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The kinematics of scalar gradient in three-dimensional turbulence is revisited using

stochastic Lagrangian modelling. The equilibrium direction is computed numerically.

It noticeably departs from the compressional direction, and is the attracting – and

preferential – alignment for the scalar gradient.

The kinematics of the gradients of scalars – such as temperature or concentration –

is relevant to the dynamics of vectors.1) More specifically, it is connected to the basic

mechanisms of small-scale mixing, and is thereby relevant to many fields – reacting flows,

geophysical flows, etc. Scalar gradient orientation, in particular, plays a determinig role

in stretching and thus in the mixing process. In this study, it is analysed by accounting

for the existence of an equilibrium direction.

The stable fixed point of the orientation equation of a scalar gradient – referred to as

the equilibrium direction – is in general different from the compressional direction and is

thus a special direction to consider in addition to the strain principal axes.2–4) At infinite

Péclet number, this direction – provided it exists – results from the opposed effects of

strain and rotation. It was derived analytically in the two-dimensional case, for a non-

diffusive scalar gradient.2) The three-dimensional case is analytically tractable assuming

vorticity aligned with a strain eigenvector.3, 4) In the present work, this assumption is

relaxed and the equilibrium direction is determined numerically in the general three-

dimensional case.

A stochastic Lagrangian model is used to simulate three-dimensional isotropic tur-

bulence, and to derive the alignment statistics of the scalar gradient. The modelled

equation for the velocity gradient tensor, A, is:5, 6)

dA =

(

−A2 +
Tr(A2)

Tr(C−1
τη )

C−1
τη −

Tr(C−1
τη )

3T
A

)

dt+

√

2

T
dW, (1)

with T , the integral time scale, and Cτη a model for the Cauchy-Green tensor, Cτη =
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exp(τηA) exp(τηA
T ), where τη is the Kolmogorov time scale; dW is the increment of a

tensorial Wiener process. The equation for the scalar gradient, G, is:4)

dG = −

(

ATG+
Tr(C−1

τη )

3Tθ
G

)

dt+

√

2

Tθ
dWG, (2)

where Tθ is assumed to coincide with the transfer time scale of scalar variance; dWG is

the increment of a Wiener process. In Eqs. (1) and (2), stretching is exactly accounted

for. Second term of Eq. (1) is a model for the pressure Hessian. Viscous effects – third

term of Eq. (1) – and molecular diffusion – second term of Eq. (2) – are modelled as

proposed by Jeong and Girimaji.7)

Time scales are normalised by the integral time scale (T = 1). The Kolmogorov time

scale is prescribed as τη = 0.1 – which corresponds to a Taylor microscale Reynolds

number, Reλ, close to 150.6) Linear modelling of molecular diffusion makes scalar gradi-

ent orientation independent of diffusive effects; the predicted alignment properties are

therefore those of high-Péclet-number scalar turbulence. Consistently, the scalar inte-

gral time scale is taken such that Tθ/T = 1, a value derived for Schmidt number greater

than unity.8) The orientation of G may be sensitive to Tθ because of randomization

caused by the forcing term in T
−1/2
θ , but this relatively large value of Tθ/T – as com-

pared to Tθ/T ∼ 0.3 found for small Schmidt number8) – curbs this effect. Equations

(1) and (2) are solved using a second-order predictor-corrector scheme. The calculation

is run with time step 10−2 for a total time ranging from 2×105T to 2×107T , depending

on the sample length needed for statistics.

Neglecting molecular diffusion, the equation for the director cosines, ni = G·e(i)/|G|,

of the scalar gradient in the strain basis is:

Dn

Dt
= σ · n+R× n, (3)

where σ = (n · Λ · n)I − Λ includes the effect of stretching, and R = ω/2 − Ω is the

effective rotation rate. Vectors e(i) are the eigenvectors of the strain tensor, with i = 1

for expansion, i = 2 for ‘intermediate’ direction, and i = 3 for compression; Λ is defined

by Λij = λi for i = j, and 0 otherwise; the λi’s are the strain eigenvalues – with λ1 > 0,

λ3 < 0, and λ1 + λ2 + λ3 = 0; vector ω is vorticity, and Ω is the rotation rate of the

strain basis.9)

The instantaneous equilibrium direction – in the Lagrangian view : the local equi-

librium direction – is defined by vector n(eq). The latter determines the orientation the

scalar gradient would take if its response to the variations of the velocity gradient tensor
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were infinitely fast. This reference direction is computed at each time step by solving

the non-linear algebraic system given by:

σ · n+R× n = 0, (4)

which expresses that the equilibrium direction results from the balance between strain,

which tends to bring the scalar gradient on the compressional strain principal axis, and

effective rotation which, in contrast, constantly moves it away. The numerical data for

which a stable equilibrium direction exists define a subset that is referred to as the equi-

librium sample. IfA is restricted to a Gaussian process, the equilibrium sample amounts

to 50% of the total flow; in the turbulent case, for which A is derived from Eq. (1), this

percentage is 63%. In the special cases where vorticity aligns with a strain eigenvector,

the average error between the numerical solution and the analytic solution3, 4) is 0.27o

at most.

The equilibrium direction is essentially normal to e(2) (Fig. 1) and thus lies on the

plane (e(1),e(3)). It does not coincide with the compressional strain principal axis; this

would occur for pure strain (R = 0) only. The probability density function (p.d.f) of

angular gap between e(3) and n(eq) peaks at 23o – which is also roughly the average

angular gap.
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Fig. 1. P.d.f’s of angular gap between equilibrium direction and strain eigenvectors, e(i); solid line:

i = 1; dashed line: i = 2; dash dot line: i = 3.

Scalar gradient alignments corresponding to cosine greater than 0.95 occur closer

to the equilibrium direction than to the compressional one (Fig. 2). By accounting

for rotation in addition to strain, the equilibrium direction captures a more realistic
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kinematics of the scalar gradient. This finding backs up the results derived in the special

case where vorticity is aligned with a strain axis.4) Better still, the preferential alignment

of scalar gradient predicted in two-dimensional turbulence2) is thereby confirmed in the

three-dimensional case.
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Fig. 2. P.d.f’s of | cos ̂(e(i),G)| (squares: i = 1; deltas: i = 2; gradients: i = 3) and of | cos ̂(n(eq),G)|

(circles) in the equilibrium sample.
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Fig. 3. P.d.f’s of Seq (solid line) and Sc (dashed line).

As shown in a two-dimensional flow,10) the equilibrium direction is the attracting

alignment for the scalar gradient. This feature is checked in the equilibrium sample by

comparing Seq = −sgn{cos ̂(n(eq),G)} · Feq and Sc = −sgn{cos ̂(e(3),G)} · Fc, where

Feq = (σ ·n+R×n) ·n(eq) is the rate of change of cos ̂(n(eq),G), and Fc = (σ ·n+R×
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n)·e(3) is the rate of change of cos ̂(e(3),G); negativity of Seq (resp. Sc) means attraction

towards equilibrium (resp. compressional) direction. Figure 3 shows the p.d.f’s of Seq

and Sc – respectively, Peq(Seq) and Pc(Sc) – conditioned on the direction of G being in

the right circular cone the aperture of which is ̂(e(3),n(eq)). Negative values of Seq are

obviously much more frequent than those of Sc: A
−

eq =
∫ 0

−∞
Peq(Seq)dSeq = 0.98, while

A−

c =
∫ 0

−∞
Pc(Sc)dSc = 0.12; clearly, rather than the compressional direction, it is the

equilibrium direction that draws the scalar gradient.

Those findings show the existence of an equilibrium direction of the scalar gradient

that is definitely distinct from strain eigenvectors. Strongest alignments occur rather

with the equilibrium direction than with the compressional one, as already shown in

two-dimensional turbulence. The attracting direction for the scalar gradient orientation

is the equilibrium direction, and not the compressional direction as is usually stated. As

the model was previously shown to retrieve essential features of both velocity gradient

and scalar gradient tensors,4, 6) the present results are likely to reasonably simulate

realistic kinematics of scalar gradient. They would still deserve to be compared, for

instance, to DNS data.
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