
HAL Id: hal-02181486
https://hal.science/hal-02181486v1

Submitted on 12 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The maximum balanced subgraph of a signed graph:
applications and solution approaches

Rosa Figueiredo, Yuri Y. Frota

To cite this version:
Rosa Figueiredo, Yuri Y. Frota. The maximum balanced subgraph of a signed graph: applications
and solution approaches. European Journal of Operational Research, 2014, 236 (2), pp.473-487.
�10.1016/j.ejor.2013.12.036�. �hal-02181486�

https://hal.science/hal-02181486v1
https://hal.archives-ouvertes.fr

The maximum balanced subgraph of a signed graph:
applications and solution approaches

Rosa Figueiredoa,∗, Yuri Frotab

aCIDMA, Department of Mathematics, University of Aveiro
3810-193 Aveiro, Portugal.
rosa.figueiredo@ua.pt

bDepartment of Computer Science, Fluminense Federal University
24210-240 Niterói-RJ, Brazil.

yuri@ic.uff.br

Abstract

The Maximum Balanced Subgraph Problem (MBSP) is the problem of finding a
subgraph of a signed graph that is balanced and maximizes the cardinality of its
vertex set. This paper is the first one to discuss applications of the MBSP arising
in three different research areas: the detection of embedded structures, portfolio
analysis in risk management and community structure. The efficient solution of
the MBSP is also in the focus of this paper. We discuss pre-processing routines
and heuristic solution approaches to the problem. a GRASP metaheuristic is
developed and improved versions of a greedy heuristic are discussed. Exten-
sive computational experiments are carried out on a set of instances from the
applications previously mentioned as well as on a set of random instances.
Keywords: Combinatorial optimization; Balanced signed graph; Heuristics;
Portfolio analysis; Community structure.

∗Corresponding author. Fax and Telephone number: +351 234370066. Email:
rosa.figueiredo@ua.pt
Rosa Figueiredo is supported by FEDER founds through COMPETE-Operational Programme
Factors of Competitiveness and by Portuguese founds through the CIDMA (University
of Aveiro) and FCT, within project PEst-C/MAT/UI4106/2011 with COMPETE number
FCOMP-01-0124-FEDER-022690.

Preprint submitted to Elsevier December 17, 2013

1. Introduction

Let G = (V,E) be an undirected graph where V = {1, 2, . . . , n} is the set
of vertices and E is the set of edges connecting pairs of vertices. Consider a
function s : E → {+,−} that assigns a sign to each edge in E. An undirected
graph G together with a function s is called a signed graph. An edge e ∈ E is
called negative if s(e) = − and positive if s(e) = +.

Signed graphs were introduced by Heider [23] with the purpose of describing
sentiment relations between people pertaining to a same social group and to
provide a systematic statement of social balance theory. Cartwright et al. [10]
formalized Heider’s theory stating that a balanced social group, i.e., a balanced
signed graph, could be partitioned into two mutually hostile subgroups each
having internal solidarity. In the last decades, signed graphs continued to be a
very attractive discrete structure for social network researchers [1, 13, 14, 26, 36]
but also for researchers in other scientific areas, including portfolio analysis in
risk management [22, 24], biological systems [12, 24], efficient document classi-
fication [5], detection of embedded matrix structures [19] and community struc-
ture [27, 34], a very prominent area of network science [30]. The common
element among these applications is the fact that all of them are defined in a
collaborative vs. conflicting environment that can be modeled over a signed
graph.

Let G = (V,E, s) denote a signed graph and let E− and E+ denote, respec-
tively, the set of negative and positive edges in G. Also, for a vertex set S ⊆ V ,
let E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced by S. A
signed graph G = (V,E, s) is balanced if its vertex set can be partitioned into
sets W (possibly empty) and V \W in such a way that E[W]∪E[V \W] = E+.
The problem that is studied herein can be stated as follows.

Problem 1.1 (MBSP). Let G = (V,E, s) be a signed graph. The Maximum
balanced subgraph problem is the problem of finding a subgraph H = (V ′, E′, s)
of G such that H is balanced and maximizes the cardinality of V ′.

The MBSP is known to be an NP-hard problem [7] although the problem
of detecting balance in signed graphs can be solved in polynomial time [21]. In
the literature, the MBSP has already been applied in the detection of embedded
matrix structures [18, 19] and in portfolio analysis in risk management [22].

Gulpinar et al. [19] showed that the problem of detecting a maximum em-
bedded reflected network (DMERN) can be reduced to the MBSP. The existing
solution approaches to the MBSP were in fact proposed for the solution of the
DMERN problem. The literature proposes various heuristics for the solution of
the DMERN problem (for references see [19]). In [19], the first signed graph so-
lution approach was proposed for this problem: a greedy heuristic which is able
to find the optimal solution whenever the whole matrix is a reflected network
matrix. Lately, Figueiredo et al. [18] developed the first exact approach for the
DMERN problem based on the signed graph reformulation of Gulpinar et al.
Computational experiments were carried out over a set of instances found in the
literature as a test set for the DMERN problem. Almost all these instances were

2

solved to optimality in a few seconds showing that they were not appropriate
for assessing the quality of a heuristic approach to the problem and that more
difficult benchmark instances should be provided.

The notion of balance for signed graphs in the context of portfolio analysis
was introduced by Harary et al. [22]. They showed that a portfolio characterized
by a signed graph that is balanced is predictable, in the sense that the structure
of the balanced signed graph allows investors to predict the risk of the asso-
ciated portfolio. These authors used small samples of signed graph structures
(up to five vertices) to illustrate how the structural balance and portfolio risk
management are linked. Their conclusions were only illustrated by a small real
example with four assets.

Another balance subgraph problem defined on signed graphs is studied in [24]
from the point of view of edge deletions. The authors proposed a new data
reduction scheme and a fixed-parameter algorithm for this problem. Compu-
tational experiments were carried out over randomly generated signed graphs
and over signed graphs representing financial networks and gene regulatory net-
works. Their algorithms were used over signed graphs of up to several hundred
vertices.

Our contributions are two-fold. First, we group and discuss three applica-
tions, coming from different research areas, that can be solved as instances of the
MBSP. In doing so we provide a new set of benchmark instances of the MBSP,
including a set of difficult instances for the DMERN problem. Second, we con-
tribute to the efficient solution of the MBSP by developing a pre-processing
routine, an efficient GRASP metaheuristic, and improved versions of the greedy
heuristic proposed in [19].

The remainder of the paper is structured as follows. In Section 2 we discuss
three applications of the MBSP arising in different research areas. The reduction
rules that compose the pre-processing procedure are described in Section 3. The
integer programming formulation and the branch-and-cut algorithm presented
in [17, 18] to the MBSP is outlined in Section 4. In Section 5, we present two
heuristic approaches to solve the MBSP. First, we describe the greedy heuristic
proposed in [19] for the MBSP and propose new strategies to be used in the first
step of this heuristic. Then, we develop a GRASP heuristic for the problem.
In Section 6, computational results are reported for random instances as well
as for instances of the three applications previously described. In Section 7 we
present concluding remarks.

We next give some notations and definitions to be used throughout the
paper. For an edge set B ⊆ E, let G[B] denote the subgraph of G induced by
B. Also, for a vertex set S ⊆ V , we define δ(S) = {(i, j) ∈ E | i ∈ S, j ∈ V \S}
and N(S) = {j ∈ V | (i, j) ∈ δ(S)}. A set I ⊆ V is called a stable set if no
pair of vertices in I is joined by an edge. We represent a cycle by its vertex
set C ⊆ V . In this text, a signed graph is allowed to have parallel edges but
no loops. Also, we assume that parallel edges have always opposite signs. We
define G− = (V,E−) and, for a vertex set S ⊆ V , we define N−(S) = {j ∈ V |
(i, j) ∈ δ(S) ∩ E−}, N+(S) = {j ∈ V | (i, j) ∈ δ(S) ∩ E+} and GS the signed
graph obtained from G by changing the signs of each edge in δ(S). We refer the

3

reader to [37] for a bibliography of signed graphs.

2. Applications

2.1. Detecting embedded matrices

The knowledge of a special structure in a matrix defining a linear or an
integer programming problem can be used to solve it in an efficient way. One
of these special structures is a network matrix. It is well known [8] that if the
constraint matrix of a linear programming problem is a network matrix, then
we can use the network simplex algorithm to solve this problem more efficiently.

A matrix B is called a network matrix if the elements of B belong to the set
{-1,0,+1} and, additionally, if every column of B contains at most one element
+1 and at most one element -1. Given a row of matrix B, the operation of
changing the signs of all non-zero row elements is called a reflection of this
row. A matrix B is called a reflected network matrix if there exists a set of row
reflections that transforms matrix B into a network matrix.

Consider a {−1, 0,+1}-matrix A = [aik] with n rows. Two rows of matrix
A are said to be in conflict if they both have a +1 or they both have a -1
in the same column. A signed graph G(A) can be used to represent existing
conflicts in A [19]. The vertex set of G(A) is defined as V = {1, . . . , n} and
the set of negative and positive edges of G(A) are defined as follows: an edge
(i, j) ∈ E− if and only if aik = ajk 6= 0 for some column k of matrix A; an edge
(i, j) ∈ E+ if and only if aik = −ajk 6= 0 for some column k of matrix A. In [19],
Gulpinar et al. showed that the problem of detecting a maximum embedded
reflected network (DMENR) of A is equivalent of finding the maximum balanced
subgraph of G(A). Figure 1 illustrates this result.

Figure 1: Existing conflicts (negative edges) in matrix A are represented in signed graph
G(A), as well as possible conflicts (positive edges) after row reflections. The subgraph of G(A)
induced by {1, 2, 4} is a maximum balanced subgraph of G(A) associated with a maximum
embedded reflected network in A.

Notice that, according to the definition of G(A), matrices of different di-
mensions can yield the same signed graph and very large matrices can define
very sparse signed graphs. Thus, signed graphs are an appropriate discrete

4

structure to model and to solve the DMERN problem. The first signed graph
based solution approach to the DMERN problem was described in [19]. This
greedy heuristic approach is described in Section 5. In [18], Figueiredo et al.
introduced an integer programming formulation to this problem in which they
explore the relations between network matrices and signed graphs. Based on
this formulation, they proposed a branch-and-cut method to solve the MBSP to
optimality. An improved version of this algorithm is described in Section 4. In
the computational experiments presented in [18], most of the instances found
in the literature were solved to optimality in a few seconds attesting that the
instances commonly used as benchmark for the DMERN problem are not ap-
propriate for assessing the quality of a heuristic approach to the problem.

2.2. Portfolio analysis in risk management

A portfolio is a collection of securities (assets) held by an investor. Balancing
on signed graphs is used in [22] to define a risk-limiting strategy for portfolio
definition. In this context, each security is represented by a vertex in the signed
graph while the correlation between securities is represented by the set of signed
edges. A balanced signed graph with only positive edges represents a speculative
portfolio since all its securities tend to move in the same direction, either on the
upside or on the downside. On the other hand, a balanced signed graph with
at least one negative edge is associated with a limited risk portfolio. Such a
portfolio is defined by two sets of securities, each set with a tendency to move in
tandem, while some pair of assets (connected by negative edges) tend to move in
opposite directions providing the investors with a hedging guarantee. According
to [22], an unbalanced signed graph represents an unpredictable portfolio.

With the purpose to illustrate this signed graph approach to portfolio anal-
ysis, the authors described a simplistic procedure that involves only complete
graphs. The procedure is a constructive one, starting with two securities.
Roughly speaking, at each iteration two possible actions could be followed: to
switch at least one of the securities or to add a new security to the graph. A
small case study with only four vertices was presented and discussed.

In [24], another version of the MBSP is studied where edge-deletions rather
than vertex deletions are considered. The authors proposed and implemented
a very efficient pre-processing routine as well as a fixed-parameter algorithm to
solve this edge-deletion variant of the MBSP. They showed that their algorithms
can be used to compute the balancedness of financial networks of up to several
hundred vertices. However, we question the meaning of edge deletions in the
portfolio analysis application since the correlation between securities cannot be
controlled by an investor. On the other hand, the efficient solution of the MBSP
defined over a signed graph representing a big set of securities would give a more
efficient way to define a limited risk portfolio.

2.3. Community structure

As we have mentioned before, signed graphs have shown to be a very at-
tractive structure for social network researchers [1, 13, 14, 26, 36]. Balancing

5

and clustering problems defined on signed graphs arise naturally in the study
of community structures [3, 27, 30, 34, 36]. In this context, each vertex in the
signed graph represents a person in a social group while an edge represents a
sentiment relation between two people (mutual liking or disliking, friendship
or enmity, cooperation or defection, interaction or avoidance) or says if their
attitudes toward an object match.

No matter the measure of balance, social groups are rarely balanced. One
big challenge in this area is to evaluate balance in a social network. Once
a measure of balance is defined, it can be used as a tool to study whether
and how the network evolves to a possible balance state. Interesting questions
arise: Could we cluster a social group according their preferences? Which is the
minimum number of relations that should change in a group in order to obtain
a balanced network? The first question was extensively studied in the literature
and continue to be an interesting research topic (see [30] for references). The
identified clusters, or communities, are cohesive groups corresponding to circles
of friends, business partners or groups playing a similar role or having a similar
political position.

The solution of the MBSP is related with another relevant question: Which
is the biggest balanced subgroup in a social network? In answering this ques-
tion, we identify two dominant and opposite communities in the network. This
topic has already appeared in the investigation of community structure of net-
works determined by common voting [27], where different representations of
the United Nations General Assembly (UNGA) voting records was proposed.
For each network representation, the authors looked for the network partition
that better defined the main voting groups, which allowed the identification of
the majority ones. The next three sections are dedicated to the description of
solution approaches to the MBSP.

3. Pre-processing

Polynomial-time data reduction is a strategy extensively used to deal with
very large instances of difficult problems [24, 35]. In the following, we describe
very simple reduction rules to the MBSP similar to the ones that have been
used in the solution of vertex coloring problems. Consider a signed graph G =
(V,E, s).

(1) Let i ∈ V be a vertex such that N(i) = ∅. Define G′ = (V \{i}, E, s), solve
the problem over G′ and let subgraph H ′ = (V ′, E′, s) be the obtained op-
timal solution. An optimal solution for G is given by H = (V ′∪{i}, E′, s).

(2) Let i ∈ V be a vertex such that N−(i) = ∅, N+(i) 6= ∅ and, for each
pair u, v ∈ N+(i), (u, v) ∈ E+. Define G′ = [V \ {i}] and solve the
problem over G′. Let H ′ = (V ′, E′, s) be the obtained optimal solution.
An optimal solution for the problem defined over G is given by H =
(V ′ ∪ {i}, E[V ′ ∪ {i}], s).

(3) Let G = (V,E, s) be a graph such that V = V 1 ∪ V 2 and E = E[V 1] ∪
E[V 2] ∪ {(i, j)}, with i ∈ V 1, j ∈ V 2 and (i, j) 6∈ E+ ∩ E−. Define G1 =

6

(V 1, E[V 1]) and G2 = (V 2, E[V 2]). Solve the problem, independently,
over graphs G1 and G2. Let H ′ = (V ′, E′, s) and H ′′ = (V ′′, E′′, s) be the
obtained optimal solutions. An optimal solution for the problem defined
over G is given by the subgraph H = (V ′ ∪ V ′′, E′ ∪E′′, s).

(4) Let i, j ∈ V be two vertices in G such that N+(i) = N+(j), N−(i) =
N−(j) and (i, j) ∈ E− ∩ E+. Define G′ = G[V \ {j}]. Solve the problem
over G′ and let H ′ = (V ′, E′, s) be the optimal solution. This subgraph is
also an optimal solution for the problem defined over G.

Reduction rules (1), (2), (3) and (4) can be applied repeatedly until we
obtain a graph G that cannot be reduced by any of them.

Besides the rules mentioned above, we implemented a general reduction pro-
cedure based on the work of Hüffner et al. [24] for the edge-deletion version of
the MBSP. The procedure proposed in [24] looks for a small set of vertices S
such that removing S from G cuts off a small vertex set C from the rest of the
graph. The vertex set S is called a separator. The main idea is to enumerate
all the possible states concerning the vertices in S and, for each possible state,
to determine the size of an optimal solution for the induced subgraph G[S ∪C].
Finally, the subgraph G[S∪C] is replaced in G by a smaller equivalent subgraph
such that the value of the optimal solution for the original graph is kept. The
definition of this equivalent subgraph depends on the problem definition. In [24],
separators with |S| ≤ 4 and |C| ≤ 32 were heuristically generated. This reduc-
tion procedure applied to the MBSP is illustrated in Figure 2 and explained in
the following.

Figure 2: Reduction rule S1 applied to signed graph G. For any feasible solution, we have
two possible states concerning the vertex set S: (a) vertex 5 does not belong to the feasible
solution; (b) vertex 5 belongs to the feasible solution. The optimal solution for the MBSP
defined over G[{5, 6, 7}] has na = 2 vertices from C in case (a) and nb = 1 in case (b). Signed
graph G′ is defined such that v(G) = v(G′) + 1.

We generate separators for the MBSP such that |S| = 1 and |C| ≤ 15. A
separator with |S| = 1 can be generated polynomially by searching for a 1-

7

cut (articulation vertex) in the graph. Next, we describe how the equivalent
subgraph is defined in our case.

Let S = {i} be an articulation vertex. For any feasible solution of the MBSP,
we can have two possibilities concerning vertex i: (a) vertex i does not belong to
the solution; (b) vertex i belongs to the solution. Let na and nb be the number
of vertices from C in an optimal solution for G[S ∪ C] if case (a), respectively,
case (b), happens. Notice that na ≥ nb and that, no matter if vertex i belongs or
not to the optimal solution, the vertex set C contributes with at least nb vertices
to the value of an optimal solution for G. Then, we proceed in the following
way. Record value nb; define a vertex set V ′ = {i, v1, . . . , vna−nb

}; define a set
of parallel edges E′ = {(i, v) | ∀ v ∈ V ′ \ {i}}; and define a new graph G′

by replacing G[S ∪ C] in G by (V ′, E′). Let v(G) be the value of the optimal
solution of the MBSP defined over a signed graph G. Then, v(G) = v(G′)+nb.
Henceforth, we will denote this reduction rule as S1.

4. Exact solution approach

In this section, we describe briefly an integer linear programming formula-
tion and a branch-and-cut algorithm recently proposed for the MBSP [17, 18].
This exact algorithm was used in the computational experiments presented in
Section 6.

4.1. Integer programming formulation

A signed graph is balanced if and only if it does not contain a parallel edge
or a cycle with an odd number of negative edges [6]. Let Co(E) be the set
of all odd negative cycles in G, i.e., cycles with no parallel edges and with an
odd number of negative edges. From now on, a cycle C ∈ Co(E) is called an
odd negative cycle. The formulation uses binary decision variables y ∈ {0, 1}|V |

defined in the following way. For all i ∈ V , yi is equal to 1 if vertex i ∈ V
belongs to the balanced subgraph, and is equal to 0 otherwise. We use the
vector notation y = (yi), i ∈ V , and the notation y(V ′) =

∑
i∈V ′ yi for V

′ ⊆ V .
The formulation follows.

Maximize y(V) (1)

subject to yi + yj ≤ 1, ∀ (i, j) ∈ E− ∩ E+, (2)

y(C) ≤ |C| − 1, ∀ C ∈ Co(E), (3)

yi ∈ {0, 1}, ∀ i ∈ V. (4)

Consider a parallel edge (i, j) ∈ E− ∩E+. Constraints (2) ensure vertices i and
j cannot belong together to the balanced subgraph. Constraints (3), called odd
negative cycle inequalities, forbid cycles with an odd number of negative edges
in the subgraph described by variables y. These constraints force variables y to
define a balanced subgraph while the objective function (1) looks for a maximum
balanced subgraph. The formulation has n variables and, due to constraints (3),
might have an exponential number of constraints.

8

4.2. The branch-and-cut code

The branch-and-cut algorithm developed in [17, 18] has three basic com-
ponents: the initial formulation, the cut generation and the primal heuristic.
The following improvements were added to the version discussed in [17]: a new
branching rule and new separation routines. Next, we describe the main ingredi-
ents of this improved version, used in the computational experiments described
in Section 6. For a detailed description we refer the reader to the original
works [17, 18].

Initial formulation and primal heuristic. The initial formulation is com-
posed by a set of clique inequalities that dominate constraints (2), a subset of
odd negative cycle inequalities (3), a subset of clique inequalities introduced
in [18] and by all the trivial inequalities 0 ≤ yi ≤ 1. A simple rounding heuristic
is used every time a fractional solution is found in the branch-and-cut tree.

Separation routines. The cut generation component described in [18] has
two separation procedures: an exact separation procedure for odd negative cy-
cle inequalities (3) and a heuristic separation procedure for a family of clique
inequalities introduced in [18]. These two separation procedures were also im-
plemented in the improved version presented in [17]. Two new procedures were
added to the cut generation component of the improved version. The authors
in [17] have implemented the separation procedure described in [28] to the lifted
odd hole inequalities defined over the set of parallel edges. Moreover, as indi-
cated in [18], in order to strengthen constraints (3), they have implemented a
lifting procedure to the odd negative cycle inequalities with |C| ≤ 20. In both
cases, the subproblems appearing in each iteration of the lifting procedure were
solved by simple enumerative algorithms.

Branching on the odd negative cycle inequalities. A standard 0 − 1
branching rule was implemented in the original version of the branch-and-cut
algorithm [18]. The authors reported that a version of the branching rule pro-
posed in [4] was also implemented but, although it has been successfully applied
to the stable set problem [31, 32], better results were obtained to the MBSP
with the standard 0−1 branching rule. A branching rule based on the odd neg-
ative cycle inequalities (3) was implemented in [17] and has shown to be more
efficient than the standard one. The intuition behind the cycle based branch-
ing rule proposed in [17] is the attempt to generate more balanced enumerative
trees. The standard 0 − 1 branching rule is very asymmetrical and produces
unbalanced enumerative trees. The authors in [17] tried to reduce this effect
by branching on odd negative cycles and got better computational results with
this new branching rule.

5. Heuristic solution approaches

In this section, we describe two heuristic approaches to the MBSP: a greedy
heuristic proposed in [19] for the DMERN problem and a GRASP metaheuristic
introduced in this work.

9

5.1. GGMZ greedy heuristic

The heuristic proposed by Gulpinar et al. [19] is described in Algorithm 1
and is motivated by the following basic result.

Lemma 5.1. [19] Every signed tree T = (VT , ET) is a balanced graph.

Algorithm 1: GGMZ greedy heuristic.

Input: signed graph G = (V,E, s)
Output: stable set I

1 Find a spanning tree T in G;

2 Compute a subset W ⊆ V such that TW has no negative edges;

3 Find a maximal stable set I in the graph (GW)−;
4 return I;

It is not difficult to see that there always exists a partition of set I into two
subsets that represents a feasible solution for the MBSP. The greedy heuristic
proposed by Gulpinar et al. has the advantage to find the optimal solution of
the MBSP whenever G is a balanced graph.

The first step of Algorithm 1 could be implemented in a number of different
ways. In [20], the authors tried three well known strategies to construct a
spanning tree: Breadth First Search (BFS), Depth First Search (DFS) and a
random method. Following similar ideas, the Step 1 is implemented in this work
as a BFS, a DFS and by using other five different spanning tree strategies. In
these additional strategies, we calculate a minimum spanning tree based on
costs generated for each edge e of the graph. The Kruskal algorithm [11] is used
to calculate the minimum spanning tree and the following cost functions were
designed:

• (−,+−,+): f1(e) = {3 if e ∈ E+ \ E−; 1 if e ∈ E− \ E+; 2 if e ∈
(E− ∩E+)};

• (+,−,+−): f2(e) = {1 if e ∈ E+ \ E−; 2 if e ∈ E− \ E+; 3 if e ∈
(E− ∩E+)};

• (−,+,+−): f3(e) = {2 if e ∈ E+ \ E−; 1 if e ∈ E− \ E+; 3 if e ∈
(E− ∩E+)};

• Random: a random function frandom(e) ∈ [0, 1000];

• Adaptive: an adaptive function fAdapt(e) = {f1(e) if |E−|/|E+| < 1; f2(e)
otherwise}.

In Step 2, the subset W is found by using a recursive procedure based on
the inductive proof of Lemma 5.1 (see [19] for more details). Finally, in Step 3,
we replaced the degree-greedy algorithm [29] used in [19] and [20] by an efficient
stable set GRASP [15]. We set the GRASP to halt after 100 iterations have
been performed since the last time the best solution was updated or when a
time limit of 300 seconds is reached.

10

5.2. A GRASP metaheuristic

GRASP heuristics have been successfully applied to a large number of com-
binatorial optimization problems [25]; see [16] for a detailed annotated bibliog-
raphy. In order to generate better heuristic solutions for the MBSP, a GRASP
heuristic is developed in this section. The GRASP heuristic is an iterative pro-
cedure that has two phases associated with each iteration: a construction phase
and a local search phase. The construction phase finds an initial solution that
later might be improved by the local search phase. Both phases are repeated
until a termination criterion is satisfied. In the remainder of this section, we
describe these two phases.

The input for the heuristic is the signed graphG = (V,E, s). We assume that
a feasible solution for the MBSP is defined as a pair of disjoint sets (V1, V2) such
that V1, V2 ⊆ V , E[V1] ∪E[V2] ⊆ E+ and (E[V1 ∪ V2]\(E[V1] ∪ E[V2])) ⊆ E−.

Construction phase. The overall method attempts to find a maximal feasible
solution (V1, V2). The construction phase begins with V1 = V2 = ∅ and enlarges
these sets in a greedy way by adding one new vertex to the solution (to V1 or to
V2) at a time. Let (V1, V2) be a feasible solution. We define Cand(V1) = {i ∈
V \(V1 ∪ V2) | (V1 ∪ {i}, V2) is a feasible solution for the MBSP}, as the set of
vertices that are candidate to enter the set V1. Similarly, we define Cand(V2) =
{i ∈ V \(V1 ∪ V2) | (V1, V2 ∪ {i}) is a feasible solution for the MBSP}. At each
iteration, a vertex i ∈ Cand(Vw) (for w = 1, 2) is randomly selected and a new
set V ′

w is reached by inserting vertex i into the set Vw. The procedure is repeated
until Cand(V1) = Cand(V2) = ∅.

Local search phase. Obviously, there is no guarantee that the construction
phase returns a global optimal solution. Therefore, the solution (V1, V2) may be
improved by a local search procedure. The neighborhood of the current solution
(V1, V2) is defined as the family of all pairs (V ′

1 , V
′
2) obtained by applying one

of the following operations for w ∈ {1, 2}:

(i) removing a vertex i from Vw and inserting a vertex j ∈ (Cand(Vw\{i})∪
Cand(Vw mod 2)) into the corresponding subset (i.e. Vw if j ∈ Cand(Vw\{i})
and Vw mod 2 otherwise).

(ii) removing two vertices i1 and i2 from Vw and inserting vertices j1 and j2
belonging to (Cand(Vw\{i1, i2})∪Cand(Vw mod 2)) into the corresponding
subsets.

The procedure starts with the solution provided by the construction phase
and iteratively replaces the current solution by the one with maximum cardi-
nality within its neighborhood, halting when no better solution is found in that
way. Similar to the stable set GRASP of Feo et al. [15], the method stops af-
ter 100 iterations have been performed or when a time limit of 300 seconds is
reached.

11

6. Computational experiments

In this section, we report the results of extensive computational experiments
carried out with the different procedures described in the previous sections. Our
intention is to evaluate the performance of our heuristics and to provide the in-
terested reader with a set of benchmark instances of each application described
in Section 2. We also present numerical results obtained with a set of random
instances. Specifically, for the DMERN problem, we intend to fill a gap pointed
in the work of Figueiredo et al. [18]: we introduce a set of more difficult instances
that we believe are more appropriate for assessing the quality of heuristic ap-
proaches to this problem. All the instances used here and all the numerical
results obtained can be downloaded from www.ic.uff.br/∼yuri/mbsp.html.

The heuristics are coded in C++ and tested on an Intel Core 2 Duo Com-
puter with a 2.93 GHz and 2 GB of RAM memory. The branch-and-cut (BC)
algorithm from [17], described in Section 4, is coded in C++, running on a
Intel(R) Pentium(R) 4 CPU 3.06GHz, equipped with 3 GB of RAM. We use
Xpress-Optimizer 20.00.21 [33] to implement the components of this enumera-
tive algorithm. All results reported for heuristic procedures and the BC code
were obtained over pre-processed instances. Time reported for these procedures
does not include pre-processing time. The CPU time limit is set to 1h for the
BC and to 300 seconds for the heuristics. We remember the reader that a
second termination criterion have been defined in Section 5 for each heuristic
procedure.

Pre-processed instances are generated by the following procedure. First,
reduction rules (1), (2), (3) and (4) are applied repeatedly until we obtain a
graph G that cannot be reduced by any of them. Let B ⊆ V be a subset of
vertices in G such that, for each i ∈ B, S = {i} is a separator such that |C| ≤ 15.
Thus, for each vertex i ∈ B, we apply the reduction rule S1. Results obtained
with this pre-processing procedure are reported in the last row (All rules) of
Tables 1 to 3. The other rows on these tables present numerical results when
only one rule is applied repeatedly. Notice that rule 3, as defined in Section 3,
eliminates only edges. However, isolated vertices can arise in the graph when
only this rule is applied. In that case, we also eliminate them and that explains
why non-zero values are reported in row Rule 3 for vertex reductions. The
pre-processing of any of our instances lasted at most 5 seconds, so that pre-
processing times are not reported in the next subsections.

6.1. Random instances

We generated two sets of random instances. Group 1 is the set of ran-
dom signed graphs without parallel (E− ∩ E+ = ∅). For this group, we
generated graphs by varying the number of vertices |V |, the graph density
d = 2 ∗ |E|/(|V |2 − |V |) and the rate |E−|/|E+|. For this group, we consid-
ered a set of 108 random signed graphs having |V | ranging in the set {50, 100,
150, 200}, d varying in the set {0.25, 0.50, 0.75} and having |E−|/|E+| varying
in the set {0.5, 1.0, 2.0}. For each combination of these values, three different
signed graphs were generated. Group 2 is the set of random signed graphs with

12

parallel edges (E− ∩ E+ 6= ∅). For this group, we generated graphs by varying
|V |, d and the rate |E+ ∩ E−|/|E| with |V | and d varying as in Group 1 and
having |E+∩E−|/|E| varying in the set {0.25, 0.50, 0.75}. Again, three different
signed graphs were generated for each combination of these values which also
totalizes 108 random instances in Group 2.

The pre-processing procedure had almost no effect over the random in-
stances, so numerical results are not reported for this procedure. Now we
present the results obtained with the heuristic methods over the sets of ran-
dom instances. For each random instance, the heuristic procedures terminated
because the maximum number of iterations was achieved in less than 20 sec-
onds. Tables 4 and 5 show the results obtained with the seven different versions
of GGMZ greedy heuristic discussed in Section 5. Again, average values are
presented per |V |, d and rates |E−|/|E+| and |E+ ∩ E−|/|E|. For heuristic
results, the percentage gap of each instance is 100× (B∗ − BS)/B∗ where BS
is the value of the solution found by the heuristic procedure and B∗ is the best
feasible solution we got from all solution procedures (heuristics and BC). From
Table 4, we conclude that, in average, the Adaptive version of GGMZ algorithm
is the best version for instances in Group 1 followed by the DFS version. Results
on Table 5 shows that the Adaptive version is also the best one for instances in
Group 2. It is not clear which heuristic version has the second place for Group
2. The authors in [20] have concluded that building the spanning tree is the
crucial step of GGMZ heuristic and we agree with them. However, they have
also reported that DFS is the best strategy for implementing Step 1 of Algo-
rithm 1 among DFS, BFS and a random procedure. Results on Table 5 show
that it is not always the case.

Figures 3 and 4 compare the percentage gaps obtained with the Adaptive
version and with our GRASP metaheuristic. In these graphics, the x-axis ex-
hibits instances ordered primarily by number of vertices and secondly by number
of edges while the y-axis exhibits percentage gaps. Clearly the GRASP achieved
small gaps, reaching optimal values for many instances. Figure 4 also shows the
percentage gaps obtained with the Adaptive version decreases with the number
of edges in the signed graph.

6.2. DMERN instances

As we have mentioned before, some solution approaches based on signed
graphs have been proposed in the literature for the solution of the DMERN
problem in [18, 19, 20]. These works reported the computational performance of
their methods over a set of instances available in the literature. We refer to this
set of instances as the GGMZ instances. Before solving each instance of this set,
Gulpinar et al. applied a pre-processing procedure in order to reduce the size of
the coefficient matrix and a scaling procedure in order to increase the dimension
of the {−1, 0,+1}-matrix. This set has around hundred matrices of various sizes.
Detailed results were reported by Gulpinar et al. for the subset of 44 matrices
which have at least 500 rows. Figueiredo et al. [18] reported their computational
results over the 34 more difficult instances that were made available by Gulpinar
et al. already pre-processed and scaled. The results obtained with the exact

13

algorithm developed in [18] showed that GGMZ instances are easy instances
except for one. The BC algorithm was able to solve almost all instances in just
a few seconds with most of them solved to optimality at the root of the BC tree.

Since this is a set of easy instances, unable to capture the complexity of the
MBSP, we do not run computational experiments neither with the improved
BC code nor with the heuristic methods. However, we run our pre-processing
procedure on this set of instances. We can see from Table 1 that these instances
were greatly reduced in the set of vertices as well as in the set of edges. After
the application of all the reduction rules, almost all the remaining graphs are
highly disconnected. Next, we introduce a set of more difficult instances of the
DMERN problem that are more suitable for assessing the quality of heuristic
approaches to this problem.

In [2], a large set of general mixed integer programs (MIP) coming from
network design problems were used to detect block structures in matrices. In
order to compose new DMERN instances, a subset of constraint matrices was
selected from these problems (some MIPs had the same constraint matrix only
differing in the right-hand side of the inequalities) and the scaling procedure
described in [20] was applied. Here, we denote this set of instances as the new
DMERN instances. This set is composed by 316 instances having |V | varying
from 19 to 8317. Table 3 presents the reductions obtained by running our pre-
processing routine over the new DMERN instances. Only reduction rules (1)
and (2) were able to reduce instances in this set and together these rules were
responsible for halving the number of vertices in this set.

Figure 5 shows the number of instances solved to optimality by the BC
code. Graphic (a) gives this information as a function of the graph density
while graphic (b) as a function of the number of vertices. We can see that
many instances were solved to optimality. Table 9 shows results obtained for
the instances remaining unsolved and for the instances solved to optimality in
more than one minute. The first three columns give us information about the
instances: the Netlib instance name, the number of vertices and the number of
edges. The next five columns give us information about the pre-processed signed
graphs: the number of vertices, the number of edges and the number of negative,
positive and parallel edges. Finally, the last set of columns gives us information
about the solution obtained with the BC code: the time (in seconds) spent to
solve the instances to optimality (“−” means the instance was not solved within
the time limit), the percentage final gap, the percentage gap obtained for the
initial formulation, the value of the optimal solution (whenever the time limit
is reached, this column reports the value of the best integer solution found)
and the total number of nodes in the branch-and-bound tree. Information on
this table shows us that these instances were the less affected by pre-processing
routines. From this set of instances, we can extract 21 instances not solved to
optimality by the BC code, some of them with final gap above 20%.

Figures 6, 7 and 8 present the results obtained with the heuristic approaches
for all the 316 new DMERN instances. Again, the x-axis exhibits instances
ordered primarily by number of vertices and secondly by number of edges while
the y-axis exhibits the percentage gaps. Clearly, the GRASP metaheuristic has

14

found the best heuristic solution for almost all new DMERN instances. With
respect to the different versions of the GGMZ heuristic, the percentage gaps
varied substantially for a same version of this heuristic approach which makes
difficult to establish which version has found the better order to include edges
in the spanning tree. The DFS version was the one with less variation on the
gaps. Considering only the gaps, from Figure 6, we can conclude that the DFS
version got slightly better results than the BFS version (DFS and BFS versions
outperformed each other by at least 5% in, respectively, 51% and 34% of the
instances). On the other hand, we can see that the three GGMZ heuristics in
Figure 7 reached almost the same gaps ((−,+,+−), (+,−,+−) and (−,+−,+)
versions outperformed each other by at least 5% in, respectively, 5%, 2.5% and
1% of the instances). From Figure 8, we can conclude that the Adaptive version
got better results than the Random version (Adaptive and Random versions
outperformed each other by at least 5% in, respectively, 58% and 32% of the
instances). From Table 8, we can see that versions (−,+−,+) and (−,+,+−)
solved more instances to optimality. Table 8 informs us the number of instances
(for each instance set) for which each heuristic method has found the optimal
value. The last row on this table informs us how many instances were solved
to optimality by the BC code. For the new DMERN instances, the time spent
and the termination criteria achieved by the heuristic procedures seems not
to be related with the size of the instance to be solved. As we could expect,
in general, the GRASP procedure spent more time than the GGMZ heuristics.
Average times (in seconds; calculated over the set of all new DMERN instances)
spent by the heuristic procedures are shown in Table 6. For 56 instances in
this set, each heuristic procedure terminated because the maximum number of
iterations was achieved in less than 10 seconds. We run additional experiments
on the set defined by the other 260 instances: with time limit set to 10 seconds
and set to 30 seconds. Figure 9 (a) and (b) exhibits, respectively, the obtained
results. Results obtained by the GRASP procedure are compared with results
obtained by the DFS and (−,+,+−) versions. We can see that, after 10 seconds
of computation, the GRASP procedure has already found the best results for
many instances in this subset extending its advantage as time limit is increased
to 30 seconds.

6.3. Portfolio analysis instances

For this application, we considered the market graphs generated by Hüffner
et al. in [24]. These authors used publicly available historical data (for 2003
and 2004) of 5216 stocks to generate this test set. For each pair of stocks,
the correlation coefficient was calculated by using, in a given time range, the
corresponding stock price fluctuations. Two stocks are positively correlated if
they have similar daily fluctuation; otherwise, they are negatively correlated. So,
as it was done in [22], from the correlation coefficients computed, they applied a
simple threshold transformation to create a signed graph. Consider a threshold
value t. If a correlation coefficient was bigger (smaller) than t (−t), then a
positive (negative) edge was added. Different signed graphs were generated by
using different threshold values 0.3 ≤ t ≤ 0.4. To avoid the generation of trivial

15

instances (with mostly negative edges) and motivated by a study of Boginski
et al. [9], they added an offset of 0.05 to all correlation coefficients. Notice
that a signed graph generated over the set of 5216 stocks would be a very large
graph. Thus, to compose this test set, they randomly chose subgraphs whose
sizes range from 30 to 510 vertices in steps of 30. For more details, we refer the
reader to the work of Hüffner et al. [24].

This test set is composed by instances with the number of vertices |V | vary-
ing in the set {30, 60, 90, . . . , 510} and the threshold value t varying in the set
{0.300, 0.325, 0.350, 0.375, 0.400}. For each combination of these values, 10 dif-
ferent signed graphs were randomly chosen, which means that each signed graph
represents a different subset of stocks and totalize 850 instances. We call this set
of instances the portfolio instances. From Table 2 we can see that almost all the
instances in this set were reduced by at least one reduction rule and that rule
4 was useless for them. If we compare these results with the results obtained
for the new DMERN instances, in total, more portfolio instances were reduced
but the percentage of eliminated vertices and eliminated edges were higher for
the new DMERN instances. The graphics plotted in Figure 10 exhibits the
number of instances solved to optimality by the BC code: graphic (a) gives
this information as a function of |V | while (b) as a function of t. We can see
these instances become more difficult as the number of vertices increases and
the threshold value decreases. Remember that, as defined in [22], signed graphs
generated for a set of securities in a given time period have more edges as the
threshold value decreases. All the instances with up to 210 vertices were easily
solved in a few seconds. Table 7 shows average results for signed graphs with
|V | ∈ {390, 420, 450, 480, 510}. The notations in this table are the same as in
Table 9 except for the fact that Table 7 exhibits average values. The entries in
column %Gap are calculated over the instances not solved within the time limit
while the entries in columns Time and Nodes are calculated over the instances
solved to optimality. We can see that, in general, the gap increases with the
number of vertices and as the threshold value decreases. Also, Time and Nodes
decreases as the threshold value increases.

Now, we turn our attention to the results obtained with the heuristic ap-
proaches on the portfolio instances. In Figures 11, 12 and 13, the x-axis exhibits
instances ordered primarily by number of vertices and secondly by the threshold
value while the y-axis exhibits the percentage gaps. Our GRASP heuristic is the
best heuristic also for the portfolio instances. The performance of the GRASP
heuristic degrades as the number of vertices exceeds 450 and the performance
of GGMZ heuristics degrade as the threshold value decreases. Again, it is dif-
ficult to answer which is the best or worst version of GGMZ heuristic for the
portfolio instances. Although (−,+−,+) and (−,+,+−) solved more instances
in this set to optimality (see Table 8), they were the versions that presented the
biggest variations on the gaps (see Figures 11–13). Results in Figure 11 demon-
strate that there was less variation in the gaps obtained with the BFS and the
DFS version on portfolio instances than the ones observed on the DMERN in-
stances and, for many instances, the BFS version has found a better solution
than the DFS version (DFS and BFS versions outperformed each other by at

16

least 5% in, respectively, 13% and 60% of the instances). Comparing the gaps
in Figure 12, we can conclude that the (+,−,+−) version got better results
than the other two versions ((−,+,+−), (+,−,+−) and (−,+−,+) versions
outperformed each other by at least 5% in, respectively, 0%, 58% and 0.1% of
the instances). From results in Figure 13 and in Table 8, we can conclude that
the Adaptive and Random versions got very similar performance (Adaptive and
Random versions outperformed each other by at least 5% in, respectively, 27%
and 36% of the instances and solved, respectively, 173 and 187 instances to
optimality). For most portfolio instances with up to 210 vertices, all heuristics
stop because the maximum number of iterations was achieved in less than 50
seconds. For instances with more than 240 vertices, the heuristics took more
time as the threshold value decreased and the number of vertices increased. For
most instances with more than 240 vertices, the GRASP heuristic stop because
the time limit of 300 seconds was achieved. On the other hand, for most of these
instances, the GGMZ heuristics terminated because the maximum number of
iterations was achieved in less than 300 seconds (most of them from 50 to 250
seconds). Again, with the aim to detect the preferable heuristic procedure when
a quick solution is needed, we run additional computational experiments on a
subset of portfolio instances, with number of vertices from 240, considering dif-
ferent time limits (10 and 30 seconds). Figure 14 exhibits the obtained results.
We can conclude from Figure 14 (a) that the GRASP procedure is no longer the
best option if a quick solution is needed. The Random version of the GGMZ
heuristic is the best option followed closely by the (+,−,+/−) GGMZ version.
In Figure 14 (b) we see that the results obtained by the GRASP procedure
had improved when the time limit was increased from 10 to 30 seconds but the
GGMZ heuristic continued to be the best option. From results in column Best
Sol of Table 7, we noticed that signed graphs associated with portfolio instances
contains big balanced subgraphs and that for threshold value equal to 0.400 the
signed graphs are almost balanced. We believe this explains the results shown
in Figure 14 since the GGMZ heuristic has the great advantage of finding the
optimal solution of the MBSP whenever the signed digraph is balanced.

6.4. UNGA instances

In [27], the community structure of networks representing voting on resolu-
tions in the United Nations General Assembly (UNGA) was investigated. The
authors constructed networks from the UNGA voting records of the 63 separate
annual sessions between 1946 and 2008 in three different ways. The 19th session
was not considered since voting occurred on only one resolution in this session.
We refer the interested reader to [27] for an introduction to the United Nations
General Assembly voting data including an interesting discussion of different
ways to represent this data in the form of networks. The records for sessions
between 1946 and 2008 are available in Voeten’s organization of the UNGA vot-

17

ing data 1. In this work, we represent these UNGA voting data records by a
set of signed graphs. The optimal solution of the MBSP over this set of signed
graphs allows the identification of majority voting groups in each voting session.

Next, we describe how the set of signed graphs is generated. Consider two
parameters α, β ∈ [0, 1]. The signed graphs are constructed following the steps
of Algorithm 2. The sets of positive and negative edges are defined by the
number of agreements and disagreements on resolutions. Parameter α specifies
the level of agreement and disagreement between two countries that gives rise
to positive or negative edges in the signed graph. Parameter β determines if
the sum of agreements and disagreements between two countries is sufficient to
establish that they cannot be considered as in the same voting group. Following
an observation from [27], we treat differently the disagreement between two
countries in a yes-no pair of votes on a same resolution from a yes-abstain pair
or a no-abstain pair. Also, we normalize counts of agreement and disagreement
by the total number of resolutions voted in the session.

Algorithm 2: Algorithm to create a signed graph representing a UNGA
voting session.

Input: Voting records {yes, no, abstention} for the set of resolutions and
countries in a session

Output: Signed graph G = (V,E, s)
1 V = {i | i is a country voting in the section};
2 for Each pair of countries i and j do
3 agree = disagree = 0;
4 for Each resolution do
5 if i and j abstain then agree = agree+ 0.5;
6 if i and j vote equal and do not abstain then agree = agree+ 1;
7 if i and j vote differently and do not abstain then disagree = disagree

+ 1;
8 if exactly one of them abstain then disagree = disagree+ 0.5;

9 end
10 %agree = agree/total of resolutions;
11 %disagree = disagree/total of resolutions;
12 if (%agree−%disagree) ≥ α then
13 Create a positive edge (i, j);
14 if (%agree−%disagree) ≤ −α then
15 Create a negative edge (i, j);
16 if −α < (%agree+%disagree) < α and (%agree+%disagree) ≥ β then
17 Create a parallel edge (i, j);
18

19 end

We generated the set of UNGA instances varying parameters α and β, re-

1United Nations General Assembly Voting Data, by Anton Strezhnev and Erik Voeten,
http://hdl.handle.net/1902.1/12379. Accessed in June 2012.

18

spectively, in sets {0.1, 0.2, 0.3} and {0.5, 0.8}. Signed graphs generated have
the number of vertices varying from 54 to 192. For each of the 6 combinations
of parameters α and β, a set of instances was generated.

The pre-processing procedure had almost no effect on this set of instances
that is composed by dense signed graphs. The mean graph density for each of
the 6 sets varies from 0.72 to 0.97. On the other hand, UNGA instances were
easily solved to optimality by the BC code. This set of instances is composed
by signed graphs with at most 192 vertices and that contains large balanced
subgraphs. Figure 15 shows the optimal solutions obtained with all the UNGA
instances. In this figure the x-axis represents all the sections from 1946 to
2008 numbered from 1 to 63. The dotted dark line in this graphic gives us
the number of countries in the session. The other lines shows the optimal
solution of the MBSP defined over the associated signed graph. As we could
expect, the optimal value increases as parameter α increases and it decreases
as parameter β increases. Figure 16 shows the majority groups in the optimal
solutions obtained for the UNGA instances generated with α = 0.3 and with
(a) β = 0.5 and with (b) β = 0.8. Interpreting the results in the context
of each application is not in the scope of this paper, specially for the UNGA
voting records since these data have been widely investigated in the literature.
However, it is clear that these voting sessions are characterized by the existence
of a majority agreement group that changes whenever we fix one parameter and
vary the other. This can explain why these instances are always so easy to
solve. Certainly, in other voting contexts, this is not the case and more difficult
instances would be generated making the heuristic approaches useful also for
this application.

7. Final remarks

The MBSP is a combinatorial problem with applications arising in collab-
orative vs. conflicting environments that can be modeled over a signed graph.
We discussed two applications [19, 22] from the literature and introduced a new
application of the problem in community structure. Despite its interesting ap-
plications only two solution methods had been proposed in the literature for
the MBSP: a greedy heuristic [19] and a BC algorithm [17, 18]. We proposed
improved versions for the greedy heuristic and developed a GRASP based al-
gorithm for improving the quality of heuristic solutions obtained for difficult
instances. In addition, we discussed simple data reduction rules and imple-
mented a pre-processing procedure for the problem. Numerical experiments
were performed over a set of benchmark instances of each application as well as
over a set of random instances. A side contribution of this work is the introduc-
tion of a set of difficult instances for the DMERN problem filling a gap pointed
in the work of Figueiredo et al. [18].

The pre-processing procedure had almost no effect over random and UNGA
instances. DMERN and portfolio instances were greatly reduced both in the
set of vertices and in the set of edges. No reduction rule was useless but their

19

individual efficiency depends on the set of instances being solved. More portfo-
lio instances were reduced than DMERN instances, however the percentage of
eliminated vertices and eliminated edges were higher for the DMERN instances.

All random instances with 50 vertices and all UNGA instances were solved
to optimality by the BC algorithm. Most new DMERN instances and port-
folio instances were also solved to optimality by this algorithm with a group
remaining unsolved. It shows that there is a great number of real applications
that can be solved to optimality. This is important since for many problems,
the representation of the conflict environment as a signed graph is already an
approximation of the real problem where many simplifications were done. In
such a scenario, solving the problem heuristically can raise the distance from
the obtained solution and the reality.

The GRASP procedure was the best heuristic solution approach when time
limit was not a constraint in the solution process. However, when a solution
is required in a few seconds, for signed graphs that contains big balanced sub-
graphs the GGMZ heuristic was the best option. Our computational results
also attested that building the spanning tree is an important step in the GGMZ
greedy heuristic. The gap associated to the obtained heuristic solution can dou-
ble depending on the spanning tree used (see Table 4). Moreover, the definition
of the best strategy for the implementation of this step depends on the instance
being solved. Even if the quality of the heuristic solution was improved by using
different strategies in this first step, our GRASP procedure achieved better re-
sults for almost all the instances and was able to reach optimal values for many
of them. Table 8 shows for how many instances each heuristic procedure has
found the optimal value. The last line in this table exhibits the total number
of instances for which the optimal solution is known. The GRASP procedure
reached optimal values for 65% of the instances the optimal solution is known.

Acknowledgements

We would like to thank the authors of [24] for kindly making the portfolio instances

available for us. We also thank Luidi Simonetti for providing helpful comments during

the development of this work.

[1] P. Abell and M. Ludwig. Structural balance: a dynamic perspective. Jour-
nal of Mathematical Sociology, 33:129–155, 2009.

[2] T. Achterberg and C. Raack. The MCF-separator – detecting and ex-
ploiting multi-commodity flows in MIPs. Mathematical Programming C,
2:125–165, 2010.

[3] G. Agarwal and D. Kempe. Modularity-maximizing network communi-
ties using mathematical programming. The European Physical Journal B,
66:409–418, 2008.

[4] E. Balas and C.S. Yu. Finding a maximum clique in an arbitrary graph.
SIAM Journal on Computing, 14:1054–1068, 1986.

20

[5] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proceedings
of the 43rd annual IEEE symposium of foundations of computer science,
pages 238–250, Vancouver, Canada, 2002.

[6] F. Barahona and A.R. Mahjoub. Facets of the balanced (acyclic) induced
subgraph polytope. Mathematical Programming, 45:21–33, 1989.

[7] J.J. Barthold. A good submatrix is hard to find. Operations Research
Letters, 1:190–193, 1982.

[8] M. S. Bazaraa, J. Jarvis, and H. D. Sherali. Linear Programming and
Network Flows. Wiley-Interscience, 2009.

[9] V. Boginski, S. Butenko, and P.M. Pardalos. Mining market data: A net-
work approach. Computers and Operations Research, 33:3171–3184, 2006.

[10] D. Cartwright and F. Harary. Structural balance: A generalization of
heiders theory. Psychological Review, 63:277–293, 1956.

[11] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009.

[12] B. DasGupta, G. A. Encisob, E. Sontag, and Y. Zhanga. Algorithmic and
complexity results for decompositions of biological networks into monotone
subsystems. BioSystems, 90:161–178, 2007.

[13] P. Doreian and A. Mrvar. A partitioning approach to structural balance.
Social Networks, 18:149–168, 1996.

[14] P. Doreian and A. Mrvar. Partitioning signed social networks. Social Net-
works, 31:1–11, 2009.

[15] T.A. Feo, M.G.C. Resende, and St.H. Smith. A greedy randomized adap-
tive search procedure for maximum independent set. Operations Research,
42:860–878, 1994.

[16] P. Festa and M.G.C. Resende. GRASP: an annotated bibliography. Kluwer
Academic Publishers, 2002.

[17] R. Figueiredo and Y. Frota. An improved branch-and-cut code for the max-
imum balanced subgraph of a signed graph. CoRR, 2013. arXiv/1312.4345.

[18] R. Figueiredo, M. Labbé, and C.C. de Souza. An exact approach to the
problem of extracting an embedded network matrix. Computers & Opera-
tions Research, 38:1483–1492, 2011.

[19] N. Gülpinar, G. Gutin, G. Mitra, and A. Zverovitch. Extracting pure net-
work submatrices in linear programs using signed graphs. Discrete Applied
Mathematics, 137:359–372, 2004.

21

[20] G. Gutin, D. Karapetyan, and I. Razgon. Fixed-parameter algorithms
in analysis of heuristics for extracting networks in linear programs. In
Proceedings of the 4th International Workshop on Parameterized and Exact
Computation, pages 222–233, Copenhagen, Denmark, 2009.

[21] F. Harary and J.A. Kabell. A simple algorithm to detect balance in signed
graphs. Mathematical Social Sciences, 1:131–136, 1980.

[22] F. Harary, M. Lim, and D. C. Wunsch. Signed graphs for portfolio analysis
in risk management. IMA Journal of Management Mathematics, 13:1–10,
2003.

[23] F. Heider. Attitudes and cognitive organization. Journal of Psychology,
21:107–112, 1946.

[24] F. Huffner, N. Betzler, and R. Niedermeier. Separator-based data reduction
for signed graph balancing. Journal of Combinatorial Optimization, 20:335–
360, 2010.

[25] R. Mart́ı, M.G.C. Resende, and C. C. Ribeiro. Multi-start methods for
combinatorial optimization. European Journal of Operational Research,
226:1–8, 2013.

[26] T. Inohara. On conditions for a meeting not to reach a deadlock. Applied
Mathematics and Computation, 90:1–9, 1998.

[27] K.T. Macon, P.J. Mucha, and M.A. Porter. Community structure in the
united nations general assembly. Physica A: Statistical Mechanics and its
Applications, 391:343–361, 2012.

[28] M. Padberg. On the facial structure of set packing polyhedra. Mathematical
Programming, 5:199–215, 1973.

[29] V.Th. Paschos. A δ/2-approximation for the maximum independent set
problem. Information Processing Letters, 44:11–13, 1992.

[30] M.A. Porter, J.-P Onnela, and P.J. Mucha. Communities in networks.
Notices of the AMS, 56:1082–1166, 2009.

[31] S. Rebennack, M. Oswald, D.O. Theis, H. Seitz, G. Reinelt, and P.M.
Pardalos. A branch and cut solver for the maximum stable set problem.
Journal of Combinatorial Optimization, 21:434–457, 2011.

[32] F. Rossi and S. Smriglio. A branch-and-cut algorithm for the maximum
cardinality stable set problem. Operations Research Letters, 28:63–74, 2001.

[33] FICO Xpress Optimization Suite. Xpress-Optimizer reference manual,
2009. Release 20.00.

[34] V.A. Traag and J. Bruggeman. Community detection in networks with
positive and negative links. Physical Review E, 80:036115, 2009.

22

[35] V. Valls, M. Angeles Perez, and M. Sacramento Quintanilla. Pre-processing
techniques for resource allocation in the heterogeneous case. European
Journal of Operational Research, 107:470–491, 1998.

[36] B. Yang, W.K. Cheung, and J. Liu. Community mining from signed so-
cial networks. IEEE Transactions on Knowledge and Data Engineering,
19:1333–1348, 2007.

[37] T. Zaslavsky. A mathematical bibliography of signed and gain graphs and
allied areas. Electronic Journal of Combinatorics DS8, 1998.

23

Percentage of Instances Reductions
Rule Vertices Edges %n %m

Rule 1 61.32 0.00 27.84 0.00
Rule 2 68.87 55.66 47.32 30.00
Rule 3 1.89 1.89 0.73 1.98
Rule 4 65.09 65.09 24.69 32.95
Rule S1 64.15 64.15 20.65 24.83
All rules 77.58 65.09 55.25 39.93

Table 1: Results obtained with each reduction rule on GGMZ instances.

Percentage of Instances Reductions
Rule Vertices Edges %n %m

Rule 1 87.76 0.00 17.08 0.00
Rule 2 92.12 89.29 24.85 10.30
Rule 3 93.06 93.06 14.03 10.77
Rule 4 0.00 0.00 0.00 0.00
Rule S1 92.71 92.71 12.41 6.99
All rules 94.00 93.29 36.60 16.36

Table 2: Results obtained with each reduction rule on portfolio instances.

Percentage of Instances Reductions
Rule Vertices Edges %n %m

Rule 1 37.97 0.00 54.05 0.00
Rule 2 52.53 20.57 44.17 13.63
Rule 3 0.00 0.00 0.00 0.00
Rule 4 0.00 0.00 0.00 0.00
Rule S1 0.00 0.00 0.00 0.00
All rules 57.28 30.70 49.11 22.27

Table 3: Results obtained with each reduction rule on new DMERN instances.

Method n d |E−|/|E+|
50 100 150 200 .25 .50 .75 .5 1 2

BFS 10.32 12.56 9.47 7.41 11.37 10.34 8.10 7.50 9.13 11.80
DFS 15.72 15.30 13.99 11.13 12.67 15.04 14.39 10.06 14.26 15.76
(-.+-.+) 13.02 14.91 12.26 10.89 13.93 13.65 10.74 12.79 11.29 12.24
(+.-.+-) 20.66 19.05 16.75 15.03 18.44 17.75 17.44 2.69 15.78 33.61
(-.+.+-) 13.02 13.20 11.33 10.34 13.44 12.63 9.85 12.00 11.06 10.94
Random 15.75 17.05 12.70 11.14 14.01 14.23 14.24 10.54 14.02 15.86
Adaptive 11.20 8.95 8.33 5.54 9.77 8.53 7.22 2.93 10.06 11.46

Table 4: Results for GGMZ heuristics on random instances in Group 1 (E− ∩ E+ = ∅).

24

Method n d |E − ∩E + |/|E|
50 100 150 200 .25 .50 .75 .25 .50 .75

BFS 11,68 13,65 14,86 14,18 13,84 13,81 13,13 12,73 13,76 12,08
DFS 15,14 13,83 15,77 14,97 14,45 15,23 15,10 15,35 14,83 12,08
(-,+-,+) 9,96 10,62 14,38 13,40 11,99 12,05 12,23 11,51 12,53 10,23
(+,-,+-) 13,60 15,85 16,72 15,43 15,86 15,19 15,14 16,33 14,72 12,57
(-,+,+-) 10,08 11,66 14,40 13,20 11,91 12,19 12,90 11,42 12,61 10,98
Random 12,77 14,65 15,46 15,88 13,83 15,23 15,00 13,70 13,90 14,17
Adaptive 9,12 12,07 13,25 12,83 11,09 12,44 11,92 11,37 12,99 9,06

Table 5: Results for GGMZ heuristics on random instances in Group 2 (E− ∩ E+ 6= ∅).

Figure 3: GRASP results on random instances with E− ∩ E+ = ∅.

Figure 4: GRASP results on random instances with E− ∩ E+ 6= ∅.

Figure 5: Number of new DMERN instances solved to optimality by the improved BC code.

25

Figure 6: Heuristic results on new DMERN instances.

Figure 7: Heuristic results on new DMERN instances.

Figure 8: Heuristic results on new DMERN instances.

Figure 9: Heuristic results on new DMERN instances with time limit set to (a) 10 seconds
and to (b) 30 seconds.

26

Method Mean Time
BFS 136.39
DFS 137.94

(-,+-,+) 141.67
(+,-,+-) 142.54
(-,+,+-) 141.72
Random 146.85
Adaptive 142.43
GRASP 184.21

Table 6: Mean time spent by heuristic procedures on new DMERN instances.

Figure 10: Number of portfolio instances solved to optimality by the improved BC code.

V t Time %Gap Best Sol Nodes
390 0.300 650.50 10.25 279.80 510.60

0.325 101.50 4.69 313.90 497.30
0.350 29.14 1.60 343.00 576.90
0.375 5.20 − 367.10 4.40
0.400 1.40 − 381.30 1.70

420 0.300 − 17.54 280.30 401.70
0.325 1225.00 7.98 325.20 605.20
0.350 112.00 4.19 364.10 301.50
0.375 158.60 − 391.20 209.40
0.400 4.30 − 407.20 11.50

450 0.300 − 13.66 303.90 335.00
0.325 121.00 4.93 349.70 391.50
0.350 381.44 2.65 389.70 249.40
0.375 23.40 − 418.40 17.20
0.400 2.70 − 436.20 1.00

480 0.300 725.00 25.30 308.50 255.90
0.325 527.67 12.53 360.10 299.70
0.350 231.00 3.30 408.40 343.20
0.375 162.40 − 441.70 77.50
0.400 7.20 − 463.70 7.00

510 0.300 815.00 28.70 321.80 182.00
0.325 457.00 13.55 372.40 252.30
0.350 58.33 4.27 424.50 292.60
0.375 647.33 0.53 464.40 552.80
0.400 7.10 − 491.40 4.40

Table 7: Results obtained with the BC method on portfolio instances.

27

Figure 11: Heuristic results on portfolio instances.

Figure 12: Heuristic results on portfolio instances.

Figure 13: Heuristic results on portfolio instances.

Figure 14: Heuristic results on portfolio instances with time limit set to (a) 10 seconds and
to (b) 30 seconds.

28

Figure 15: Optimal values obtained on UNGA instances.

Figure 16: Majority groups in the optimal solutions obtained for UNGA instances with α = 0.3
and with (a) β = 0.5 and with (b) β = 0.8.

Method Instance set Total
Random Group 1 Random Group 2 new DMERN Portolio

BFS 5 5 28 203 241
DFS 2 4 32 171 209

(-,+-,+) 3 9 98 219 329
(+,-,+-) 6 3 35 171 215
(-,+,+-) 3 8 99 219 329
Random 1 4 21 187 213
Adaptive 8 9 76 173 266
GRASP 32 50 159 485 726

BC 34 57 295 718 1104

Table 8: Number of instances solved to optimality.

29

N
a
m
e

n
′

m
′

n
m

m
−

m
+

m
−

+
T
im

e
%
G
a
p

%
G
a
p
L
P

B
e
st

S
o
l

N
o
d
e
s

d
a
n
o
in
t

1
4
5

1
4
5
7

1
4
4

1
4
5
6

4
9
7

9
0
3

5
6

1
6
5

0
.0
0

3
1
.2
5

9
6

3
9
5
1

b
ie
n
st
1

1
8
4

2
5
4
8

1
8
4

2
5
4
8

1
9
8
1

5
6
7

0
2
7
7
2

0
.0
0

3
1
.1
1

9
0

3
9
7
1
0

st
e
in
4
5

3
3
1

1
0
7
0
1

3
3
1

1
0
7
0
1

1
0
7
0
1

0
0

−
4
.0
3

4
.0
3

2
9

5
1
6

d
is
c
to

m
3
9
9

3
0
0
0
0

3
9
9

3
0
0
0
0

3
0
0
0
0

0
0

6
4
3

0
.0
0

3
2
.7
8

2
9
9

1
6

fc
.6
0
.2
0
.1

4
1
4

1
0
5
1

4
1
4

1
0
5
1

5
2
1

5
3
0

0
1
7
1

0
.0
0

3
.5
0

3
7
1

3
9
9

a
ir
0
5

4
2
6

3
0
2
5
7

4
2
6

3
0
2
5
7

3
0
2
5
7

0
0

−
3
0
.9
8

2
8
1
.7
5

6
3

9
5

n
e
o
s1

7
4
8
6

1
1
7
8
5
5

4
8
6

1
1
7
8
5
5

1
1
7
3
7
0

0
4
8
5

6
1

0
.0
0

0
.0
0

2
1

p
1
0
0
x
5
8
8

6
8
8

1
4
7
0

6
8
8

1
4
7
0

6
2
5

8
4
5

0
6
3

0
.0
0

0
.7
9

6
3
3

7
1

a
ir
0
4

8
2
3

5
5
5
9
2

8
2
3

5
5
5
9
2

5
5
5
9
2

0
0

−
4
0
.4
3

2
3
8
.9
4

1
1
3

2
7

r8
0
x
8
0
0

8
8
0

2
0
0
0

8
8
0

2
0
0
0

1
0
2
6

9
7
4

0
6
9
9

0
.0
0

1
.4
5

8
2
8

2
2
3

n
u
g
0
8

9
1
2

1
3
9
5
2

9
1
2

1
3
9
5
2

1
3
9
5
2

0
0

1
5
0

0
.0
0

1
3
5
.1
6

1
2
8

3
p
5
0
x
8
6
4

9
1
4

1
8
7
2

9
1
4

1
8
7
2

8
9
5

9
7
7

0
1
0
7

0
.0
0

0
.5
7

8
8
4

5
3

n
5
-3

1
0
1
2

1
0
7
5
0

1
0
1
2

1
0
7
5
0

5
4
7
2

5
2
7
8

0
8
2

0
.0
0

3
.1
8

9
1
2

1
n
e
o
s2

1
1
0
8
5

3
7
3
7
3

1
0
8
5

3
7
3
7
3

3
7
3
7
3

0
0

7
8
2

0
.0
0

3
8
3
.7
7

1
9
1

3
n
4
-3

1
1
7
8

1
5
3
4
1

1
1
7
8

1
5
3
4
1

7
6
7
0

7
6
7
1

0
1
6
5

0
.0
0

4
.4
3

1
0
6
2

1
d
a
n
o
3
m
ip

1
2
2
8

4
6
5
0
7

1
2
2
7

4
6
5
0
6

1
4
9
4
8

3
1
0
0
3

5
5
5

−
8
5
.4
3

9
5
.9
1

5
8
7

4
2

n
8
-3

1
3
0
0

1
1
6
5
6

1
3
0
0

1
1
6
5
6

6
2
5
8

5
3
9
8

0
1
2
0

0
.0
0

1
.7
9

1
1
7
6

1
n
e
o
s2

0
1
3
5
2

1
4
6
7
0

1
3
2
0

1
4
6
3
9

1
0
7
8
8

3
8
5
1

0
1
0
7

0
.0
0

0
.0
8

5
9
5

1
0

p
2
0
0
x
1
1
8
8

1
3
8
8

2
9
7
0

1
3
8
8

2
9
7
0

1
2
5
6

1
7
1
4

0
−

0
.6
3

1
.2
6

1
2
7
2

5
2
6

p
2
0
0
x
1
1
8
8
c

1
3
8
8

2
9
7
0

1
3
8
8

2
9
7
0

1
2
2
8

1
7
4
2

0
−

0
.5
9

1
.1
8

1
2
7
3

4
9
5

ro
ll
3
0
0
0

1
5
4
3

6
0
9
4
6

1
3
0
0

6
0
7
0
6

2
5
0
2
2

3
1
6
3
0

4
0
5
4

1
7
0

0
.0
0

0
.3
4

5
8
1

2
ja
n
o
s-
u
s-
c
a
–
D
-D

-M
-N

-C
-A

-N
-N

1
6
4
3

1
1
6
5
1

1
6
4
3

1
1
6
5
1

5
4
9
1

6
1
6
0

0
2
1
4

0
.0
0

2
.1
7

1
5
2
1

1
p
io
ro

4
0
–
D
-B

-M
-N

-C
-A

-N
-N

1
6
4
9

1
0
2
4
3

1
6
4
9

1
0
2
4
3

5
7
7
7

4
4
6
6

0
1
2
6

0
.0
0

0
.8
3

1
5
6
0

1
n
1
3
-3

1
6
6
1

1
4
7
2
5

1
6
6
1

1
4
7
2
5

7
5
7
9

7
1
4
6

0
2
1
4

0
.0
0

1
.6
3

1
5
3
7

1
n
2
-3

1
7
5
2

1
4
8
5
6

1
7
5
2

1
4
8
5
6

7
9
3
5

6
9
2
1

0
2
5
9

0
.0
0

0
.7
9

1
6
5
6

1
z
ib
5
4
–
U
-U

-E
-N

-C
-A

-N
-N

1
8
0
9

7
7
4
4

1
8
0
9

7
7
4
4

1
5
9
4

1
1
9
6

4
9
5
4

6
2

0
.0
0

0
.0
0

1
7
2
8

1
q
a
p
1
0

1
8
2
0

3
5
2
0
0

1
8
2
0

3
5
2
0
0

3
5
2
0
0

0
0

4
2
7

0
.0
0

0
.0
0

2
0
0

3
n
s1

6
8
8
3
4
7

1
8
6
6

3
6
8
0
0

1
8
6
6

3
6
8
0
0

2
4
9
8
3

1
0
1
9
5

1
6
2
2

−
2
0
.4
9

2
4
.9
1

3
7
5

1
2
9

g
e
rm

a
n
y
5
0
–
U
-U

-M
-N

-C
-A

-N
-N

2
0
8
8

1
0
5
6
0

2
0
8
8

1
0
5
6
0

1
1
4
3

2
6
9
1

6
7
2
6

9
1

0
.0
0

0
.0
0

2
0
0
0

1
p
ro

tf
o
ld

2
1
1
2

8
9
6
7
7

2
1
1
2

8
9
6
7
7

3
0
2
1
9

5
8
3
9
5

1
0
6
3

−
5
3
.4
0

5
9
.6
9

3
8
3

4
c
a
p
6
0
0
0

2
1
7
4

1
1
1
6
7

2
1
7
4

1
1
1
6
7

1
0
2
9
7

0
8
7
0

1
1
1

0
.0
0

0
.0
0

2
0
7
4

1
n
7
-3

2
2
7
8

2
4
4
7
6

2
2
7
8

2
4
4
7
6

1
2
2
2
0

1
2
2
5
6

0
1
1
9
1

0
.0
0

1
.6
2

2
1
6
2

3
n
9
-3

2
2
8
0

3
3
1
8
0

2
2
8
0

3
3
1
8
0

1
6
2
8
0

1
6
9
0
0

0
1
3
3
0

0
.0
0

3
.5
5

2
1
1
2

3
a
c
c
-1

2
2
8
6

4
4
5
9
5

2
2
8
6

4
4
5
9
5

3
0
9
1
2

1
3
6
8
3

0
−

2
.8
6

1
8
.1
3

4
8
0

2
0

n
3
-3

2
3
0
3

3
8
8
5
7

2
3
0
3

3
8
8
5
7

1
8
6
0
2

2
0
2
5
5

0
2
8
2
7

0
.0
0

6
.4
6

2
0
5
9

5
z
ib
5
4
–
D
-B

-E
-N

-C
-A

-N
-N

2
3
4
9

1
0
0
2
8

2
3
4
7

1
0
0
2
5

6
9
9
1

3
0
3
4

0
2
1
1

0
.0
0

0
.4
9

2
2
6
6

1
n
1
2
-3

2
3
5
8

2
6
4
9
6

2
3
5
8

2
6
4
9
6

1
2
9
5
6

1
3
5
4
0

0
1
0
6
7

0
.0
0

2
.3
0

2
2
1
4

1
n
e
o
s8

1
8
9
1
8

2
4
0
0

1
0
1
3
0

2
4
0
0

1
0
1
3
0

6
4
8
5

3
1
9
5

4
5
0

8
0
0

0
.0
0

0
.0
9

2
0
1
8

1
7

g
e
rm

a
n
y
5
0
–
D
-B

-M
-N

-C
-A

-N
-N

2
4
3
8

1
2
2
3
2

2
4
3
8

1
2
2
3
2

6
3
2
5

5
9
0
7

0
2
6
2

0
.0
0

0
.2
1

2
3
5
0

1
a
c
c
-2

2
5
2
0

6
0
6
6
9

2
5
2
0

6
0
6
6
9

4
3
8
4
2

1
6
8
2
7

0
−

8
.7
6

2
4
.8
9

4
5
4

2
3

ta
2
–
U
-U

-M
-N

-C
-A

-N
-N

2
5
7
9

1
2
3
1
2

2
5
7
8

1
2
3
1
2

2
5
8
2

1
8
3
4

7
8
9
6

1
7
5

0
.0
0

0
.0
0

2
4
7
0

1
n
6
-3

2
6
8
6

3
1
2
2
8

2
6
8
6

3
1
2
2
8

1
4
6
6
4

1
6
5
6
4

0
2
7
8
5

0
.0
0

2
.5
2

2
5
3
8

3
b
e
rl
in

2
7
0
4

6
6
3
0

2
7
0
4

6
6
3
0

2
7
0
3

3
9
2
7

0
−

0
.9
4

0
.9
4

2
6
5
3

1
7

n
e
o
s1

1
2
7
0
6

4
7
1
8
5

2
7
0
6

4
7
1
8
5

3
3
6
8
5

1
3
4
4
0

6
0

−
5
.8
4

7
.1
4

7
0
2

7
ta

2
–
D
-B

-M
-N

-C
-A

-N
-N

2
8
3
9

1
3
4
5
8

2
8
3
7

1
3
4
5
7

9
0
9
0

4
3
6
7

0
4
7
0

0
.0
0

0
.7
0

2
7
2
9

1
a
c
c
-6

3
0
4
7

7
4
1
8
4

3
0
4
7

7
4
1
8
4

5
5
5
6
7

1
8
5
7
1

4
6

−
1
1
.0
9

1
2
.4
9

8
9
9

1
0

a
c
c
-5

3
0
5
2

7
4
3
1
2

3
0
5
2

7
4
3
1
2

5
4
5
6
9

1
9
6
9
7

4
6

−
1
3
.8
4

1
4
.6
2

8
7
5

1
0

a
c
c
-3

3
2
4
9

7
2
0
7
2

3
2
4
9

7
2
0
7
2

4
9
8
1
2

2
2
1
7
9

8
1

2
2
1

0
.0
0

0
.0
0

1
1
2
5

1
a
c
c
-4

3
2
8
5

7
5
1
8
6

3
2
8
5

7
5
1
8
6

5
2
3
0
1

2
2
8
0
4

8
1

2
4
0

0
.0
0

0
.0
0

1
1
2
5

1
b
ra

si
l

3
3
6
4

8
2
6
5

3
3
6
4

8
2
6
5

3
3
6
3

4
9
0
2

0
−

0
.8
5

0
.8
5

3
3
0
7

9
m
k
c

3
3
8
6

6
5
8
3

3
1
2
7

6
2
9
9

3
5
0
3

2
7
9
3

3
3
4
1

0
.0
0

0
.0
0

2
9
6
4

1
p
5
0
0
x
2
9
8
8

3
4
8
8

7
4
7
0

3
4
8
8

7
4
7
0

3
0
6
4

4
4
0
6

0
−

1
.2
2

1
.2
2

3
1
9
9

6
1

p
5
0
0
x
2
9
8
8
c

3
4
8
8

7
4
7
0

3
4
8
8

7
4
7
0

3
6
5
0

3
8
2
0

0
−

4
.5
2

4
.5
2

3
0
9
8

7
0

m
o
d
0
1
1

3
8
8
6

8
2
4
5

3
2
4
0

8
1
8
6

8
1
8
6

0
0

4
1
6

0
.0
0

0
.0
0

3
2
0
8

1
n
e
o
s1

4
7
3
2

8
0
8
7
0

4
7
3
2

8
0
8
7
0

4
1
8
5
0

3
6
3
8
0

2
6
4
0

−
7
.9
2

8
.6
4

1
0
9
9

2
se
y
m
o
u
r

4
9
4
4

6
0
4
0
2
0

4
7
9
4

6
0
4
0
0
7

6
0
4
0
0
7

0
0

−
1
5
.2
5

1
5
.4
1

4
0
9

0
se
y
m
o
u
r1

4
9
4
4

6
0
4
0
2
0

4
7
9
4

6
0
4
0
0
7

6
0
4
0
0
7

0
0

−
1
5
.2
5

1
5
.4
1

4
0
9

0
n
3
7
0
a

5
1
5
0

1
5
0
0
0

5
1
5
0

1
5
0
0
0

1
5
0
0
0

0
0

1
3
7
4

0
.0
0

0
.0
0

5
1
0
0

1
re
n
ta

c
a
r

5
7
0
9

1
6
9
1
3

4
2
9
4

1
6
6
6
9

7
9
1
6

8
7
1
6

3
7

2
4
0
3

0
.0
0

0
.0
6

3
2
7
8

2
m
a
n
n
a
8
1

6
4
8
0

7
2
9
0
0

6
4
8
0

7
2
9
0
0

7
2
9
0
0

0
0

1
1
7
8

0
.0
0

4
5
.6
5

2
3
2
2

1
n
e
o
s1

2
8
3
1
7

3
2
0
7
2
6

8
3
1
7

3
2
0
7
2
6

3
0
2
9
6
7

1
7
5
4
9

2
1
0

−
1
0
.3
8

1
0
.3
8

1
4
0
1

0

T
a
b
le

9
:
R
es
u
lt
s
o
b
ta
in
ed

w
it
h
th

e
B
C

m
et
h
o
d
o
n
th

e
n
ew

D
M
E
R
N

in
st
a
n
ce
s.

30

