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Abstract

The chromatic number of a directed graph D is the minimum num-
ber of colors needed to color the vertices of D such that each color class
of D induces an acyclic subdigraph. Thus, the chromatic number of
a tournament T is the minimum number of transitive subtournaments
which cover the vertex set of T . We show in this paper that tourna-
ments are significantly simpler than graphs with respect to coloring.
Indeed, while undirected graphs can be altogether “locally simple” (ev-
ery neighborhood is a stable set) and have large chromatic number, we
show that locally simple tournaments are indeed simple. In particular,
there is a function f such that if the out-neighborhood of every ver-
tex in a tournament T has chromatic number at most c, then T has
chromatic number at most f(c). This answers a question of Berger et
al.

Keywords: chromatic number of tournaments, Erdős-Hajnal conjec-
ture, digraph coloring
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1 Introduction

A directed graph is said to be acyclic if it does not contain any directed
cycles. Given a loopless digraph D, a k-coloring of D is a coloring of each of
the vertices of D with one of the colors from the set {1, ..., k} such that each
color class induces an acyclic subdigraph. The chromatic number ~χ(D) of
D is the smallest number k for which D admits a k-coloring. This digraph
invariant was introduced by Neumann-Lara [13], and naturally generalizes
many results on the graph chromatic number (see, for example, [4], [9] [10],
[11], [12]). In this paper, we study the chromatic number of a class of tour-
naments where the out-neighborhood of every vertex has bounded chromatic
number.

A tournament is a loopless digraph such that for every pair of distinct
vertices u, v, exactly one of uv, vu is an arc. Given a tournament T , a
subset X of V (T ) is transitive if the subtournament of T induced by X

contains no directed cycle. Thus, ~χ(T ) is the minimum k such that V (T )
can be colored with k colors where each color class is a transitive set. The
coloring of tournaments has close relationship with the celebrated Erdős–
Hajnal conjecture (cf. [1, 8]) and has been studied in [3, 5, 6, 2, 7].

Given t ≥ 1, a tournament T is t-local if for every vertex v, the subtour-
nament of T induced by the set of out-neighbors of v has chromatic number
at most t. The following conjecture was raised in [3] (Conjecture 2.6) and
settled for t = 2 in [7].

Conjecture 1. There is a function f such that every t-local tournament T
satisfies ~χ(T ) ≤ f(t).

The goal of this note is to provide a proof of Conjecture 1 for all t.

Given a set S ⊂ V (T ), we say that S is a dominating set of T if every
vertex in V \ S has an in-neighbor in S. The dominating number γ(T ) of a
tournament T is the smallest number k such that T has a dominating set of
size k. The main tool to prove Conjecture 1 is the following theorem, which
seems more interesting than our original goal.

Theorem 2. For every integer k ≥ 1, there exist integers K and ℓ such
that every tournament T with dominating number at least K contains a
subtournament on ℓ vertices and chromatic number at least k.

Roughly speaking, Theorem 2 asserts that if the dominating number of a
tournament is sufficiently large, then it contains a bounded-size subtourna-
ment with large chromatic number. One may ask whether high dominating
number is enough to force an induced copy of a specific (high chromatic
number) subtournament. The following tournaments may be potential can-
didates. Let S1 be the tournament with a single vertex. For every i > 1,
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let Si be the tournament (with 2i − 1 vertices) obtained by blowing up two
vertices of an oriented triangle into two copies of Si−1. It is easy to check
that ~χ(Si) ≥ i. The following problem is trivial for i ≤ 2 and verified for
i = 3 in [7], while still open for all i ≥ 4.

Problem 3. For every integer i ≥ 1, there exist f(i) such that every tour-
nament T with dominating number at least f(i) contains an isomorphic copy
of Si.

On another note, it is natural to ask whether Theorem 2 still holds
with a weaker hypothesis. In particular, is it true that for every k, if the
chromatic number of a tournament is huge, then it contains a bounded-
size subtournament with chromatic number at least k? Unfortunately, the
answer is negative for any k ≥ 3. It is well-known that for any ℓ, there is
an undirected simple graph G with arbitrarily high chromatic number and
girth at least ℓ + 1. We fix an arbitrary enumeration of vertices of G and
create a tournament T as follows: If ij with i < j is an edge of G then ij

is an arc of T ; otherwise, ji is an arc of T . Then T has arbitrarily high
chromatic number while every subtournament of T of size ℓ has chromatic
number at most 2. However, a similar question for dominating number is
still open.

Problem 4. For every integer k ≥ 1, there exist integers K and ℓ such
that every tournament T with dominating number at least K contains a
subtournament with ℓ vertices and dominating number at least k.

2 Proof of Conjecture 1

For every vertex v in a tournament T , we denote by N+

T
(v) the set of out-

neighbors of v in T . Given a subset X of V (T ), let N+

T
(X) denote the

union of all N+

T
(v), for v ∈ X, and denote by N+

T
[X] := X ∪ N+

T
(X). For

every subset X of V (T ), let ~χT (X) denote the chromatic number of the
subtournament of T induced by X.

Given a tournament T and a subset X of V (T ), we say a set R ⊆ V (T )
(not necessary disjoint from X) is a dominating set of X in T if every vertex
in X\R has an in-neighbor in R. The dominating number γT (X) of X in T

is the smallest number k such that X has a dominating set of size k. When
it is clear in the context, we omit the subscript T in the notation.

Let T be a tournament and X,Y ⊆ V (T ). The following inequalities are
straightforward:

γT (N
+[X]) ≤ |X|, (1)

and
γT (Y ) ≤ γT (X) + γT (Y \X). (2)
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Let us restate Theorem 2.

Theorem 5. For every integer k ≥ 1, there exist integers K and ℓ such
that every tournament T with γ(T ) ≥ K contains a subtournament A on ℓ

vertices and ~χ(A) ≥ k.

Proof. We proceed by induction on k. The claim is trivial for k = 1. For
k = 2, we can choose K = 2 and ℓ = 3. Indeed, if a tournament T satisfies
γ(T ) ≥ K = 2, then T is not transitive and thus it contains an oriented
triangle A of size ℓ = 3 and ~χ(A) ≥ k = 2.

Assuming now that (K, ℓ) exists for k, we want to find (K ′, ℓ′) for k+1.
For this, we setK ′ := k(K+ℓ+1)+K, and fix ℓ′ later. Let T be a tournament
such that γ(T ) ≥ K ′. Let D be a dominating set of T of minimum size.
Consider a subset W of D of size k(K + ℓ+ 1). From (1) and (2) we have

γ(V \N+[W ]) ≥ γ(T )− γ(N+[W ]) ≥ K ′ − |W | ≥ K,

where V is the vertex set of T . Thus by induction hypothesis applied to k,
one can find a set A ⊆ V \N+[W ] such that A has ℓ vertices and ~χ(A) ≥ k.
Note that by construction, A ∩ W = ∅ and all arcs between A and W are
directed from A to W .

Consider now a subset S of W of size K + ℓ + 1. We claim that
γ(N+(S)) ≥ K + ℓ. If not, we can choose a dominating set S′ of N+(S)
of size at most K + ℓ− 1. Note that x dominates S for any x ∈ A, and so
S′ ∪ {x} dominates N+[S]. Hence (D \ S) ∪ S′ ∪ {x} would be a dominat-
ing set of T of size less than |D|, which contradicts the minimality of |D|.
Therefore γ(N+(S)) ≥ K + ℓ.

Let N ′ be the set of vertices N+(S) \N+(A). From (1) and (2) we have

γ(N ′) ≥ γ(N+(S))− γ(N+(A)) ≥ K + ℓ− |A| = K.

Thus by induction hypothesis applied to k, there is a subset AS of N ′ such
that |AS | = ℓ and ~χ(AS) ≥ k. Note that by construction, AS ∩ A = ∅ and
all arcs between AS and A are directed from AS to A.

We now construct our subtournament of T with chromatic number at
least k + 1. For this we consider the set of vertices A ∪W to which we add
the collection of AS , for all subsets S ⊆ W of size K + ℓ + 1. Call A′ this
new tournament and observe that its number of vertices is at most

ℓ′ := ℓ+ k(K + ℓ+ 1) + ℓ

(

k(K + ℓ+ 1)

K + ℓ+ 1

)

.

To conclude, it is sufficient to show that ~χ(A′) ≥ k + 1. Suppose not, and
for contradiction, take a k-coloring of A′. Since |W | = k(K + ℓ + 1) there
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is a monochromatic set S in W of size K + ℓ + 1 (say, colored 1). Recall
that we have all arcs from AS to A and all arcs from A to S, and note that
since ~χ(A) ≥ k and ~χ(AS) ≥ k, both A and AS have a vertex of each of the
k colors. Hence there are u ∈ A and w ∈ AS colored 1. Since AS ⊆ N+(S),
there is v ∈ S such that vw is an arc. We then obtain the monochromatic
cycle uvw of color 1, a contradiction. Thus, ~χ(A′) ≥ k + 1, completing the
proof.

We now show that Conjecture 1 is true.

Theorem 6. There is a function f such that every t-local tournament T

satisfies ~χ(T ) ≤ f(t).

Proof. Let (K, ℓ) satisfy Theorem 5 for k := t + 1. Let T be a t-local
tournament. Thus, if γ(T ) ≥ K then T contains a set A of ℓ vertices and
~χ(A) ≥ t + 1. If a vertex v ∈ V (T )\A does not have an in-neighbor in A,
then A ⊆ N+(v), and so t + 1 ≤ ~χ(A) ≤ ~χ(N+(v)) ≤ t, a contradiction.
Hence, A is a dominating set of T . Note that

~χ(N+[v]) ≤ ~χ(N+(v)) + ~χ({v}) ≤ t+ 1

for every v ∈ V (T ). Thus

~χ(T ) = ~χ(N+[A]) ≤
∑

v∈A

~χ(N+[v]) ≤ (t+ 1)|A| = (t+ 1)ℓ.

Otherwise, γ(T ) < K. Let D be a dominating set of T with minimum
size. Then

~χ(T ) = ~χ(N+[D]) ≤
∑

v∈D

~χ(N+[v]) ≤ (t+ 1)|D| < (t+ 1)K.

Consequently, t-local tournaments have chromatic number at most f(t) :=
max

(

(t+ 1)K, (t + 1)ℓ
)

.

The implication of our result is that we are possibly missing a key-
definition of what is a “large” (or “dense”) hypergraph (i.e., a set of subsets).
It could be that for a suitable definition of “large” (for which “large” inter-
secting “large” would be “large”), we would obtain that for any tournament
T on vertex set V , the set of out-neighborhoods of vertices of T is “large”,
and in addition the set of subsets of vertices of a K-chromatic tournament
inducing at least chromatic number k is also “large”. Hence, if two large
sets are intersecting in a non-empty way, one could find an out-neighborhood
with chromatic number k.
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If such a notion would exist, it should decorrelate the two large sets (out-
neighborhoods and k-chromatic), and thus imply the following: If T1, T2 are
tournaments on the same set of vertices and ~χ(T1) is huge, then there is a
vertex v such that T1 induces on N+

T2
(v) a subtournament of large chromatic

number. A very similar conjecture was proposed by Alex Scott and Paul
Seymour.

Conjecture 7. [14] For every k, there exists K such that if T and G are
respectively a tournament and a graph on the same set of vertices with G of
chromatic number at least K, then there is a vertex v such that G induces
on N+

T
(v) a subgraph of G of chromatic number at least k.
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[4] D. Bokal, G. Fijavž, M. Juvan, P.M. Kayll, and B. Mohar. The circular
chromatic number of a digraph. Journal of Graph Theory, 46 (2004)
227–240.

[5] K. Choromanski, M. Chudnovsky, and P. Seymour. Tournaments with
near-linear transitive subsets. Journal of Combinatorial Theory, Series
B, 109 (2014), 228–249.

[6] M. Chudnovsky. The Erdös-Hajnal Conjecture – A Survey. Journal of
Graph Theory, 75 (2014), 178–190.

[7] M. Chudnovsky, R. Kim, C.-H. Liu, P. Seymour, and S. Thomassé.
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