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Conical interfaces between two immiscible fluids induced by an optical laser beam

A. Girot, J. Petit, R. Saiseau, T. Guérin, H. Chraibi, U. Delabre, J.P. Delville
Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33405 Talence, France

(Dated: July 12, 2019)

We demonstrate the existence of conical interface deformations induced by a laser beam, that
are similar to Taylor cones in the electrical regime. We show that the cone morphology can be
manipulated by fluid and laser parameters. A theory is proposed to quantitatively describe these
dependences, in good agreement with experimental data obtained for different fluid systems with low
interfacial tensions. Counter-intuitively the cone angle is proved to be independent of the refractive
index contrast at leading order. These results open a new optofluidic route towards optical spraying
technology - analogue of electrospraying - and more generally for optical shaping of interfaces.

One hundred years ago, in a pioneering work, Zeleny
observed the destabilization of a suspended conducting
liquid drop submitted to a sufficiently strong electric
field [1, 2]. The interface takes a conical shape, fol-
lowed by a jet that usually breaks up into a spray of
tiny droplets, a key phenomenon for electrospraying and
electrospinning technologies [3–5]. Such conical menisci
were theoretically understood by Taylor [6] and are now
commonly termed as “Taylor cones”. Beyond the sur-
prising and fascinating elegance of such a simple conical
solution for a complex mathematical problem involving
deformable boundaries, this Taylor cone is important for
applications. Indeed, the finite angle of the cone is a key
parameter determining the size of the emitted jet, and
thus of the resulting droplets [7].

Taylor cones are thus an essential component in
processes as varied as the emission of monodisperse
droplets [8], ink jet printing [3, 5], the design of nanos-
tructures [9] and encapsulation techniques [10]. Tay-
lor cones were naturally generalized to electrically or
magnetically induced deformations of interfaces between
fluids presenting different conductivities, dielectric con-
stants or magnetic susceptibilities [11]. Depending on
these properties, but also on the nature of the field (ei-
ther AC or DC) [12], the cone angle can vary over a wide
range. Furthermore, conical shapes of fluid interfaces
seem even more general, since portions of cones naturally
appear in situations as varied as drops stretching [13],
viscous break-up of pendant drops [14], tip streaming by
Marangoni stress [15], or inertial jet eruption [16]. This
suggests that various types of excitatory fields are able to
induce conical deformations, as early suggested by Tay-
lor himself [13]. In this context, considering the devel-
opments on the manipulation of fluids by light [17, 18]
and previous studies [19–21] where conical shapes could
be suspected, a natural and surprisingly unresolved ques-
tion is whether or not cones can as well be induced by
light.

The goal of this Letter is to demonstrate the emergence
of conical shapes in the optical regime and to character-
ize their geometry. Using very different fluid systems, we
show indeed that above a critical radiation pressure ex-
erted by a continuous laser wave, soft interfaces deform
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FIG. 1. (Color online) a) Sketch of the experiment: a laser
beam (λ = 532 nm in vacuum) is focused at the interface
with the objective O1 (Olympus x10) and deforms this inter-
face by radiation pressure. Deformation of the interface for
P < Pc (Winsor toluene S1b for w0 = 12.9 µm, P = 1.53
W). b) Conical deformation by radiation pressure for P > Pc
(Winsor toluene S1b for w0 = 12.9 µm, P = 1.55 W). c)
Typical variation of the incident angle αi as a function of the
height of deformation for P < PC and P > PC . Note that
the curve for P > Pc exhibits a clear plateau. αTR is the
total reflection (TR) incident angle. d) Light path revealing
the total reflection mechanism inside the conical deformation
(Micro-emulsion S3). e)-g) Conical deformations for various
experimental systems : (e) Winsor heptane S2 for w0 = 12.2
µm, P = 2.25 W, (f) Micro-emulsion S3e for w0 = 9.0 µm
and P = 2.89 W and (g) Jet and drop emission at the tip of
the cone for Winsor toluene S1b system with w0 = 8.8 µm
and P = 1.06 W.

and adopt a conical shape. We propose a theory that cor-
rectly predicts the cone angles for a wide range of fluid
and excitation parameters. Counter-intuitively, we show
that the cone angle does not depend on the refractive
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index contrast, while it is at the origin of the radiation
pressure that induced the conical deformation.

To observe optically-induced cones, we consider a con-
tinuous Gaussian laser wave that impinges a soft fluid in-
terface from the liquid of higher refractive index as shown
in Fig. 1a. The laser beam is focused on the interface us-
ing standard optical elements that can be adjusted to
vary the beam waist w0 at the interface. At low power,
the interface is gently deformed into a bell-shaped profile
by optical radiation pressure (Fig. 1a). This is due to the
transfer of optical momentum of photons to the interface,
as previously described [22, 23]. Above a critical beam
power Pc, the interface profile lengthens and sharpens,
and a conical deformation emerges (Fig. 1b).

To characterize the geometry of the interface, we rep-
resent the local angle αi in Fig. 1c as a function of the
height z, i.e. the distance to the undeformed interface.
This curve clearly exhibits a plateau region which is ab-
sent in the low power regime. This plateau demonstrates
the existence of an optically-induced conical deformation
and defines its angle. To get insight in the mechanism
at the origin of the cone formation, we image the op-
tical path of the laser wave using specific optical filters
(Fig. 1d). The intense reflection of the laser beam at the
cone interface tends to show that light is totally reflected
inside the conical structure, which thus acts as a self-
induced funnel guide. This is further confirmed in Fig. 1c
by the fact that the incident angle αi is always larger than
the total reflection angle (αi > αTR = arcsin(n1/n2)) in
the plateau region. We anticipate that this total reflec-
tion condition is important to explain the formation of
optically-induced cones in our conditions.

To test the generality of optical liquid cones, we con-
sider three main experimental fluid systems that are
transparent at the used optical wavelength (optical ab-
sorption smaller than 3.10−4 cm−1) and based on Winsor
phases (toluene : S1a-b, heptane : S2) and quasi-critical
micro-emulsions (S3a-e). By varying chemical composi-
tion or temperature, we obtain in the end eight subsys-
tems denoted S1a-b, S2, S3a-e (see Supplemental Ma-
terial [24–28] for details). This enables us to vary the
refractive index contrast involved in the radiation pres-
sure (∆n = n2 − n1 = 0.0129 − 0.1449) and the interfa-
cial tension involved in the restoring capillary pressure
(γ = 2.4 10−7 − 1.3 10−5 N/m) over more than one
order of magnitude. Refractive indexes for various sys-
tems were measured by standard refractometry methods,
while interfacial tensions were determined by analyzing
the viscous breakup dynamics of liquid thread [29]. As
illustrated in Fig. 1, stationary optically-induced cones
are generated for all experimental systems. Similar to
electrified interfaces, these conical shapes are very stable
and robust for both turbid (S1, S3) and non-turbid (S2)
fluid systems. Remarkably, the conical structure often
emerges together with a jet that emits droplets, as illus-
trated at the bottom in Fig. 1g. Importantly, as shown in

Fig. 1, we observe that the cone angle is specific to each
fluid system, indicating that fluid properties are impor-
tant to define the cone morphology.

We now quantify the effects of the laser parameters
on the cone angle. The edge of the cone is detected by
a homemade image analysis program that measures the
cone semi-angle θc = π/2− αi in the plateau region (see
Fig. 1c) after averaging over several stationary profile pic-
tures. In Fig. 2, we show how θc depends on the incident
laser power P at various waists w0 for system S1 as an
example. To be as accurate as possible, we note that in-
creasing P of our laser also results in an increase of the
waist w0 = g(P,w0(0)) via a function g which is fully
characterized in SM [24], with w0(0) the extrapolated
waist at zero power. As shown in Fig. 2, the cone semi-
angle increases with the beam waist w0 at a given power
and slightly decreases with the applied power. This in-
dicates that laser parameters are crucial for controlling
the cone morphology.

-1/2
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FIG. 2. (Color online) Semi-angle θc of the cone for Winsor
toluene system S1b as a function of the power P and the
beam waist w0 of the laser. w0(0) represents the laser beam
waist extrapolated at zero power (see SM [24]). The dashline
indicates the total reflection value π/2 − αTR. Inset : Cone
semi-angle rescaled by

√
w0 versus laser power P in log-log

scale.

To understand the physical mechanism at the origin
of the conical deformation, it is useful to start with the
force balance equation for an axi-symmetric stationary
profile [22, 30]:

γκ(r)−∆ρgh(r) = Πrad(r), (1)

where both the Laplace pressure γκ(r) and buoyancy
∆ρgh(r) balance the optical radiation pressure Πrad(r).
Here, r is the radial distance to the beam axis, h is the
height of the profile, g the earth acceleration, and κ is the
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local curvature. The optical radiation pressure is given
for a continuous Gaussian wave (mode TEM00) by :

Πrad(r) =
n2

c
.

2P

πw2
0

e
− 2r2

w2
0 δ f(αi), (2)

where c is the light celerity, δ = 2∆n/(n1 + n2) is the
relative index contrast between the two phases, and f
is a geometric function that describes the variation of
the radiation pressure with the local incident angle αi,

f(αi) = cos2(αi)
(

1 +R(αi)− tan(αi)
tan(αt)

T (αi)
)
/δ, R and

T being the reflexion and transmission Fresnel coeffi-
cients and αt the refracted angle. This function f is
plotted in Fig. 3(a). Importantly, it displays a decreas-
ing behavior above the total reflection angle αTR which
means that the more inclined is the interface the less ef-
ficient is the radiation pressure. Therefore, above αTR,
the intensity of the radiation pressure is directly related
to the local inclination of the interface, which will be
determinant to set the value of the cone angle.

We first describe the interface deformation at moderate
beam power. As the optical Bond number (defined by
using the beam waist as the characteristic length scale)

Bo = ∆ρgw0
2

γ ≈ 0.001 − 0.2 is small, buoyancy can be
neglected in first approximation. Furthermore, as the
relative index contrast δ is also a small parameter, the
radiation pressure can be considered as constant over a
large range of inclination angles (i.e. f ≈ 1, see Fig. 3a).
With these approximations, the force balance equation
(1) at low powers becomes :

γ

r

∂

∂r
(r cos θ) ≈ 2P∆n

πcw2
0

e−2r2/w2
0 . (3)

This equation is readily integrated for a closed profile,

leading to cos θ = P∆n
2πcγw0

( 1−e−2u2

u ) where u = r/w0. The
self-consistency condition that cos θ remains lower than
unity for all r leads to the definition of a critical power

Pc ≈ 2.2
πcw0γ

∆n
, (4)

above which one should observe strongly deformed in-
terfaces, with inclination angles of the order of the total
reflection angle. This condition is compatible with previ-
ous analyses [21, 31] and is also in good agreement with
the critical power values measured in our experiments
(see Fig. S3 in SM [24]).

Above the critical power Pc, a new region appears
where total reflection conditions hold, so that f ≈ 2θ2/δ,
indicating that the radiation pressure depends on the lo-
cal profile slope. Moreover, in this region the opening
angles θ are small compared to one, a condition which
is satisfied in all our experiments. Hence, in this region
the force-balance equation can be considerably simplified
and becomes

γ

r
= θ2 4n2P

πcw2
0

e−2r2/w2
0 , (5)
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FIG. 3. (Color online) a) Variation of the f function with
the incident angle αi for different relative index contrasts
δ = 2.∆n/(n1 + n2). b) Variation of the normalized cone
angle as a function of the normalized radial position r/w0 for
various liquid systems. The solid line indicates the theoret-
ical prediction Φ(·) [see Eq. (6)]. c) Comparison between a
theoretical cone deformation (red line) and an experimental
deformation for micro-emulsion system S3b for P = 0.5 W
and w0 = 5.8 µm. d) Cone angle as a function of γ/n2 for
various systems and for a given ratio w0/P = 4.57 µm/W .
The line indicates the theoretical prediction [Eq. (7)].

leading to :

θ(r) =

√
πcγw0

4Pn2
Φ

(
r

w0

)
, Φ(X) ≡ eX

2

√
X
. (6)

The local angle in the total reflection region is therefore
proportional to the dimensionless function Φ(·) which is
plotted in Fig. 3(b). It exhibits a clear plateau character-
izing the conical deformation in the range r/w0 ≈ 0.3−1.
To fully predict the cone angle variation with physical pa-
rameters, we characterize the minimal half-opening angle
in Eq. (6) which is obtained for r/w0 = 0.5. We find :

θ∗c = β.

√
cw0γ

Pn2
, (7)

with β = e1/4
√

π
2 ≈ 1.61. Importantly, this expression

predicts that the cone angle θc decreases with the applied
power P and increases with the waist w0 as observed
experimentally.

Corresponding scalings in w0 and P are experimen-
tally confirmed in the inset of Fig. 2 where all the data
are rescaled by

√
w0 and collapse into a single master

curve. In Fig. 3b, comparisons of the renormalized angle
profiles for various fluid systems show a good agreement
with the theory even if experimental profiles are more
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extended than theoretical ones. Note that experimen-
tal angle profiles are limited to r/w0 ≥ 0.4 because a
jet usually forms at the cone tip, contrary to theoreti-
cal modeling which only considers closed deformations.
As explained in SM [24], a discussion on the jet that
forms at the tip of the conical deformation is beyond the
scope of the present work, but we note that breakup and
drop formation are not expected to significantly affect
the profile in the conical region. For higher r/w0, exper-
imental profiles also display slope discontinuities, corre-
sponding in the theory to the switching point where total
reflection is no longer satisfied (see Fig. S5 in SM [24]).
We then numerically calculate the full height profile h(r)
from Eq. (1), and superimpose it with the experimen-
tal measurements in Fig. 3(c). In this example, despite
the difference at the cone tip, the theoretical profile fits
reasonably well the experimental deformation (without
any fitting parameters). This demonstrates the ability
of our model to describe the radial variation of the cone
angle. We then test the scaling with interfacial tension
in Fig. 3d, where we compare predictions to the exper-
imental cone angles for all the systems at a given ratio
w0/P . Remarkably, the model is also in good agreement
with the experimental data over almost two decades in
interfacial tension. This strongly supports that the char-

acteristic cone angle is given by
√

cw0γ
Pn2

as suggested by

[Eq. 7].

FIG. 4. (Color online) Experimental cone angles versus the

characteristic cone angle
√

cw0γ
Pn2

for all the investigated exper-

imental systems. The best fit is θc = 1.86 ( cw0γ
Pn2

)0.5 whereas

the dashed line refers to Eq. (7). Inset : same plot in linear
scales.

To further confirm this model, we plot in Fig. 4 the
cone semi-angle θc for the eight experimental systems in-
vestigated here for all the experimental conditions as a

function of the characteristic cone angle
√

cw0γ
Pn2

. Over

more than one decade (see also the same data in linear
scale in the inset of Fig. 4), all the data collapse into a
single master curve despite some inherent dispersion of
data, in particular close to the critical power Pc where the
interface sensitivity to excitation is the largest. The best

fit is θc = 1.86
√

cw0γ
Pn2

which is very close to the model

prediction θc = 1.61
√

cw0γ
Pn2

[see Eq. (7)]. The agreement

is even reinforced considering that no adjustable param-
eter is used in the model. Consequently, conical defor-
mations can be fully controlled with both fluid properties
and excitation parameters.

Counter-intuitively, the model predicts that the cone
angle θc does not depend on the relative index contrast δ
[see Eq. (7)]. Indeed, as shown in Fig. 5a, as soon as the
critical power is reached, the minimal deformation angle
min(θ) switches to a single behavior independent of δ.
This is due to the independence of the radiation pressure
with the refractive index contrast in the total reflection
regime [see Eq. (5)], as opposed to the normal incidence
case. However, the refractive index contrast ∆n remains
essential to set the critical power Pc to observe a cone.

(a)

*

 =0.01

 =0.04
 =0.1

(b)

FIG. 5. a) (Color online) Theoretical minimal angle of the de-
formation without gravity effects for various refractive index
constrast. b) Rescaled cone angle θnum/θ∗c numerically ob-
tained compared with the perturbative result θ = θ∗c (1 + ν χ)
as a function of the χ = Bo/θ∗c parameter for P/Pc = 1.35.

We now investigate whether gravity effects could be re-
sponsible for deviations between experimental data and
theory. Gravitational effects can be evaluated by forming
the ratio between the buoyancy ∆ρgh and the character-
istic Laplace pressure γ/w0. Since h ∼ w0/θ

∗
c in the

conical region, the relevant dimensionless parameter is
χ = ∆ρgw2

0/(γθ
∗
c ) = Bo/θ∗c . Intuitively, increasing grav-

itational effects should flatten the deformation and thus
increase the cone angle θc. As explained in SM [24] by
a perturbation analysis, the cone semi-angle is expected
to vary as θ = θ∗c (1 + ν χ), where ν ' 0.14 − 0.18 is a
weakly varying parameter. These results are confirmed
in Fig. 5b by comparing with the complete numerical res-
olution of the force balance equation [Eq. (1)] for various
index ratio. The numerical results in Fig. 5b collapse
into a single master curve, validating this perturbation
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analysis. We evaluate the deviations from the analytical
results without gravity [Eq. (7)] to be at most 30% for
the largest values of χ in our experiments (χ ≈ 10−2−2),
confirming that gravity can be neglected at leading order.

To conclude, we have experimentally and theoretically
demonstrated the existence of optically-induced conical
deformations. The cone morphology is controlled by the
fluid properties and laser parameters. The analytical and
numerical analyses quantitatively predict an optical cone
semi-angle in good agreement with measurements over a
wide range of parameters for several liquid systems. Such
cones can be considered as “optical analogues” of Taylor
cones, in the sense that the structure of the electromag-
netic field near the interface results from its interference
with refracted ray and is strongly coupled to its deforma-
tion due to total reflection conditions. As already demon-
strated for Taylor cones [7], we anticipate that the prop-
erties of these static optical cones will be a key parameter
to control the hydrodynamic jet at its tip as suggested
by Fig. 1(g). Our results quantitatively establish the first
step towards optospraying and a new optical control of
interfacial properties and interfacial morphologies. This
work also advances a new example showing that coni-
cal shapes corresponds to a universal form when liquid
interfaces are stretched beyond linearity [13].

The authors acknowledge financial support from
CNRS, University of Bordeaux, Region Nouvelle
Aquitaine (project OPTORHEO 2015-1R10102-
0000519) and Agence Nationale pour la Recherche
ANR (project FISICS ANR-15-CE30-0015-01). The
authors thank Romain Pascalie and Antoine Descamps-
Duval for their contributions to the experiments, Hamid
Kellay and Etienne Brasselet for helpful discussions and
the LOMA mechanical and electronic workshop for their
technical contributions to this project.

[1] J. Zeleny, Phys. Rev. 3, 69 (1914).
[2] J. Zeleny, Phys. Rev. 10, 1 (1917).
[3] J. Fernández de La Mora, Annu. Rev. Fluid Mech. 39,

217 (2007).
[4] A. L. Yarin, S. Koombhongse, and D. H. Reneker, J.

Applied physics 90, 4836 (2001).

[5] J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601
(2008).

[6] G. I. Taylor, Proc. R. Soc. A 280, 383 (1964).
[7] A. M. Ganan-Calvo, Phys. Rev. Lett. 79, 217 (1997).
[8] R. T. Collins, J. J. Jones, M. T. Harris, and O. A.

Basaran, Nature Physics 4, 149 (2008).
[9] Y. Matsui, S.and Ochiai, Nanotechnology 7, 247 (1996).

[10] I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo,
M. Marquez, and A. Ganan-Calvo, Science 295, 1695
(2002).

[11] H. A. Stone, J. R. Lister, and M. P. Brenner, in Proc. R.
Soc. A, Vol. 455 (The Royal Society, 1999) pp. 329–347.

[12] N. Chetwani, S. Maheshwari, and H.-C. Chang, Phys.

Rev. Lett. 101, 204501 (2008).
[13] G. Taylor, Applied Mechanics, , 790 (1966).
[14] I. Cohen, M. P. Brenner, J. Eggers, and S. R. Nagel,

Phys. Rev. Lett. 83, 1147 (1999).
[15] J. Fernandez and G. Homsy, Phys. Fluids 16, 2548

(2004).
[16] B. W. Zeff, B. Kleber, J. Fineberg, and D. P. Lathrop,

Nature (London) 403, 401 (2000).
[17] D. Baigl, Lab on a Chip 12, 3637 (2012).
[18] A. Author, Lab on a Chip 8, 1856 (2008).
[19] J.-Z. Zhang and R. K. Chang, Opt. Lett. 13, 916 (1988).
[20] H. Chraibi, D. Lasseux, E. Arquis, R. Wunenburger, and

J.-P. Delville, Phys. Rev. E 77, 066706 (2008).
[21] A. Casner and J.-P. Delville, Phys. Rev. Lett. 90, 144503

(2003).
[22] A. Casner and J.-P. Delville, Phys. Rev. Lett. 87, 054503

(2001).
[23] N. G. Astrath, L. C. Malacarne, M. L. Baesso, G. V.

Lukasievicz, and S. E. Bialkowski, Nature Communica-
tions 5, 4363 (2014).

[24] See Supplemental Material which includes Refs. [25-28],
where we provide details on the experimental setup, the
fluid parameters and the theoretical analysis.

[25] A. Pouchelon, J. Meunier, D. Langevin, D. Chatenay,
and A. Cazabat, Chem. Phys. Lett. 76, 277 (1980).

[26] R. Aveyard, B. P. Binks, S. Clark, and J. Mead, Journal
of the Chemical Society, Faraday Transactions 1: Physi-
cal Chemistry in Condensed Phases 82, 125 (1986).

[27] J. Petit, D. Rivière, H. Kellay, and J.-P. Delville, Proc.
Natl. Acad. Sc. USA , 201207634 (2012).

[28] J. Hadamard, CR Hebd. Seances Acad. Sci. Paris 152,
1735 (1911).

[29] M. Tjahjadi, J. M. Ottino, and H. A. Stone, AIChE
journal 40, 385 (1994).

[30] R. Wunenburger, A. Casner, and J.-P. Delville, Phys.
Rev. E 73, 036314 (2006).

[31] H. Chraibi, D. Lasseux, E. Arquis, R. Wunenburger, and
J.-P. Delville, Eur. J. Mech. B 27, 419 (2008).


