of 
fluence, the simplified methods 1 and 2 give an accurate 
prediction of the DCNU faster than the Monte Carlo approach. 
 � Inelastic Elastic Coulombic 0.001 44.4 38.1 1	484 0.01 14.0 12.0 469 0.1 4.44 3.81 148 1 1.40 1.20 46.9 10 0.444 0.381 14.8 100 0.140 0.120 4.69 1000 0.0444 0.0381 1.48 10000 0.0140 0.0120 0.469 
Table 2: Right-hand term of the Berry Esseen inequality for the three 
interactions in function of the mean number of interactions per pixel, �. 
 
B. Intermediary fluence regime 
 

When the fluence and accordingly the number of interactions 
per pixel decrease (�
Y�
��Z
� = 0.197 and ��[\
[]^
� = 48.2 at 60	K��, 7.28 ∗ 10*� 	% +/��#), the use of these two different 
PDF (Gaussian , Gamma) lead to different results. But, 
methods 1 and 2 give results relatively close to each other (Fig. 
5). 



 
Fig. 5: Total degradation generated by an incident flux of protons (60	K��; 7.28 ∗ 10*�	% +/��#). Experimental data are from ref. [20]. 
 

 
Fig. 6: Degradation caused by coulombic interactions for an incident flux of 
protons (60	K��; 7.28 ∗ 10*�	% +/��#) with ��[\
[]^
� = 48.2. 

 
Fig. 7: Degradation caused by nuclear inelastic interactions for an incident 
flux of protons (60	K��; 7.28 ∗ 10*�	% +/��#) with �
Y�
��Z
� = 0.197. 

These two methods experience difficulty to predict both 
Coulombic and nuclear contributions (Fig. 6 & Fig. 7). In 
particular this is true for the low degradation regime (Δ����� <1?"/��#). The methods based on normal distributions 
underestimate the number of hot pixels in regards to the other 
methods. The sampling of simplified methods seems to be too 
small to predict the degradation at this level of fluence. The 
Kullback-Leibler (KL) divergence method [23] has been used 
to compare these three estimations with experimental data 
(Fig. 5). The criterion of comparison chosen for the 
comparison and which highlight the dissimilarity between the 
different distributions is the distance between the reference 
case h(o) (here the experimental results) and the modeled 
distribution �(o): 
 /�|(h||�) =�h(o)(�$ h(o)�(o)�  (5) 

Two identical distributions will lead to a comparison criterion /�|(h||�) = 0. The smaller the /�|(h||�) parameter is, the 
closer the simulated �(o) distribution is close to the 
experimental h(o) distribution. The Fig. 8 compares the 
divergence for each prediction method proposed in our study. 
The four first points of the simulated distributions have not 
been considered for the calculation as they are very badly 
estimated (Fig. 5). At this damage level, the ionizing dose is 
significant and affects the DCNU. The analysis is focused on 
the tail of the DCNU. As can be seen in Fig. 8, the Monte 
Carlo approach with an average value of /�|(h||�) < 0.16 
provides the results in best agreement with experimental data. 
This is true whatever the incident energy for a fluence level of 7.28�10	% +/��# that corresponds to �~50. At this level of 
fluence, the Monte Carlo approach gives the most relevant 
prediction. 

 
Fig. 8: Calculation of the Kullback-Leibler divergence of the predicted results 
with experimental data at four proton energies (30	K��, 60	K��, 120	K��, 185	K��) and for an incident flux of 7.28 ∗ 10*�	% +/��#. 
 

C. Low fluence regime 
 

For weak fluence (i.e. � < 1, cf. Fig. 9) and despite an average 
number of interactions per pixel relatively small (��[\
[]^
� =0.482 at 60	K��, 7.28 ∗ 10`	% +/��#), the Monte Carlo 
approach and the simplified methods based on gamma 
distribution give surprisingly quite similar DCNU predictions.  



 
Fig. 9: Total degradation generated by an incident flux of protons (60	K��; 7.28 ∗ 10`	% +/��#). 

 
Fig. 10: Degradation caused by coulombic interactions for an incident flux of 
protons (60	K��; 7.28 ∗ 10`	% +/��#) with ��[\
[]^
� = 0.482. 

 
Fig. 11: Degradation caused by nuclear inelastic interactions for an incident 
flux of protons (60	K��; 7.28 ∗ 10`	% +/��#) with �
Y�
��Z
� = 0.00197. 
 

At this low fluence level, when λ<1, the final DCNU tends 
towards the individual PDF. For example, when λCoulombic = 
0.482, the number of nuclear interactions becomes very low 
(λNuclear = 0.00197), and the shape of the DCNU is driven by 
the shape of the Coulombic PDF (Fig. 9 & Fig. 10). For 
coulombic interactions the individual PDF can be calculated 
according to the ZBL interaction cross section [21] and the 
Lindhard energy partition function [16]: 
 ∝ �1����� ∙ ���I(�)                        (9) 
 

Where Q is the recoil energy of the PKA, dσZBL/dQ the 
differential ZBL cross section, and G(Q) the Lindhard energy 
partition function. The ZBL differential distribution is a 
strongly decreasing function comparable to a gamma function. 
That explains why using a gamma function in the analytical 
methods (1&2) gives results close to the full Monte Carlo 
algorithm (Fig. 9, Fig. 10). For nuclear interactions (Fig. 11), 
the agreement is better when using a Gaussian PDF that better 
represents the shape of the differential nuclear distribution. 

 

 
Fig. 12: Comparison between DCNU and individual PDF caused by 
coulombic interactions (��[\
[]^
� = 0.482). Those distributions have been 
converted, normalized and integrated for the comparison. 

 
Fig. 13: Comparison between DCNU and individual PDF caused by nuclear 
interactions (�Y\�
��� = 0.00197). Those distributions have been converted, 
normalized and integrated for the comparison. 



In order to be compared, the individual PDF and the total 
degradations predicted by the three approaches have been 
converted into integrated probabilities (cf. Fig. 12 and Fig. 
13). As we can see on the Fig. 12 and Fig. 13, the final DCNU 
and individual PDF are superimposed on most of the dark 
current range. It shows the very good agreement between the 
full Monte Carlo algorithm and the simplified approaches 
based on the use of a gamma function. On the contrary, the 
use of a Gaussian distribution is not relevant (Fig. 12). In 
conclusion, the good agreement between the method 1 and the 
Monte Carlo approach shows that a Gamma function is well 
suited to represent the individual PDF for Coulombic 
scattering (Fig. 10). 

V. CONCLUSION 
 

Analytical DCNU calculation methods, that have been widely 
used in the past has the benefit to be faster than Monte Carlo 
algorithm. But they make some assumptions on the used 
damage probability density function that impacts the final 
result. In other words, such kind of methods are equivalent to 
the Monte Carlo approach in the limit of the made 
assumption. In this work, the impact of the use of different 
probability density functions on the DCNU calculation has 
been studied. The analysis has been performed in term of 
different incident fluence levels. 
It is demonstrated that the DCNU is a distribution having a 
known mean and standard deviation (resp. λµdisp, L���
�	# + �.�
�	# ). This distribution tends towards a Gaussian 

function at high fluence level (�
Y�
��Z
�~10, ��[\
[]^
�~	1000). At low fluence regime (��[\
[]^
� < 	1 
the shape of the DCNU is driven by the Coulombic 
probability density function. In between the DCNU can be 
well simulated using a Gamma function as a probability 
density function. This explains in particular the decreasing 
exponential often observed experimentally on the tail of the 
DCNU. 
A difference of convergence speed towards a Gaussian 
distribution is observed as a function of the interaction type. 
The nuclear interactions need a � value a thousand times 
smaller than the coulombic interactions to converge towards a 
Gaussian distribution. But when the fluence decreases (i.e. 1 < � < 1000), some discrepancies between methods appear. 
At this fluence level, the Monte Carlo approach provides the 
best results according to the calculation of the Kullback-
Leibler divergence. The simplified methods based on gamma 
distribution underestimate the low degradation levels, and the 
simplified methods based on normal distribution overestimate 
the pixels lightly impacted and underestimate the hot pixels. 
At weak fluences (i.e. � < 1), the prediction made using a 
gamma PDF are relatively close to the Monte Carlo 
simulations showing that Gamma functions are well suited to 
represent Coulombic differential interaction probabilities. 
 
 
  

VI. APPENDIX 

A. Demonstration of the method 2 

This demonstration determines the shape, the mean value and 
the variance of the distribution /3 used in the alternative 
method 2. The goal is to estimate the distribution of the 

random variable S defined as S = ∑ y�73��*  where the random 

variable �
 follows a normal distribution with mean � and y� 
are independent and identically distributed (i.i.d.) random 
variables as y with mean .�
�	 and variance ��
�	# . � and y� 
are also independent random variables for all �. Let us 
determine the mean and the variance of k but also the 
asymptotic form of the distribution of k when � → +∞. If we 
apply the law of total expectation, the mean of k, w(k) is given 
by 

w(S) = wmw(S|�
)n = 	�w(S|�
 = ?)ℙ(�
 = ?)X�
Y��  (6) 

Where w(S|�
) is the mean of k conditionally to �
. As we 
have also  
 w(S|�
 = ?) = w��X�Y

��* � = ?w(y) = ?.�
�	 (7) 

We can conclude that the expression of the mean of k is 
 w(S) = �?.�
�	ℙ(�
 = ?) = �.�
�	X�

Y��  (8) 

since � is the mean of �
. 
The law of total variance states that the variance of k, �(k) is 
equal to 
 �(k) = wm�(S|�
)n + �mw(S|�
)n (9) 
Where �(k|�
) is the variance of k conditionally to �
. The 
first term wm�(S|�
)n of equation 9 is easily derived as y� are 
i.i.d. random variables, 
 �(S|�
 = ?) = ���X�Y

��* � =��(y�)Y
��* = ?��
�	#  (10) 

and thus 
 wm�(S|�
)n = wm�
��
�	# n = ���
�	#  (11) 

The second component of equation 9, �mw(S|�
)n, is just 
 �mw(S|�
)n = �m�
.�
�	n = �.�
�	#  (12) 
It follows that 
 �(S) = ���
�	# + �.�
�	#  (13) 

Let us consider the random variable �, 
 � = S l �.�
�	L���
�	# + �.�
�	#  

(14) 

and determine its moment-generation function (MGF) K�, 
 K�(�) = w(exp(��)), � ∈ ℝ (15) 
The MGF of k is defined by K�(�) = w(exp(�k)) = w  wmexpm�(k|�
)nn¡ , � ∈ ℝ (16) 

Conditionally to �
 = ?, we have 



 wmexpm�(k|�
)nn = w�exp���y�Y
��* ��

= w�¢exp	(�y�)Y
��* � = K£(�)Y 

(17) 

as y�  are i.i.d. random variables and where K¤ is the MGF of 
the random variable y. The MGF of S is then 

K�(�) = wmK¤(�)73n = �K£(�)Yℙ(�
 = ?)X�
Y��=�exp(l�) (K£(�)�)Y?!

X�
Y��= exp	(�K¤(�) l �), � ∈ ℝ 

(18) 

It follows that 
 K�(�) = expi

j�K¤i
j �
L���
�	# + �.�
�	# p

ql �
l �.�
�	�L���
�	# + �.�
�	# p

q , � ∈ ℝ 

(19) 

The series expansion of K£ can be used here if the different 
moments of y can be defined K£(�) = 1 + �w(y) + �#w(X#)2! + ⋯+ ��w(X�)�! + ⋯ (20) K£(�) = 1 + � < /DE4 > +�#m��
�	# + .�
�	# n2! + ��w(X�)3! + ⋯ 

(21) 

and thus 

K£i
j �
L	���
�	# + �.�
�	# p

q = 1 + �.�
�	L���
�	# + �.�
�	#  

+ �#2� + i
j �L���
�	# + �.�
�	# p

q� w(X�)
3! + ⋯	 

(22) 

When � → +∞, we get 

K£i
j �
L���
�	# + �.�
�	# p

q 

= 1 + �.�
�	L���
�	# + �.�
�	# + �#2� + 0 §1�¨ , � ∈ ℝ	 
(23) 

The MGF of the random variable � of Eq. (20) is then 
simplified when � → +∞ in the following way 
 K�(�) = exp ©�#2 + 0(1)ª , � ∈ ℝ (24) 

The term exp  Z«# ¡corresponds to the MGF of a standard 

normal distribution. Consequently, when � → +∞, � 

converges to a standard normal distribution and k converges to 
a normal distribution of mean �.�
�	, variance ���
�	# +�.�
�	# .  

 

 

B. Relation between method 1 and 2 

This demonstration proves that the method 1 and 2 have the 
same mean and the same variance. In the method 1, the 
random variable k does not follow a usual law. But in the 
method 2, the random variable follows a Gaussian law. Let us 
determine the mean and the variance of k, as used in the 
method 1, equal to �
 × y where �
 follows a Poisson 
distribution with mean � and the random variable y follows a 

normal distribution with mean .�
�	 and variance 
12345«
73 . One 

has with the law of total expectation: w(k) = wmw(k|�
)n = wmw(�
 × y|�
)n = wm�
 × w(y|�
)n = wm�
 × .�
�	n = �.�
�	  

(25) 

where w(k|�
) is the mean of k conditionally to �
. The law of 
total variance states that the variance of k, �(k), is equal to 
 �(k) = wm�(k|�
)n + �(w(k|�
)) (26) 

where �(k|�
) is the variance of k conditionally to �
. The first 
term w(�(k|�
)) corresponds to �(k|�
) = �(�
 × y|�
) = �
#�(y|�
) = �
��
�	#  (27) 
and thus 
 wm�(k|�
)n = wm�
��
�	# n = ���
�	#  (28) 

The second component of variance, �(w(k|�
)), is just 
 �mw(k|�
)n = �m�
.�
�	n = �.�
�	#  (29) 

It follows that 
 �(k) = ���
�	# + �.�
�	#  (30) 
In the method 1, the random variable k is defined by �
 × y, 
with �
 drawn in the distribution /1 and y drawn in the 
distribution /2. We have shown here that the mean and the 
variance of the distribution of this random variable are the 
same as those of the distribution /3. 
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