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Introduction. This paper introduces ongoing researches on graphs built from ag-
gregation of sequential data. More precisely, we focus on spatially and temporally
located sequential data such as the records of ports visited by transportation ves-
sels. The traces used here are extracted from the Lloyd’s List Intelligence database!
and consists of container ships movements between April 1st 2009 and July 31th
2009 (made available by the WorldSeastems ERC project [3,4]): the ports visited
along with the arrival and sailing dates of the vessels.

Although dynamic in nature, the shipping network is often studied as a static
graph built by aggregation over a given period [5,7]. For instance, [7] compared
two static aggregations of transportation companies lines in 2004 and 2014. Look-
ing at the robustness of some graph measures, they concluded that the maritime
network became more vulnerable to port failures.

However, there are several ways to construct a network from sequential data. They
actually correspond to different aggregation strategies which lead to different in-
terpretations of a same graph measure. The work presented here focuses on the
comparison between network statistics depending on the chosen strategies. One im-
portant contribution of this work is the comparison between static shortest-path
lengths and time-dependent fastest-path durations.

Aggregation strategies. In the context of maritime transportation networks, we use
the concepts of space L and space A (using a terminology close to [5]). For a vessel
with a sequence of visited ports (a — b — ¢), a space L network contains direct
links (a — b) and (b — ¢) while a space A network also contains the indirect link
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(a — ¢). The out-degree of a vertex (port) a in space L (respectively space A) cor-
responds to the number of direct destinations (resp. reachable ports) using a ship
leaving a. The unweighted shortest-path distance between ports a and b in space
L (resp. space A) corresponds to the minimum of number of visited ports (resp.
number of ships used) from a to b.

We can also use knowledge about the domain to define networks in space P.
Indeed, vessels are not independent agents but are assigned to a set of ports (lines
or routes) by shipping companies. The assignations may change over time. Other
researches [7,5] directly use the lines given by shipping companies to define space
P. For a given line, space P includes the indirect links between all ports visited on
this route. Unlike space A, it does not include indirect links between ports that
are never part of the same line and where no exchange of goods could have taken
place. In space P, the out-degree corresponds to the number of lines available in a
port while distances correspond to the minimum number of different lines required
to go from a port to another.

However, the Lloyd’s database does not include shipping companies’ planned lines
but “only” the temporal sequences of ports actually visited by each vessel. The
sequences still contain some patterns that can be used to recover the lines. For
instance, a classic shipping route passes through a given port at most twice [6]
(following a circle pattern). We develop a simple procedure to extract lines from
the sequence of ports visited by a given ship: we recursively cut the port sequence
using as pivot the most visited port until the sequence is partitioned into valid
circle sub-sequences.

Notice that temporal and sequential information are lost using space L, P or A.
However, we can use ships’ arrival and sailing dates in each port and set the av-
erage time needed to cross an edge (a — b) as the average difference between
sailing dates from a and arrivals dates in b. But this definition of edges weight
still discards an important feature of temporal networks namely the frequencies
of interaction between elements (number of ships going between two ports on a
given period).

Another aggregation that preserves frequencies is the use of dynamic graphs

model. The idea is to store every arrival and sailing dates for each edge in space
L,P or A. The notion of shortest-path distance can be intuitively interpreted the
fastest-path duration which can be computed using a variation of Dijkstra’s algo-
rithm [1]. Notice that a path is here defined not only by a starting port but also
by a starting date.
This aggregation a priori also discards sequential information as one path can
jump from one ship to another without any cost. This hidden hypothesis leads to
strange results as a fastest path may include a lot of ports. We can introduce a
stopover cost using multi-modal fastest path durations [2]. One solution here is
computing fastest-paths using sailing and arrivals dates on edges in space P or A
adding a fixed time ¢ (time required to take another line or ship) each time a port
is visited. Indeed, in space P (resp. A), if a fastest path contains an internal node
it means that a change of line (resp. ship) had to take place. The additivity of
shortest-paths is therefore not violated and Dijkstra’s algorithm variation can still
be used.
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Results We compare the four networks and computed distances using as vertex
statistic the average distances from one port to the others. A low value indicates
that a port is easily reachable. As the dynamic network may not be “temporally
connected” we filtered out ports with a low frequency of interactions and took the
average of travel duration over the period. We therefore compare the results on
438 ports. The density of connections for space L,P and A are 0.03, 0.1 and 0.15
respectively.

First results suggest that space P and space A are actually very similar w.r.t. static
distances and almost identical w.r.t. temporal distances. This may indicate that
most ships follow regular routes on this relatively short period.

They also suggest that unweighted distances in space L (i.e. minimum number of
visited ports) is a better approximation for travel durations than the unweighted
distances in space P or A (minimum number of used lines or ships). Although
correlations with space P and A distances exist, it indicates that assessing ports
accessibility only using space P or A may discard important information. This effect
is stronger when looking at average travel durations with a cost of stopover ¢ = 2.
These correlations seem weaker when looking at the weighted distances (i.e. using
the average time needed to cross an edge). This observation is counter-intuitive
and further tests are needed to validate it.

Ongoing work and future directions. More work is needed in order to assess the ef-
fects of errors in the database. Indeed, some trips between distant ports are shorter
than they should. This may affect weighted distances and fastest-paths computa-
tion. Moreover, our definition of space P relies on one possible route extraction
algorithm that should be compared against others or directly against the shipping
lines given by the shipping companies.

Future directions include the analysis of the measurements and their robustness
to change on different time periods [7]. We will also compare other network mea-
sures (e.g. clustering coefficient) with their dynamic counterparts (e.g. a dynamic
clustering coefficient corresponding to a local and dynamic version of betweeneess
centrality).
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