

Efficient Constraint Programming Approaches for routing problem: a case study for the VRP

Matthieu Gondran Eric Bourreau and Philippe Lacomme

Motivation

- Constraint Programming (CP)
 - Starts in early 80's
 - Originally from Artificial Intelligence
 - Successfully applied to combinatorial problems around 2000.
- Few works around routing problems
 - Most of (nice) papers FROM the constraint community TO the constraint community
- The GAP from ILP to CP is not too big
 - Model & Solve (declarative but better if you manage the search strategy)
 - Very (very) efficient free/commercial solvers
 - Easy hybridization

VRP: linear formulation

$$\forall k = 1..V \qquad \sum_{j=2}^{N} x_{1j}^{k} \leq 1 \qquad (1)$$

$$\forall i = 1..N, \forall j = 1..N, \forall k = 1..V \qquad q_{i}^{k} + D_{j} \leq q_{j}^{k} + (1 - x_{1j}^{k}).H \qquad (2)$$

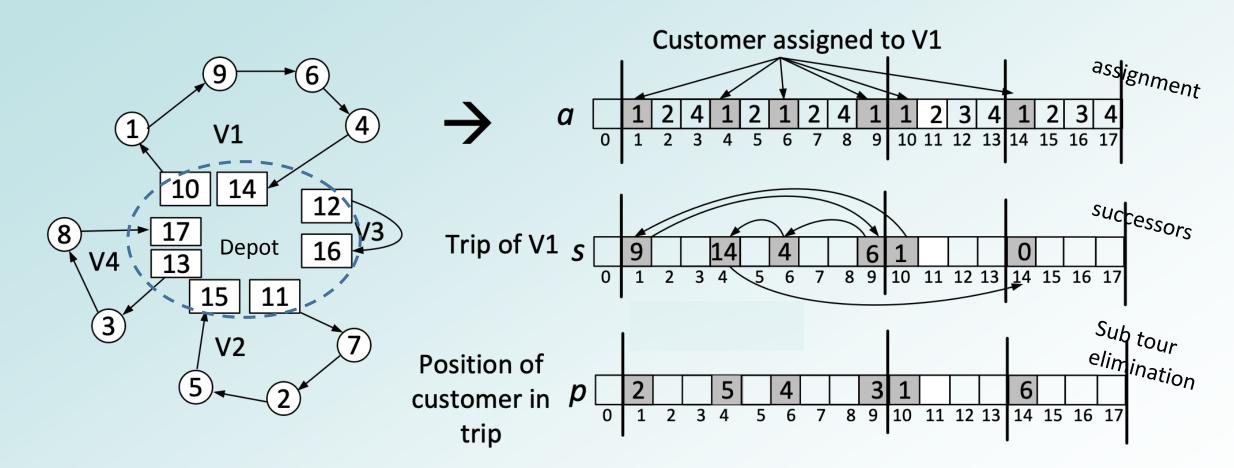
$$\forall j = 1..N, \forall k = 1..V \qquad q_{j}^{k} \leq C \qquad (3)$$

$$\forall i = 2..N \qquad \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} - 1 \qquad (4)$$

$$\forall j = 2..N \qquad \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 \qquad (5)$$

$$\forall j = 2..N, \forall k = 1..V \qquad \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 \qquad (5)$$

$$\forall i = 1..N, \forall k = 1..V \qquad \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 \qquad (7)$$


$$d = \sum_{l=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} x_{lj}^{k}.T_{lj} \qquad (8)$$

$$Min d$$

VRP: linear formulation

$$\begin{array}{c} \forall k = 1..V & \sum_{j=2}^{N} x_{1j}^{k} \leq 1 & (1) & \overset{\text{assignment}}{\text{sub tour elimination}} \\ \forall i = 1..N, \forall j = 1..N, \forall k = 1..V & q_{i}^{k} + D_{j} \leq q_{j}^{k} + (1 - x_{1j}^{k}).H & (2) & \text{sub tour elimination} \\ \forall j = 1..N, \forall k = 1..V & q_{j}^{k} \leq C & (3) & \overset{\text{predecessors}}{\text{successors}} \\ \forall i = 2..N & \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 & (5) & \overset{\text{successors}}{\text{successors}} \\ \forall j = 2..N & \sum_{i=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 & (5) & \overset{\text{subccessors}}{\text{successors}} \\ \forall j = 2..N, \forall k = 1..V & \sum_{i=1}^{N} \sum_{k=1}^{K} x_{ij}^{k} = 1 & (5) & \overset{\text{subccessors}}{\text{successors}} \\ \forall i = 1..N, \forall k = 1..V & x_{ji}^{k} \neq 1 & (7) & \\ d = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{K} x_{ij}^{k}.T_{ij} & (8) & \\ & & & & & & \\ \end{array}$$

VRP: CP formulation

VRP: CP formulation

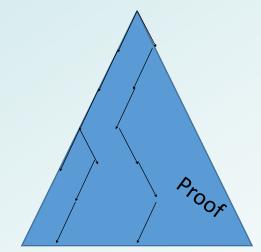
<u>Data</u>	
Ν	Set of customer to service with N the number of customers
V	Set of vehicles
S = N + 2 V	Number of nodes with 2 V the total number of depots
V^d	Set of initial depot node (one per vehicle)
V^f	Set of final depot node (one per vehicle)
D_i	quantity to deliver at node <i>i</i>
T_{ij}	distance from i to j with $i \in N$ et $j \in N$
T'_{ij}	distance from i to j with $i \in N \cup V^d \cup V^f$ et $j \in N \cup V^d \cup V^f$
C_v	vehicle capacity $v \in V$
<u>Variables</u>	
p_i	= k, the customer <i>i</i> is in position <i>k</i> in the trip
s _i	successor of $i \ (\forall i \in N \cup V^d)$ in the trip
a_i	$= v$ assignment of vehicle v to service $i \ (\forall i \in N \cup V^d \cup V^f)$
d	total cost
b^{v}	set of customers assigned to vehicle v

VRP: CP formulation – mathematical formulation

$\forall i \in N \cup V^d$	$s_i \in [1; S]$	(1)
$\forall i \in V^f$	$s_i = 0$	(2)
$\forall i \in N$	$a_i \in [1; V]$	(3)
$\forall i \in V^f \cup V^d$	$a_i = i$	(4)
$\forall i \in N \cup V^f$	$p_i \in [1; N + 1]$	(5)
$\forall i \in V^d$	$p_i = 0$	(6)
$\forall i, j \in \{N \cup V^d \cup V^f\}^2$	$s_i \neq s_j$	(7)
$\forall i \in N \cup V^d$	$a_i = a_{s_i}$	(8)
$\forall i \in N \cup V^d$	$s_i \neq i$	(9)
$\forall i \in N \cup V^d$	$p_{s_i} = p_i + 1$	(10)
$\forall v \in V$,	$b^{v} = \{u \in N/a_{u} = v\}$	(11)
$\forall v \in V$,	$\sum D_i < C_n$	(12)
	$\sum_{i\in b^v} z_i = z_v$	
	$d = \sum_{i=1}^{S} T_{i,s_i}$	6 (13)
	$\begin{aligned} \forall i \in V^{f} \\ \forall i \in N \\ \forall i \in V^{f} \cup V^{d} \\ \forall i \in N \cup V^{f} \\ \forall i \in N \cup V^{f} \\ \forall i \in V^{d} \\ \forall i, j \in \{N \cup V^{d} \cup V^{f}\}^{2} \\ \forall i \in N \cup V^{d} \\ \forall v \in V, \end{aligned}$	$ \begin{array}{ll} \forall i \in V^f & s_i = 0 \\ \forall i \in N & a_i \in [1; V] \\ \forall i \in V^f \cup V^d & a_i = i \\ \forall i \in N \cup V^f & p_i \in [1; N + 1] \\ \forall i \in V^d & p_i = 0 \\ \forall i, j \in \{N \cup V^d \cup V^f\}^2 & s_i \neq s_j \\ \forall i \in N \cup V^d & a_i = a_{s_i} \\ \forall i \in N \cup V^d & s_i \neq i \\ \forall i \in N \cup V^d & p_{s_i} = p_i + 1 \\ \forall v \in V, & b^v = \{u \in N/a_u = v\} \\ \forall v \in V, & \sum_{i \in b^v} D_i \leq C_v \end{array} $

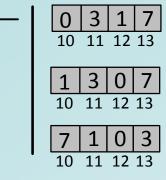
VEROLOG 2019 (Sevilla)

VRP: CP formulation			
VINF. CF IUIIIIIIIIIIIIIIIIIII	$\forall i \in N \cup V^d$	$s_i \in [1; S]$	(1)
	$\forall i \in V^f$	$s_i = 0$	(2)
	$\forall i \in N$	$a_i \in [1; V]$	(3)
	$\forall i \in V^f \cup V^d$	$a_i = i$	(4)
	$\forall i \in N \cup V^f$	$p_i \in [1; N + 1]$	(5)
	$\forall i \in V^d$	$p_{i} = 0$	(6)
	$\forall i,j \in \{N \cup V^d \cup V^f\}^2$	$AllDifferent(s_i)$	(7)
	$\forall i \in N \cup V^d$	$Element(a_i, a, s_i)$	(8)
	$\forall i \in N \cup V^d$	$s_i \neq i$	(9)
	$\forall i \in N \cup V^d$	$t_i = p_i + 1$	(10.1)
	$\forall i \in N \cup V^d$	$Element(t_i, p, s_i)$	(10.2)
	$\forall v \in V$	$b^v = \{u \in N/a_u = v\}$	(11.1)
	$\forall v \in V$	setsIntsChannealing(b, a)	(11.2)
	$\forall v \in V$	$SumElements(b_i, D, C_v)$	(12)
	$\forall i \in N \cup V^d \cup V^f$	$dp_i \in [1; H]$	(13.1)
	$\forall i \in N \cup V^d \cup V^f$	$Element(dp_i, T_i, s_i)$	(13.2)
		$d = sum(dp_i)$	(13.3)


VRP: CP formulation			
	$\forall i \in N \cup V^d$	$s_i \in [1; S]$	(1)
	$\forall i \in V^f$	$s_i = 0$	(2)
	$\forall i \in N$	$a_i \in [1; V]$	(3)
	$\forall i \in V^f \cup V^d$	$a_i = i$	(4)
	$\forall i \in N \cup V^f$	$p_i \in [1; N + 1]$	(5)
	$\forall i \in V^d$	$p_{i} = 0$	(6)
Element(X,T,I)	$\forall i,j \in \{N \cup V^d \cup V^f\}^2$	$AllDifferent(s_i)$	(7)
T[1] = X	$\forall i \in N \cup V^d$	$Element(a_i, a, s_i)$	(8)
	$\forall i \in N \cup V^d$	$s_i \neq i$	(9)
	$\forall i \in N \cup V^d$	$t_i = p_i + 1$	(10.1)
	$\forall i \in N \cup V^d$	$Element(t_i, p, s_i)$	(10.2)
	$\forall v \in V$	$b^v = \{u \in N/a_u = v\}$	(11.1)
	$\forall v \in V$	setsIntsChannealing(b, a)	(11.2)
	$\forall v \in V$	$SumElements(b_i, D, C_v)$	(12)
	$\forall i \in N \cup V^d \cup V^f$	$dp_i \in [1; H]$	(13.1)
	$\forall i \in N \cup V^d \cup V^f$	$Element(dp_i, T_i, s_i)$	(13.2)
		$d = sum(dp_i)$	(13.3)

Keypoints

- 1. Symmetry breaks
- 2. Link variables to avoid iterative explicit enumeration of several trees
- 3. Promote **global constraints** including cumulative() and diffN() strongly powerful for scheduling and routing
- 4. Avoid « bad » constraint including sum() / scalar() with poor propagation
- 5. Redundant constraint can favor propagation
 - Graph : include both successor and predecessor (see Channeling)
- 6. Search strategies
 - Promote Variable selector considering first maxRegret(), which chooses the variable with the largest difference between the two smallest values in its domain
 - Assignment strategy → consider first DomOverWDeg()


Modelling improvements

		Version V1	
1 SOLUTION	S*	32	
	Nb Nodes	29	
	Backtracks	3	
	Fails	3	
	T*(sec)	0.023	
OPTIMAL	S*	25	
SOLUTION	Nb Nodes	51 992	Firs
	Backtracks	103 921	sol
	Fails	51 960	SUI
	T*(sec)	1,936	
PROOF	Nb Nodes	4 817 732	
	Backtracks	9 635 453	
	Fails	4 817 721	
	TT(sec)	≅150.000	

First ... Optimal sol sol

1/6 Model with symmetries breaks

$\forall i$	E	V^d
-------------	---	-------

 $s_i < s_{i+1}$

(14)

		Version V1	Version V2
SYMETRIE			×
1 SOLUTION	S*	32	27
	Nb Nodes	29	28
	Backtracks	3	1
	Fails	3	1
	T*(sec)	0.023	0.026
OPTIMAL SOLUTION	S*	25	25
	Nb Nodes	51 992	2 847
	Backtracks	103 921	5 642
	Fails	51 960	2 823
	T*(sec)	1.936	0.346
PROOF	Nb Nodes	4 817 732	327 391
	Backtracks	9 635 453	654 777
	Fails	4 817 721	327 386
	TT(sec)	148.450	9.395

0 1 3 7 10 11 12 13

2/6 Link variables

 $\forall i \in V^d$ $\forall i \in N$

 $y_i = 100 \times a_i + s_i$ (15)

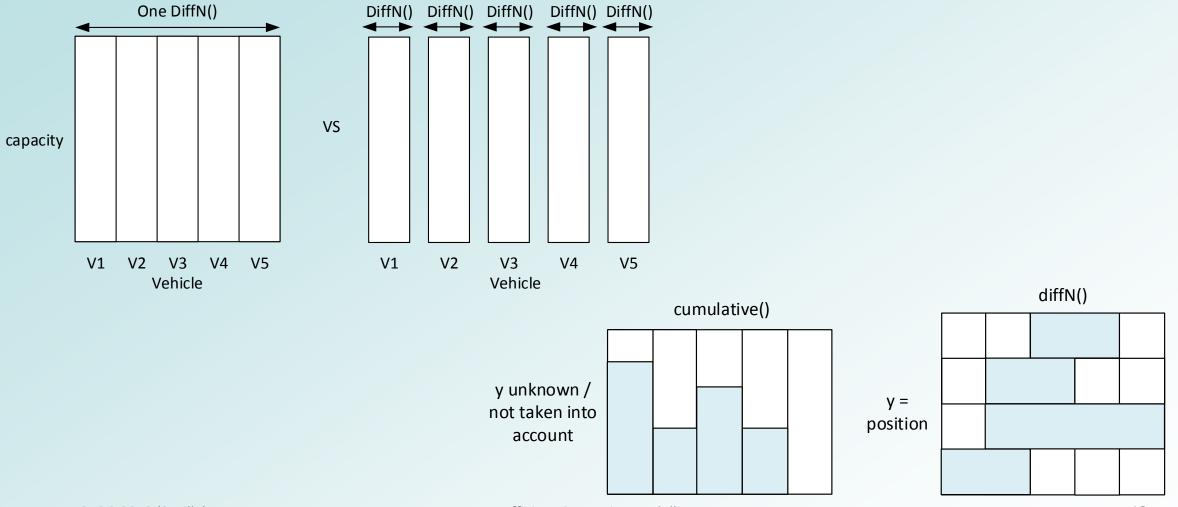
 $y_i \in [1; 100 \times |V| + S]$

		Version V1	Version V2	Version V3
SYMETRIE			×	×
LING a AND s				×
1 SOLUTION	S*	32	27	27
	Nb Nodes	29	28	30
	Backtracks	3	1	1
	Fails	3	1	1
	T*(sec)	0.023	0.026	0.039
OPTIMAL SOLUTION	S*	25	25	25
	Nb Nodes	51 992	2 847	3 156
	Backtracks	103 921	5 642	6 252
	Fails	51 960	2 823	3 128
	T*(sec)	1,936	0,346	0.440
PROOF	Nb Nodes	4 817 732	327 391	188 107
	Backtracks	9 635 453	654 777	376 409
	Fails	4 817 721	327 386	188 202
	TT(sec)	148.450	9.395	7.154

(16)

Branch on decision variables → y

mon_solveur.setSearch(new DomOverWDeg(y, 0, new IntDomainMin()));

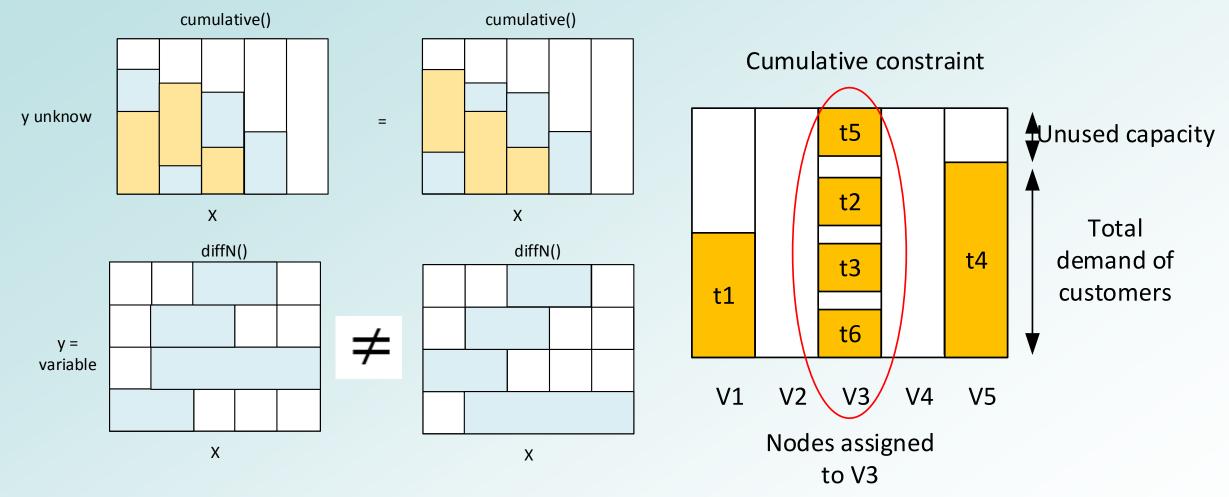

		Version V1	Version V2	Version V3	Version V4
SYMETRIE			×	×	×
LINK <i>a</i> AND <i>s</i>				×	×
BRANCH Y					×
1 SOLUTION	S*	32	27	27	37
	Nb Nodes	29	28	30	7
	Backtracks	3	1	1	0
	Fails	3	1	1	0
	T*(sec)	0.023	0.026	0.039	0.039
OPTIMAL	S*	25	25	25	25
SOLUTION	Nb Nodes	51 992	2 847	3 156	17 529
	Backtracks	103 921	5 642	6 252	34 996
	Fails	51 960	2 823	3 128	17 496
	T*(sec)	1.936	0.346	0.440	1.352
PROOF	Nb Nodes	4 817 732	327 391	188 107	78 569
	Backtracks	9 635 453	654 777	376 409	157 113
	Fails	4 817 721	327 386	188 202	78 544
	TT(sec)	148.450	9.395	7.154	3.787

Branch on decision variables → y

mon_solveur.setSearch(new DomOverWDeg(y, 0, new IntDomainMin()));

		Version V1	Version V2	Version V3	Version V4	
SYMETRIE			×	×	×	
LINK <i>a</i> AND <i>s</i>				×	×	
BRANCH Y					×	
1 SOLUTION	S*	32	27	27	37	
	Nb Nodes	29	28	30	7	
	Backtracks	3	1	1	0 1	
	Fails	3	1	1	0	
	T*(sec)	0.023	0.026	0.039	0.039	
OPTIMAL	S*	25	25	25	25	
SOLUTION	Nb Nodes	51 992	2 847	3 156	17 529	
	Backtracks	103 921	5 642	6 252	34 996	
	Fails	51 960	2 823	3 128	17 496	
	T*(sec)	1.936	0.346	0.440	1.352	
PROOF	Nb Nodes	4 817 732	327 391	188 107	78 569	
	Backtracks	9 635 453	654 777	376 409	157 113	
	Fails	4 817 721	327 386	188 202	78 544	
	TT(sec)	148.450	9.395	7.154	3.787	

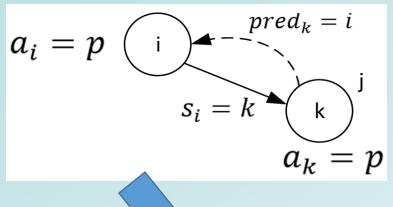
3/6 - Add global constraints



VEROLOG 2019 (Sevilla)

Efficient Constraint Modelling x

X 13


Add global constraints

Add global constraints

		V1	V2	V3	V4	V5
SYMETRIE			×	×	×	×
LINK <i>a</i> AND <i>s</i>				×	×	×
BRANCH Y					×	×
CUMULATIVE					×	×
1 SOLUTION	S*	32	27	27	37	37
	Nb Nodes	29	28	30	7	7
	Backtracks	3	1	1	0	0
	Fails	3	1	1	0	0
	T*(sec)	0.023	0.026	0.039	0.039	0.036
OPTIMAL SOLUTION	S*	25	25	25	25	25
	Nb Nodes	51 992	2 847	3 156	17 529	17 529
	Backtracks	103 921	5 642	6 252	34 996	34 996
	Fails	51 960	2 823	3 128	17 496	17 496
	T*(sec)	1.936	0.346	0.440	1.352	1.591
PROOF	Nb Nodes	4 817 732	327 391	188 107	78 569	78 569
	Backtracks	9 635 453	654 777	376 409	157 113	157 113
	Fails	4 817 721	327 386	188 202	78 544	78 544
	TT(sec)	148.450	9.395	7.154	3.787	4.583

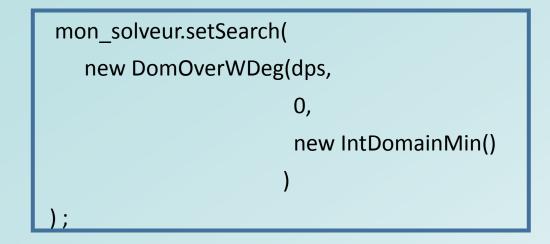
4/6 Channeling constraints

$\forall i \in V^d$	$s_i < s_{i+1}$	(14)
$\forall i \in V^d$	$y_i = 100 \times a_i + s_i$	(15)
$\forall i \in N$	$y_i \in [1; 100 \times V + S]$	(16)
$\forall i \in N \cup V^d$	$(pred_k = i) \Leftrightarrow (s_i = k)$	(17)
$\forall i \in N \cup V^d$	$pred_i \in [1; S]$	(18)
$\forall i \in V^f$	$pred_i = j$ avec V^d	(19)

Channeling constraints

		V1	V2	V3	V4	V5	V6
SYMETRIE			×	×	×	×	×
LINK a AND s				×	×	×	×
BRANCH Y					×	×	×
CUMULATIVE						×	×
CHANNELING							×
1 SOLUTION	S*	32	27	27	37	37	37
	Nb Nodes	29	28	30	7	7	7
	Backtracks	3	1	1	0	0	0
	Fails	3	1	1	0	0	0
	T*(sec)	0.023	0.026	0.039	0.039	0.036	0.046
OPTIMAL	S*	25	25	25	25	25	25
SOLUTION	Nb Nodes	51 992	2 847	3 156	17 529	17 529	17 529
	Backtracks	103 921	5 642	6 252	34 996	34 996	34 996
	Fails	51 960	2 823	3 128	17 496	17 496	17 496
	T*(sec)	1.936	0.346	0.440	1.352	1.591	1.966
PROOF	Nb Nodes	4 817	327	188	78 569	78 569	78 569
		732	391	107			
	Backtracks	9 635	654	376	157	157	157
		453	777	409	113	113	113
	Fails	4 817	327	188	78 544	78 544	78 544
		721	386	202			
	TT(sec)	148.450	9.395	7.154	3.787	4.583	5.740

5/6 - Check constraint during propagation


$\forall v \in V$,	$\sum_{i\in b^{\mathcal{V}}}D_i\leq$	<i>C_v</i>	(12)		
		$\forall i \in V^d$	$s_i < s_{i+1}$		(14)
9-6)		$\forall i \in V^d$	$y_i = 100 \times a_i + s$	² i	(15)
1 4		$\forall i \in N$	$y_i \in [1;100 \times V$	+S]	(16)
10 14		$\forall i \in N \cup V^d$	$(pred_k = i) \Leftrightarrow (i)$	$s_i = k$)	(17)
		$\forall i \in N \cup V^d$	$pred_i \in [1; S]$		(18)
		$\forall i \in V^f$	$pred_i = j$ avec V'	ı	(19)
		$\forall i \in \{N \cup V^d \cup V^f\}$	$CPS_i \in [1; C_v]$		(20)
		$\forall i \in \{N \cup V^d \cup V^f\}$	$CPS_{s_i} = CPS_i + L$	\mathcal{D}_i	(21)
(2)					

Check constraint during propagation

		V1	V2	V3	V4	V5	V6	V7
SYMETRIE			×	×	×	×	×	×
LINK a AND s				×	×	×	×	×
BRANCH Y					×	×	×	×
CUMULATIVE						×	×	×
CHANNELING							×	×
CAPASUM								×
1 SOLUTION	S*	32	27	27	37	37	37	37
	Nb Nodes	29	28	30	7	7	7	7
	Backtracks	3	1	1	0	0	0	0
	Fails	3	1	1	0	0	0	0
	T*(sec)	0.023	0.026	0.039	0.039	0.036	0.046	0.045
OPTIMAL SOLUTION	S*	25	25	25	25	25	25	25
	Nb Nodes	51 992	2 847	3 156	17 529	17 529	17 529	8 728
	Backtracks	103 921	5 642	6 252	34 996	34 996	34 996	17 404
	Fails	51 960	2 823	3 128	17 496	17 496	17 496	8 697
	T*(sec)	1.936	0.346	0.440	1.352	1.591	1.966	1.523
PROOF	Nb Nodes	4 817 732	327 391	188 107	78 569	78 569	78 569	38 879
	Backtracks	9 635 453	654 777	376 409	157 113	157 113	157 113	77 733
	Fails	4 817 721	327 386	188 202	78 544	78 544	78 544	38 854
	TT(sec)	148.450	9.395	7.154	3.787	4.583	5.740	4.263

6/6 - Branch on neighborhoods

 $T'_{ij} = T_{ij} \times 100 + j$ $DPS_i = T'_{i,s_i}$

mon_solveur.setSearch(
Search.intVarSearch(
new MaxRegret(),	
new IntDomainMin(),	
dps)	
) .	

$\forall i \in V^d$	$s_i < s_{i+1}$	(14)
$\forall i \in V^{d}$	$\frac{y_i - 100 \times a_i + s_i}{2}$	(15)
$\forall i \in N$	$y_{t} \in [1; 100 \times V + S]$	(16)
$\forall i \in N \cup V^d$	$(pred_k = i) \Leftrightarrow (s_i = k)$	(17)
$\forall i \in N \cup V^d$	$pred_i \in [1; S]$	(18)
$\forall i \in V^f$	$pred_i = j$ avec V^d	(19)
$\forall i \in \{N \cup V^d \cup V^f\}$	$CPS_{s_i} = CPS_i + D_i$	(20)
$\forall i \in \{N \cup V^d \cup V^f\}$	$CPS_i \in [0; C_v]$	(21)
$\forall i \in \{N \cup V^d \cup V^f\}$	$T_{ij}' = T_{ij} \times 100 + j$	(22)
$\forall i \in \{N \cup V^d \cup V^f\}$	$DPS_i = T'_{i,s_i}$	(23)
$\forall i \in \{N \cup V^d \cup V^f\}$	$DPS_i \in [1; S]$	(24)

Modelling improvements: all advices together

		V1	V2	V3	V4	V5	V6	V7	V8	V9
SYMETRIE			×	×	×	×	×	×	×	×
LINK a AND s				×	×	×	×	×	×	×
BRANCH Y					×	×	×	×		
CUMULATIVE						×	×	×	×	×
CHANNELING							×	×	×	×
CAPASUM								×	×	×
DOMOVERWDEG (DPS)									×	
MAXREGRET (DPS)										×
1 SOLUTION	S*	32	27	27	37	37	37	37	26	25
	Nb Nœuds	29	28	30	7	7	7	7	21 367	24
	Backtracks	3	1	1	0	0	0	0	42 715	31
	Fails	3	1	1	0	0	0	0	21 358	16
	T*(sec)	0.023	0.026	0.039	0.039	0.036	0.046	0.045	2.373	0.070
OPTIMAL SOLUTION	S*	25	25	25	25	25	25	25	25	25
	Nb Nœuds	51 992	2 847	3 156	17 529	17 529	17 529	8 728	21 894	24
	Backtracks	103 921	5 642	6 252	34 996	34 996	34 996	17 404	43 766	31
	Fails	51 960	2 823	3 128	17 496	17 496	17 496	8 697	21 883	16
	T*(sec)	1.936	0.346	0.440	1.352	1.591	1.966	1.523	2.415	0.070
PROOF	Nb Nœuds	4 817 732	327 391	188 107	78 569	78 569	78 569	38 879	26 079	4 994
	Backtracks	9 635 453	654 777	376 409	157 113	157 113	157 113	77 733	52 155	9 987
	Fails	4 817 721	327 386	188 202	78 544	78 544	78 544	38 854	26 076	4 993
	TT(sec)	148.450	9.395	7.154	3.787	4.583	5.740	4.263	2.770	1.361

Start from one initial solution

		Vl	V2	V3	V4	V5	V6	V7	V8	V9	V10
Symetrie			×	х	х	х	х	×	×	×	х
LINK a AND s				×	х	×	×	×	×	×	х
BRANCH Y					х	×	×	×			
CUMULATIVE						×	×	×	×	×	×
CHANNELING							×	×	×	×	×
CAPASUM								×	×	×	×
DOMOVERWDEG (DPS)									×		
MAXREGRET (DPS)										×	×
SOL EXISTANTE											×
1 SOLUTION	S*	32	27	27	37	37	37	37	26	25	26
	Nb Nœuds	29	28	30	7	7	7	7	21 367	24	10
	Backtracks	3	1	1	0	0	0	0	42 715	31	0
	Fails	3	1	1	0	0	0	0	21 358	16	0
	T*(sec)	0.023	0.026	0.039	0.039	0.036	0.046	0.045	2.373	0.070	0.018
OPTIMAL SOLUTION		25	25	25	25	25	25	25	25	25	25
	Nb Nœuds	51 992	2 847	3 156	17 529	17 529	17 529	8 728	21 894	24	1 213
	Backtracks	103 921	5 642	6 252	34 996	34 996	34 996	17 404	43 766	31	2 405
	Fails	51 960	2 823	3 128	17 496	17 496	17 496	8 697	21 883	16	1 203
	T*(sec)	10936	00346	0.440	1.352	1.591	1.966	1.523	2.415	0.070	0.324
PROOF	Nb Nœuds	4 817 732	327 391	188 107	78 569	78 569	78 569	38 879	26 079	4 994	6 050
	Backtracks	9 635 453	654 777	376 409	157 113	157 113	157 113	77 733	52 155	9 987	12 097
	Fails	4 817 721	327 386	188 202	78 544	78 544	78 544	38 854	26 076	4 993	6 047
	TT(sec)	148.450	9.395	7.154	3.787	4.583	5.740	4.263	2.770	1.361	0.952

Concluding remarks

 CP modelling look like very simple, but can be dangerous due to proximity to ILP modelling with a totally different behaviour of dedicated (powerful) solvers

• CP Good practice

- 1. Symmetry breaks
- 2. Only branch on decision variables
- 3. Promote global constraints
- 4. Avoid « bad » constraint with poor propagation
- 5. Experiment Redundant constraints
- 6. Adapt Search to your problem specific strategies

Concluding remarks

 CP modelling look like very simple, but can be dangerous due to proximity to ILP modelling with a totally different behaviour of dedicated (powerful) solvers

• CP Good practice

- 1. Symmetry breaks
- 2. Only branch on decision variables
- 3. Promote global constraints
- 4. Avoid « bad » constraint with poor propagation
- 5. Experiment Redundant constraints
- 6. Adapt Search to your problem specific strategies

Concluding remarks

- CP modelling look like very simple, but can be dangerous due to proximity to ILP modelling with a totally different behaviour of dedicated (powerful) solvers
- CP Good practice
 - 1. Symmetry breaks
 - 2. Only branch on decision variables
 - 3. Promote global constraints
 - 4. Avoid « bad » constraint with poor propagation
 - 5. Experiment Redundant constraints
 - 6. Adapt Search to your problem specific strategies

