
HAL Id: hal-02181721
https://hal.science/hal-02181721

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enumerating Minimal Dominating Sets in Triangle-Free
Graphs

Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond

To cite this version:
Marthe Bonamy, Oscar Defrain, Marc Heinrich, Jean-Florent Raymond. Enumerating Min-
imal Dominating Sets in Triangle-Free Graphs. 36th International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2019), Mar 2019, Berlin, Germany. pp.16:1–16:12,
�10.4230/LIPIcs.STACS.2019.16�. �hal-02181721�

https://hal.science/hal-02181721
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enumerating Minimal Dominating Sets in
Triangle-Free Graphs
Marthe Bonamy
CNRS, Université de Bordeaux, France
marthe.bonamy@u-bordeaux.fr

Oscar Defrain
LIMOS, Université Clermont Auvergne, France
oscar.defrain@uca.fr

Marc Heinrich
LIRIS, Université Claude-Bernard, Lyon, France
marc.heinrich@univ-lyon1.fr

Jean-Florent Raymond
LaS team, Technische Universität Berlin, Germany
raymond@tu-berlin.de

Abstract
It is a long-standing open problem whether the minimal dominating sets of a graph can be enumerated
in output-polynomial time. In this paper we prove that this is the case in triangle-free graphs. This
answers a question of Kanté et al. Additionally, we show that deciding if a set of vertices of a
bipartite graph can be completed into a minimal dominating set is a NP-complete problem.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Enumeration algorithms, output-polynomial algorithms, minimal dominating
set, triangle-free graphs, split graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2019.16

Related Version https://arxiv.org/abs/1810.00789

Funding Oscar Defrain: Supported by ANR project GraphEn ANR-15-CE40-0009.
Jean-Florent Raymond: Supported by ERC consolidator grant Distruct-648527.

Acknowledgements The authors wish to thank Paul Ouvrard for extensive discussions on the topic
of this paper. We also gratefully acknowledge support from Nicolas Bonichon and the Simon family
for the organization of the 3rd Pessac Graph Workshop, where this research was done. Last but not
least, we thank Peppie for her unwavering support during the work sessions.

1 Introduction

Countless algorithmic problems in graph theory require to detect a structure with prescribed
properties in an input graph. Rather than finding one such object, it is sometimes more
desirable to generate all of them. This is for instance useful in certain applications to
database search [29], network analysis [13], bioinformatics [22, 5], and cheminformatics [2].
Enumeration algorithms for graph problems seem to have been first mentioned in the early
70’s with the pioneer works of Tiernen [27] and Tarjan [26] on cycles in directed graphs and
of Akkoyunlu [1]. However, they already appeared in disguise in earlier works [24, 21]. To
this date, several intriguing questions on the topic remain unsolved. We refer the reader to
[23] for a more in-depth introduction to enumeration algorithms and to [28] for a listing of
enumeration algorithms and problems.

© Marthe Bonamy, Oscar Defrain, Marc Heinrich, and Jean-Florent Raymond;
licensed under Creative Commons License CC-BY

36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019).
Editors: Rolf Niedermeier and Christophe Paul; Article No. 16; pp. 16:1–16:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marthe.bonamy@u-bordeaux.fr
mailto:oscar.defrain@uca.fr
mailto:marc.heinrich@univ-lyon1.fr
https://orcid.org/0000-0003-4646-7602
mailto:raymond@tu-berlin.de
https://doi.org/10.4230/LIPIcs.STACS.2019.16
https://arxiv.org/abs/1810.00789
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

The objects we wish to enumerate in this paper are the (inclusion-wise) minimal domin-
ating sets of a given graph. In general, the number of these objects may grow exponentially
with the order n of the input graph. Therefore, in stark contrast to decision or optimization
problems, looking for a running time polynomially bounded by n is not a reasonable, let alone
meaningful, efficiency criterion. Rather, we aim here for algorithms whose running time is
polynomially bounded by the size of both the input and output data, called output-polynomial
algorithms.

Because dominating sets are among the most studied objects in graph theory and
algorithms, their enumeration (and counting) have attracted an increasing attention over the
past 10 years. The problem of enumerating minimal dominating sets (hereafter referred to
as Dom-Enum) has a notable feature: it is equivalent to the extensively studied hypergraph
problem Trans-Enum. In Trans-Enum, one is given a hypergraph H (i.e. a collection
of sets, called hyperedges) and is asked to enumerate all the minimal transversals of H
(i.e. the inclusion-minimal sets of elements that meet every hyperedge). It is not hard to see
that Dom-Enum is a particular case of Trans-Enum: the minimal dominating sets of a
graph G are exactly the minimal transversals of the hypergraph of closed neighborhoods of
G. Conversely, Kanté, Limouzy, Mary, and Nourine proved that every instance of Trans-
Enum can be reduced to a co-bipartite1 instance of Dom-Enum [17]. Currently, the best
output-sensitive algorithm for Trans-Enum is due to Fredman and Khachiyan and runs in
quasi-polynomial time [9]. It is a long-standing open problem whether this complexity bound
can be improved (see for instance the surveys [6, 8]). Therefore, the equivalence between the
two problems is an additional motivation to study Dom-Enum, with the hope that techniques
from graph theory will be used to obtain new results on the Trans-Enum problem. So
far, output-polynomial algorithms have been obtained for Dom-Enum in several classes of
graphs, including planar graphs and degenerate graphs [7], classes of graphs of bounded
tree-width, clique-width [4], or mim-width [10], path graphs and line graphs [16], interval
graphs and permutation graphs [18], split graphs [19], graphs of girth at least 7 [12], chordal
graphs [19], and chordal bipartite graphs [11]. A succinct survey of results on Dom-Enum
can be found in [20]. The authors of [19] state as an open problem the question to design an
output-polynomial algorithm for bipartite graphs (the problem also appeared in [20, 11]).
We address this problem with the following result.

I Theorem 1. There is an output-polynomial time algorithm enumerating minimal domin-
ating sets in triangle-free graphs.

In particular, the result holds for enumerating minimal dominating sets in bipartite
graphs.

Our algorithm decomposes the graph by iteratively removing closed neighborhoods in the
fashion of [7], then constructs partial minimal dominating sets by adding the neighborhoods
back one after the other. It relies on the crucial property that in triangle-free graphs,
the generation of all potential extensions of a partial minimal dominating set to a new
neighborhood is closely related to the enumeration of minimal dominating sets in split graphs,
for which tools have already been developed [17]. We note that triangle-free graphs already
received attention in the context of enumeration of other objects, for instance maximal
independent sets [14, 3], using different techniques.

A natural technique to enumerate valid solutions to a given problem (for instance, sets
of vertices satisfying a given property) is to build them element by element. If during the
construction one detects that the current partial solution cannot be extended into a valid

1 The complement of a bipartite graph.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:3

one, then it can be discarded along with all the other partial solutions that contain it. Note
that in order to apply this technique, one should be able to decide whether a given partial
solution can be completed into a valid one. It turns out that for minimal dominating sets,
this problem (that we will denote by Dcs) is NP-complete [15], even when restricted to split
graphs [19]. We show that it remains NP-complete in bipartite graphs.

I Theorem 2. Dcs restricted to bipartite graphs is NP-complete.

This implies that Dcs is NP-complete in triangle-free graphs. This suggests that the
aforementioned technique is unlikely to be used to improve Theorem 1.

The paper is organized as follows. In Section 2 we give the necessary definitions. We
prove Theorems 1 and 2 in Sections 3 and 4, respectively. We conclude with possible future
research directions in Section 5.

2 Preliminaries

Graphs. All graphs in this paper are finite, undirected, simple, and loopless. If G is a graph,
then V (G) is its set of vertices and E(G) ⊆ V (G)2 is its set of edges. Edges are denoted by
xy (or yx) instead of {x, y}. We assume that vertices are assigned distinct indices; these will
be used to choose vertices in a deterministic way, typically selecting the vertex of smallest
index. A clique (respectively an independent set) in a graph G is a set of pairwise adjacent
(respectively non-adjacent) vertices. The subgraph of G induced by X ⊆ V (G), denoted by
G[X], is the graph (X, E(G) ∩ (X ×X)); G \X is the graph G[V (G) \X].

If the vertex set of a graph G can be partitioned into one part inducing a clique and
one part inducing an independent set (respectively two independent sets, two cliques), we
say that G is a split (respectively bipartite, co-bipartite) graph. Graphs where every cycle
is of length at least 4 are referred to as triangle-free graphs. If f is a function, we write
f(n) = poly n when there is a constant c ∈ N such that f(n) = O(nc).

Neighbors and domination. Let G be a graph and x ∈ V (G). We note N(x) the set of
neighbors of x in G defined by N(x) = {y ∈ V (G) | xy ∈ E(G)}; N [x] is the set of closed
neighbors defined by N [x] = N(x) ∪ {x}. For a given X ⊆ V (G), we respectively denote by
N [X] and N(X) the sets defined by

⋃
x∈X N [x] and N [X] \X. Let D be a set of vertices of

G. We say that D is dominating a subset S ⊆ V (G) if S ⊆ N [D]. It is minimally dominating
S if no proper subset of D dominates S. The set D is a (minimal) dominating set of G if it
(minimally) dominates V (G). The set of all minimal dominating sets of G is denoted by D(G)
and the problem of enumerating D(G) given G is denoted by Dom-Enum. Let S ⊆ V (G). A
vertex y ∈ V (G) is said to be a private neighbor of some x ∈ S if y 6∈ N [S \ {x}]. Intuitively,
this means that y is not dominated by any other vertex of S. Note that x can be its own
private neighbor. The set of private neighbors of x ∈ S in G is denoted by PrivG(S, x) and
we drop the subscript when it can be inferred from the context. Observe that S is a minimal
dominating set of G if and only if V (G) ⊆ N [S] and for every x ∈ S, Priv(S, x) 6= ∅.

Enumeration. The aim of graph enumeration algorithms is to generate a set of objects
X (G) related to a graph G. We say that an algorithm enumerating X (G) with input an
n-vertex graph G is output-polynomial if its running time is polynomially bounded by the size
of the input and output data, i.e. n + |X (G)|. If an algorithm enumerates X (G) by spending
poly(n)-time (respectively O(n)-time) before it outputs the first element, between two output
elements, and after it outputs the last element, then we say that it runs with polynomial delay

STACS 2019

16:4 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

(respectively linear delay). It is easy to see that every polynomial delay algorithm is also
output-polynomial. Note however that some problems have output-polynomial algorithms
but no polynomial delay ones, unless P=NP [25]. When discussing the space used by an
enumeration algorithm, we ignore the space where the solutions are output.

3 Minimal domination in triangle-free graphs

In this section, we give an output-polynomial time algorithm to enumerate minimal dominat-
ing sets in triangle-free graphs. The algorithm is inspired by the one of [7] and constructs
dominating sets one neighborhood at a time.

A peeling of a graph G is a sequence (V0, . . . , Vp) such that Vp = V (G), V0 = ∅, and for
every i ∈ {1, . . . , p},

Vi−1 = Vi \N [vi]

for some vi ∈ Vi. We call (v1, . . . , vp) the vertex sequence of the peeling; note that p is only
known after peeling the whole graph.

In the following, we consider a triangle-free graph G and a fixed peeling (V0, . . . , Vp)
with vertex sequence (v1, . . . , vp). For every i ∈ {0, . . . , p}, we denote by D(G, i) the set of
minimal dominating sets of Vi in G. Recall that these sets may contain vertices of G− Vi,
which is a crucial point. Then D(G, p) = D(G).

I Definition 3. Let i ∈ {0, . . . , p− 1} and D ∈ D(G, i + 1). We denote by Parent(D, i + 1)
the pair (D∗, i) where D∗ is obtained from D by successively removing the vertex x of smaller
index in D satisfying Priv(D, x) ∩ Vi = ∅, until no such vertex exists.

Clearly, there is a unique way to build Parent(D, i + 1) given D and i. By construction,
the obtained set D∗ is a minimal dominating set of Vi. Hence every set in D(G, i + 1) can
be obtained by completing some D∗ in D(G, i); we develop this point below.

I Proposition 4. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i).
If D∗ dominates Vi+1 then D∗ ∈ D(G, i + 1) and Parent(D∗, i + 1) = (D∗, i).
Otherwise, D∗ ∪ {vi+1} ∈ D(G, i + 1) and Parent(D∗ ∪ {vi+1}, i + 1) = (D∗, i).

Proof. First note that since D∗ ∈ D(G, i), Priv(D∗, x) ∩ Vi 6= ∅ for all x ∈ D∗. Hence
Parent(D∗, i + 1) = (D∗, i) whenever D∗ dominates Vi+1. If D∗ does not dominate Vi+1 then
D = D∗ ∪ {vi+1} does. Moreover, Priv(D, vi+1) ∩ Vi+1 6= ∅. Since vi+1 is not connected
to any vertex in Vi, it cannot steal any private neighbors to the elements of D∗. Hence
Priv(D, x) ∩ Vi+1 6= ∅ for all x ∈ D. Now, remark that since vi+1 does not steal private
neighbors to the elements of D∗, it is indeed itself the only node with no privates in Vi and
is removed by the parent function. Hence Parent(D∗ ∪ {vi+1}, i + 1) = (D∗, i). J

The Parent relation as introduced in Definition 3 defines a tree on vertex set

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)}, and root (∅, 0) (the empty set being the only dominating
set of the empty vertex set V0). Our algorithm will search this tree in order to enumerate
every minimal dominating set of G. Proposition 4 guarantees that for every i < p and every
D∗ ∈ D(G, i), the pair (D∗, i) is the parent of some (D, i + 1) with D ∈ D(G, i + 1) (possibly
D = D∗). Consequently, every branch of the tree leads to a different minimal dominating set
of G. In particular, for every i < p, we have |D(G, i)| ≤ |D(G, i + 1)|.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:5

Given a set D∗ ∈ D(G, i), we now focus on the enumeration of every D ∈ D(G, i+1) such
that (D, i + 1) has (D∗, i) for parent. From Proposition 4, we know that either (D∗, i + 1) or
(D∗ ∪ {vi+1}, i + 1) has (D∗, i) for parent. Consequently, we refer to X = ∅ and X = {vi+1}
as the trivial extensions of (D∗, i), and focus on the non-trivial ones.

We call candidate extension of (D∗, i) any (inclusion-wise) minimal set X ⊆ V (G) such
that D∗ ∪X dominates Vi+1 in G, avoiding the trivial cases where X ∈ {∅, {vi+1}}. Then,
X is a candidate extension of (D∗, i) if and only if X 6∈ {∅, {vi+1}}, Vi+1 ⊆ N [D∗ ∪X] and,
for every x ∈ X, Priv(D∗ ∪X, x)∩ Vi+1 6= ∅. Note that possibly not all candidate extensions
of (D∗, i) form with D∗ a minimal dominating set of Vi+1. In fact, there is no guarantee
that any candidate extension forms a minimal dominating set of Vi+1: it might be that
(D∗, i) has a unique child, given by its trivial extension. We denote by C(D∗, i) the set of
candidate extensions of (D∗, i). We point out that by the minimality assumption, the vertex
vi+1 appears in no element of C(D∗, i), as vi+1 itself is a trivial extension.

I Lemma 5. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). Then |C(D∗, i)| ≤ |D(G)|.

Proof. We argue that for every X ∈ C(D∗, i) there is an element of D(G, i + 1) whose
intersection with V (G) \D∗ is precisely X. This will prove |C(D∗, i)| ≤ |D(G, i + 1)|, hence
|C(D∗, i)| ≤ |D(G)| as desired.

Let X ∈ C(D∗, i). We consider the set X ∪D∗, which dominates Vi+1. By definition of
C(D∗, i), we have Priv(X ∪D∗, x) ∩ Vi+1 6= ∅ for every x ∈ X. Therefore, every subset of
X ∪D∗ that dominates Vi+1 contains X. Consider an inclusion-wise minimal subset D′ of
X ∪D∗ that dominates Vi+1. We have X ⊆ D′, hence the conclusion. J

Lemma 5 above ensures that C(D∗, i) is bounded by D(G). Hence, it is reasonable to
test each of the candidate extensions even though D∗ might be the parent of only one set in
D(G, i + 1). It now suffices to explain how to efficiently enumerate C(D∗, i) to complete the
algorithm (formally described in Theorem 12).

Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i). We define S = N(vi+1) ∩ Vi+1 \ N [D∗]
and C = N(S) \ {vi+1}. As G is triangle-free and S is included in the neighborhood of
vi+1, S is an independent set. Let Zi

D∗ be the split graph obtained from G[C ∪ S] where
C is completed into a clique; note that the independent set S is maximal in Zi

D∗ since
C ⊆ N(S). For any X ⊆ V (Zi

D∗), we define XC = X ∩ C and XS = X ∩ S. We set
DS=∅(Zi

D∗) = {D ∈ D(Zi
D∗) | DS = ∅}. The following result is implicit in [17].

I Proposition 6. Let H be a split graph with maximal stable set S and clique C. Let
X ⊆ V (H). Then, X ∈ D(H) if and only if S ⊆ N [X] and Priv(X, x)∩S 6= ∅ for all x ∈ X.

Proof. Let us assume that S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Then, either
X ∩C 6= ∅ or X ∩C = ∅. In the first case, X dominates C. In the other case, X = S because
S ⊆ N [X] and V (H) = C ∪ S. Remark that C ⊆ N(S) as S is assumed maximal. Hence, X

also dominates C. The minimality of X follows from our first assumption. Hence X ∈ D(H).
Conversely, let X ∈ D(H). Clearly N [X] ⊇ S, so we suppose by contradiction that

Priv(X, x) ∩ S = ∅ for some x ∈ X. By minimality of X, we have Priv(X, x) 6= ∅, which
implies Priv(X, x) ⊆ C. Consequently, we must have X ∩ C = {x}, or else x ∈ S but is not
its own private, in which case it must have a neighbor in C which contradicts Priv(X, x) 6= ∅.
As C ⊆ N(S), there exists some vertex y ∈ S∩N(x). Since y 6∈ Priv(X, x) and X ∩C = {x},
we have y ∈ X. However, in this case N [y] ⊆ N [x] and so Priv(X, y) = ∅, which contradicts
the minimality of X. J

STACS 2019

16:6 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

We now characterize C(D∗, i) depending on whether vi+1 has to be dominated by the
extension or not. The condition D∗ ∈ D(G, i) \ D(G, i + 1) in the statement below prevents
(D∗, i) from having the trivial extension ∅ –in which case it is the only one.

I Lemma 7. Let i ∈ {0, . . . , p− 1}, D∗ ∈ D(G, i) \ D(G, i + 1) and Z = Zi
D∗ . Then

either D∗ ∩N(vi+1) 6= ∅ and C(D∗, i) = D(Z),
or D∗ ∩N(vi+1) = ∅ and

C(D∗, i) = (D(Z) \ DS=∅(Z))∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

Proof. Let us first consider the case D∗ ∩ N(vi+1) 6= ∅. Let X ∈ C(D∗, i). Since vi+1 is
dominated by any vertex of D∗∩N(vi+1), only the stable set S of Z is to be dominated by X.
In other words X minimally dominates S: S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X.
By Proposition 6, X ∈ D(Z), which proves the inclusion C(D∗, i) ⊆ D(Z). Conversely, let
X ∈ D(Z). By Proposition 6, S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Since vi+1 is
already dominated by D∗, X ∈ C(D∗, i). Hence C(D∗, i) = D(Z), as desired.

From now on and until the end of the proof we assume that D∗ ∩N(vi+1) = ∅. Let C

denote the vertex set of the clique of Z. Let X ∈ C(D∗, i). We know that X must be a
dominating set of Z. Indeed, by definition of C(D∗, i), X dominates S, and either X ∩C 6= ∅,
in which case X also dominates C, or X = S and X also dominates C since C ⊆ N(S).
There are two cases to consider.

If X is a minimal dominating set of Z, then since X has to dominate vi+1, we have
X ∩ S 6= ∅ and consequently X ∈ D(Z) \ DS=∅(Z).

Otherwise, X is not a minimal dominating set of Z. This implies that it has a vertex u with
no private neighbor in Z. By definition of C(D∗, i), this means that Priv(D∗ ∪X, u)∩Vi+1 =
{vi+1}. Therefore there is exactly one such vertex. Then, if we write Q = X \ {u}, Q is a
minimal dominating set of Z. Since vi+1 is a private neighbor of u, we must have Q ∩ S = ∅,
and consequently Q ∈ DS=∅(Z). Finally, by definition of C(D∗, i), for any x ∈ Q ⊂ X, we
have Priv(X, x) ∩ Vi+1 6= ∅. This shows that we have

X ∈

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 , (1)

and proves the following inclusion:

C(D∗, i) ⊆ (D(Z) \ DS=∅(Z)) ∪

Q ∪ {u}

∣∣∣∣∣∣
Q ∈ DS=∅(Z),
u ∈ N(vi+1), and
∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅

 .

To prove the reverse inclusion, we first consider X ∈ D(Z) \ DS=∅(Z). By Proposition 6,
S ⊆ N [X] and Priv(X, x) ∩ S 6= ∅ for all x ∈ X. Since X ∩ S 6= ∅, S ∪ {vi+1} ⊆ N [X].
Thus X ∈ C(D∗, i). Now we consider a set X of the form Q ∪ {u}, for some Q ∈ DS=∅(Z)
and u ∈ N(vi+1) such that ∀x ∈ Q, Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅. By Proposition 6,
Priv(Q, x) ∩ S 6= ∅ for all x ∈ Q. Since Priv(Q ∪ {u}, x) ∩ Vi+1 6= ∅ for all x ∈ Q

and vi+1 ∈ Priv(X, u), Priv(X, x) ∩ Vi+1 6= ∅ for all x ∈ X. Since S ∪ {vi+1} ⊆ N [X],
X ∈ C(D∗, i). This proves the reverse inclusion and concludes the proof. J

In [17], authors give a polynomial delay algorithm to enumerate minimal dominating sets
in split graphs.

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:7

I Theorem 8 ([17]). There is an algorithm that, given a split graph H with n vertices and m

edges, outputs with O(n + m) delay every minimal dominating set of H, using O(n2) space.

The above algorithm relies on the observation that for every split graph H, the set DC(H) =
{DC | D ∈ D(H)} is in bijection with D(H) and it forms an independence system. A family
of sets S is an independence system if S ∈ S implies that S \ {s} ∈ S for all s ∈ S. We show
that there is a polynomial delay algorithm to enumerate C(D∗, i) given i ∈ {1, . . . , p− 1}
and D∗ ∈ D(G, i) using the same observations.

I Proposition 9 ([17]). Let H be a split graph with maximal stable set S and clique C and
let D be a minimal dominating set of H. Then DS = S \N(DC).

I Proposition 10 ([17]). Let H be a split graph with maximal stable S and clique C. Then:
1. DC(H) = {A ⊆ C | ∀x ∈ A, Priv(A, x) 6= ∅},
2. DC(H) and D(H) are in bijection,
3. DC(H) is an independence system.

I Lemma 11. There is an algorithm that, given i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, i),
enumerates C(D∗, i) in output-polynomial time O(poly(n) · |C(D∗, i)|) and using at most
poly(|V (G)|) space.

Proof. Lemma 7 allows us to consider two cases depending on whether vi+1 has a neighbor
in D∗ or not. Let Z = Zi

D∗ . As usual we denote by S and C the maximal stable set and the
clique of Z, respectively.

If D∗ ∩ N(vi+1) 6= ∅, then by Lemma 7 C(D∗, i) = D(Z), and we can enumerate the
elements of C(D∗, i) with polynomial delay using the algorithm of Theorem 8 on D(Z).

In the case where D∗ ∩ N(vi+1) = ∅, we start enumerating DC(Z). This can be done
with polynomial delay and space as in the proof of Theorem 8, using the fact that DC(Z)
is an independence system and that testing if an arbitrary set A belongs to DC(Z) can be
done in polynomial time using Lemma 10. That is, we construct elements of DC(Z) from
the empty set to every inclusion-wise maximal A ∈ DC(Z). Repetitions are avoided using a
linear ordering on vertices of C; see [17] for details. Then, for every set A ∈ DC(Z) output
by the above algorithm, we check in polynomial time if it dominates Z. If it does not, then
we extend A into its unique corresponding minimal dominating set D ∈ D(Z) such that
D ∩ C = A (i.e. D = A ∪ S \N(A)), and output D. Otherwise, for every u ∈ N(vi+1) such
that for all x ∈ A, Priv(A ∪ {u}, x) ∩ Vi+1 6= ∅ (which can be tested in time polynomial in
the order of Z), we output A ∪ {u}. Lemma 7 guarantees that the above algorithm indeed
outputs C(D∗, i).

Note that the only elements D ∈ D(Z) which do not lead to an element of C(D∗, i) are
the D ∈ DS=∅(Z) for which no vertex u ∈ N(vi+1) satisfies the desired conditions. However,
we will show that |DS=∅(Z)| ≤ n|D(Z) \ DS=∅(Z)|. Indeed, consider the map f that, given
D ∈ DS=∅(Z) removes one arbitrary vertex from D, and completes the dominating set by
adding the vertices in the independent set which are no longer dominated. Then, f maps
elements of DS=∅(Z), to the set D(Z) \ DS=∅(Z). Moreover, every element in this second
set is the image of at most |C| ≤ n elements by f . This implies the desired bound.

Consequently, this means that while enumerating D(Z), we might throw out a fraction
at most n

n+1 of all the solutions we found which do not lead to elements in C(D∗, i). This
shows that the algorithm has output-polynomial time. J

We are now ready to prove Theorem 1, that we restate here in a more accurate form.

STACS 2019

16:8 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

I Theorem 12. There is an algorithm that, given a triangle-free graph G on n vertices,
outputs D(G) in total time poly(n) · |D(G)|2 and using at most poly n space.

Proof. We first arbitrarily choose a peeling (V0, . . . , Vp) of our input graph G with vertex
sequence (v1, . . . , vp). This takes time poly n.

Recall that the Parent relation defines a tree T on vertex set

{(D, i) | i ∈ {1, . . . , p} , D ∈ D(G, i)},

with leaves {(D, p) | D ∈ D(G)} and root (∅, 0). Let us describe how to enumerate the
children in T of (D∗, i) for every given vertex D∗ ∈ D(G, i). If D∗ dominates Vi+1, then
(D∗, i + 1) is the only pair whose parent is (D∗, i). Otherwise, we proceed as follows:

1. output the trivial child D∗ ∪ {vi+1};
2. start (or resume, if it had already been started) the algorithm of Lemma 11 and pause it

after one element X of C(D∗, i) has been output;
3. if D∗∪X is not a minimal dominating set of Vi+1 in G, or if it is but Parent(D∗∪X, i+1) 6=

(D∗, i), discard X and loop to (2);
4. output D∗ ∪X and loop to (2).
The algorithm terminates when the algorithm of Lemma 11 in step (2) completes the
enumeration of C(D∗, i). The correctness of the algorithm is a consequence of the following
inclusions:

{D ∈ D(G, i + 1) | Parent(D, i + 1) = (D∗, i)} ⊆{D ∈ D(G, i + 1) | D∗ ⊆ D}
⊆{D∗ ∪X | X ∈ C(D∗, i)}

∪ {D∗ ∪ {vi+1}}
∪ {D∗}

Notice that it uses at most poly n space, since we only store the data of the algorithm of
Lemma 11, of size at most poly n, and the data to perform step (3), which is clearly also
polynomial in n.

In order to enumerate D(G), i.e. the set of leaves of T , we perform a DFS and output
each visited leaf. For each vertex of T , enumerating its children can be done in at most
poly(n) · |D(G)| steps with the above algorithm, according to Lemmas 5 and 11. Besides,
the number of vertices of T at distance i from the root is at most its number of leaves, hence
T has at most O(n · |D(G)|) vertices. Therefore we can enumerate D(G) in poly(n) · |D(G)|2
steps. Regarding the space, we observe that whenever we visit a vertex, we do not need to
compute the whole set of its children. Instead, it is enough in order to continue the DFS to
compute the next unvisited child only, which can be done using the algorithm above (and
pausing it afterward). Therefore, when we visit some (D, i) ∈ V (T), we only need to store
the data of the i− 1 (paused) algorithms enumerating the children of the ancestors of (D, i)
and the data of the algorithm enumerating the children of D, i.e. i · poly n space. Therefore
the described algorithm uses polynomial space, as claimed. J

4 The extension problem is hard in bipartite graphs

We recall that Dcs denotes the problem of deciding, given a graph G and a set A ⊆ V (G),
whether there exists a minimal dominating set D of G such that A ⊆ D. This problem is
known to be NP-complete for general graphs [15]. It has later been proved that the variant
where we search for a minimal dominating set containing A, and avoiding a given vertex

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:9

x1

¬x1

xn

¬xn

x2

¬x2

negx1

negxn

negx2

. . .

yC1

yCm

yC2

. . .

u v

zw
. . .

Figure 1 A bipartite graph G and a set A ⊆ V (G) constructed from an instance of SAT with
variables x1, . . . , xn and clauses C1, . . . , Cm. Black vertices constitute the set A. Then A can be
extended into a minimal dominating set D of G if and only if there is a truth assignment of the
variable satisfying all the clauses.

set B remains intractable even on split graphs [19]. We show that Dcs is still hard for
bipartite graphs and thus triangle-free graphs. As a consequence, one cannot expect to
improve Theorem 1 by testing if subsets of V (G) can be extended into minimal dominating
sets of G. The following is a restatement of Theorem 2.

I Theorem 13. Dcs restricted to bipartite graphs is NP-complete.

Proof. Since Dcs is NP-complete in the general case, it is clear that Dcs is in NP even
when restricted to bipartite graphs. Let us now present a reduction from SAT.

Given an instance I of SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we construct
a bipartite graph G and a set A ⊆ V (G) such that there exists a minimal dominating set
containing A if and only if there exists a truth assignment that satisfies all the clauses. The
graph G has vertex partition (X, Y), defined as follows.

The first part X contains two special vertices u and w, and for every variable xi, one vertex
for each of the literals xi and ¬xi. The second part Y contains one vertex yCj per clause Cj ,
one vertex negxi

per variable xi, and two special vertices v and z. For every i ∈ {1, . . . , n} we
make negxi adjacent to the two literals xi and ¬xi and for every j ∈ {1, . . . , m} we make yCj

adjacent to u and to every literal Cj contains. Finally, we add edges to form the path uvwz

and set A = {negx1 , . . . , negxn , v, w}. Clearly this graph can be constructed in polynomial
time from I. The construction is illustrated in Figure 1.

Let us show that A can be extended into a minimal dominating set of G if and only if I
has a truth assignment that satisfies all the clauses. The proof is split into two claims. A
partial assignment of I is a truth assignment of a subset of the variables x1, . . . , xn. Observe
that a partial assignment may satisfy all the clauses (i.e. the values of the non-assigned
variables do not matter). A partial assignment that satisfies all the clauses is called a minimal
assignment if no proper subset of the assigned variables admits such a partial assignment.

B Claim 14. Let S ⊆ {x1,¬x1, . . . , xn,¬xn} be a set containing at most one literal for each
variable. Then S minimally dominates {yC1 , . . . , yCm

} if and only if its elements form a
minimal assignment of I.

Proof of Claim 14. Let S be as above and let j ∈ {1, . . . , m}. Since yCj
/∈ S, the set S

contains a neighbor x of yCj
. By construction, x is a literal appearing in Cj . Hence a partial

assignment of the variables of I satisfying all its clauses is given by the literals present in S.
Moreover, x has a private neighbor yCj′ , by minimality of S. The assignment given by S

is hence minimal: not specifying the value of the variable of x would leave the clause Cj′

unsatisfied. C

STACS 2019

16:10 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

B Claim 15. If D is a minimal dominating set of G containing A, then D \A ⊆ {x1,¬x1, . . . ,

xn,¬xn} and it contains at most one literal for each variable.

Proof of Claim 15. Notice that Priv(A, v) = {u}. If yCj
belongs to D for some j ∈ {1, . . . , m},

then Priv(D, v) = ∅, a contradiction to the minimality of D. For similar reasons u, z /∈ D.
Hence D ∩ {u, z, yC1 , . . . , yCm

} = ∅. Besides, for every i ∈ {1, . . . , m}, D contains at most
one of xi and ¬xi, as otherwise Priv(D, negxi

) would be empty, again contradicting the
minimality of D. This proves the claim. C

If A can be extended into a minimal dominating set D of G, then by combining the two
claims above, we deduce that I has truth assignment that satisfies all clauses. Conversely,
if I has such a truth assignment, then there is a set S as in the statement of Claim 14. In
S ∪ A, every element of S has a private neighbor, as a consequence of the minimality of
S and the fact that no element of A has a neighbor among the clause variables. Besides,
each of negx1 , . . . , negxn

has a private neighbor (because S contains at most one of the two
literals for each variable) and it is easy to see that the same holds for v and w. Hence S ∪A

is a minimal dominating set of G.
Given an instance I of SAT, we constructed in polynomial time an instance (G, A) of

Dcs that is equivalent to I. This proves that Dcs is NP-hard. J

5 Conclusion

In this paper, we proved that the set of minimal dominating sets of a triangle-free graph,
hence bipartite graph, can be enumerated in output-polynomial time. It remains open
whether a polynomial delay algorithm exists for these classes.

The most general open problem on the topic discussed in this paper is whether the
minimal dominating sets of a co-bipartite graph can be enumerated in output-polynomial
time. Indeed, as noted in the introduction this would imply that such an algorithm also
exists for the general case. Other classes where no output-polynomial time algorithms are
known include unit disk graphs and graphs of bounded expansion, according to [20, 11].

References
1 Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of large graphs. SIAM

Journal on Computing, 2(1):1–6, 1973.
2 John M. Barnard. Substructure searching methods: Old and new. Journal of Chemical

Information and Computer Sciences, 33(4):532–538, 1993.
3 Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph

colouring. Operations Research Letters, 32(6):547–556, 2004.
4 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied

Mathematics, 157(12):2675–2700, 2009.
5 Peter Damaschke. Parameterized Enumeration, Transversals, and Imperfect Phylogeny Recon-

struction. In Rod Downey, Michael Fellows, and Frank Dehne, editors, Parameterized and
Exact Computation, pages 1–12, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

6 Thomas Eiter and Georg Gottlob. Hypergraph transversal computation and related problems
in logic and AI. In European Workshop on Logics in Artificial Intelligence, pages 549–564.
Springer, 2002.

7 Thomas Eiter, Georg Gottlob, and Kazuhisa Makino. New results on monotone dualization
and generating hypergraph transversals. SIAM Journal on Computing, 32(2):514–537, 2003.
arxiv:cs/0204009.

https://arxiv.org/abs/cs/0204009

M. Bonamy, O. Defrain, M. Heinrich, and J.-F. Raymond 16:11

8 Thomas Eiter, Kazuhisa Makino, and Georg Gottlob. Computational aspects of monotone
dualization: A brief survey. Discrete Applied Mathematics, 156(11):2035–2049, 2008.

9 Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

10 Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Sigve H.
Sæther, and Yngve Villanger. Output-Polynomial Enumeration on Graphs of Bounded
(Local) Linear MIM-Width. Algorithmica, 80(2):714–741, February 2018. arxiv:1509.03753.
doi:10.1007/s00453-017-0289-1.

11 Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yngve Villanger.
Enumerating minimal dominating sets in chordal bipartite graphs. Discrete Applied Mathem-
atics, 199:30–36, 2016. Special Issue: Sixth Workshop on Graph Classes, Optimization, and
Width Parameters 2013. doi:10.1016/j.dam.2014.12.010.

12 Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An Incremental
Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets. Algorithmica,
72(3):836–859, July 2015. doi:10.1007/s00453-014-9875-7.

13 Joshua A. Grochow and Manolis Kellis. Network motif discovery using subgraph enumeration
and symmetry-breaking. In Annual International Conference on Research in Computational
Molecular Biology, pages 92–106. Springer, 2007.

14 Mihály Hujtera and Zsolt Tuza. The Number of Maximal Independent Sets in Triangle-Free
Graphs. SIAM Journal on Discrete Mathematics, 6(2):284–288, 1993. doi:10.1137/0406022.

15 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. Enumer-
ation of minimal dominating sets and variants. In International Symposium on Fundamentals
of Computation Theory, pages 298–309. Springer, 2011. arxiv:1407.2053.

16 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
neighbourhood helly of some graph classes and applications to the enumeration of minimal
dominating sets. In International Symposium on Algorithms and Computation, pages 289–298.
Springer, 2012.

17 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the
Enumeration of Minimal Dominating Sets and Related Notions. SIAM Journal on Discrete
Mathematics, 28(4):1916–1929, 2014. arxiv:1407.2053.

18 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki
Uno. On the enumeration and counting of minimal dominating sets in interval and permutation
graphs. In International Symposium on Algorithms and Computation, pages 339–349. Springer,
2013.

19 Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine, and Takeaki
Uno. A polynomial delay algorithm for enumerating minimal dominating sets in chordal
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages
138–153. Springer, 2015. arxiv:1407.2036.

20 Mamadou Moustapha Kanté and Lhouari Nourine. Minimal Dominating Set Enumeration. In
Ming-Yang Kao, editor, Encyclopedia of Algorithms, pages 1–5. Springer US, Boston, MA,
2014. doi:10.1007/978-3-642-27848-8_721-1.

21 M. P. Marcus. Derivation of Maximal Compatibles Using Boolean Algebra. IBM Journal of
Research and Development, 8(5):537–538, November 1964. doi:10.1147/rd.85.0537.

22 Andrea Marino. An Application: Biological Graph Analysis. In Analysis and Enumeration:
Algorithms for Biological Graphs, pages 37–44. Atlantis Press, Paris, 2015. doi:10.2991/
978-94-6239-097-3_3.

23 Andrea Marino. Enumeration Algorithms. In Analysis and Enumeration: Algorithms for
Biological Graphs, pages 13–35. Atlantis Press, Paris, 2015. doi:10.2991/978-94-6239-097-3_
2.

24 M. C. Paull and S. H. Unger. Minimizing the Number of States in Incompletely Specified
Sequential Switching Functions. IRE Transactions on Electronic Computers, EC-8(3):356–367,
September 1959. doi:10.1109/TEC.1959.5222697.

STACS 2019

https://arxiv.org/abs/1509.03753
http://dx.doi.org/10.1007/s00453-017-0289-1
http://dx.doi.org/10.1016/j.dam.2014.12.010
http://dx.doi.org/10.1007/s00453-014-9875-7
http://dx.doi.org/10.1137/0406022
https://arxiv.org/abs/1407.2053
https://arxiv.org/abs/1407.2053
https://arxiv.org/abs/1407.2036
http://dx.doi.org/10.1007/978-3-642-27848-8_721-1
http://dx.doi.org/10.1147/rd.85.0537
http://dx.doi.org/10.2991/978-94-6239-097-3_3
http://dx.doi.org/10.2991/978-94-6239-097-3_3
http://dx.doi.org/10.2991/978-94-6239-097-3_2
http://dx.doi.org/10.2991/978-94-6239-097-3_2
http://dx.doi.org/10.1109/TEC.1959.5222697

16:12 Enumerating Minimal Dominating Sets in Triangle-Free Graphs

25 Yann Strozecki. Enumeration complexity and matroid decomposition. PhD thesis, Paris 7,
2010.

26 Robert Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM Journal on
Computing, 2(3):211–216, 1973.

27 James C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.
Communications of the ACM, 13(12):722–726, 1970.

28 Kunihiro Wasa. Enumeration of enumeration algorithms. Preprint arxiv:1605.05102, 2016.
See also https://kunihirowasa.github.io/enum/index (accessed on September 2018).

29 Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure similarity search in graph databases.
In Proceedings of the 2005 ACM SIGMOD international conference on Management of data,
pages 766–777. ACM, 2005.

https://arxiv.org/abs/1605.05102
https://kunihirowasa.github.io/enum/index

	Introduction
	Preliminaries
	Minimal domination in triangle-free graphs
	The extension problem is hard in bipartite graphs
	Conclusion

