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From reference model selection to controller
validation: Application to Loewner Data-Driven

Control
Pauline Kergus1?, Martine Olivi2, Charles Poussot-Vassal1 and Fabrice Demourant1

Abstract—The choice of a reference model in data-driven
control techniques is a critical step. Indeed, it should represent
the desired closed-loop performances and be achievable by the
plant at the same time. In this paper, we propose a method to
build such a reference model, both reproducible by the system
and having a desired behaviour. It is applicable to Linear Time-
Invariant (LTI) monovariable systems and relies on the estimation
of the plant’s instabilities through a data-driven stability analysis
technique. The L-DDC (Loewner Data Driven Control) algorithm
is used to illustrate the impact of the choice of the reference
model on the control design process. Finally, the proposed choice
of specifications allows to use a controller validation technique
based on the small-gain theorem.

Keywords: data-driven control, interpolation method,
Loewner, stability

I. INTRODUCTION

FOR many applications, a mathematical description of
the system, derived from physical laws, is not available.

In this case, the controller has to be designed on the basis
of experimental measurements. The first solution consists in
identifying a model of the plant and then using any kind
of model-based technique to obtain a control law (indirect
methods). It is indicated for problems where a reliable model
with bounded modeling errors is available. On the other side,
the data-driven strategy directly computes the controller from
the experimental data. Such techniques are also called direct
methods and may be appealing in cases where such a control-
oriented model is too time-consuming, too complex or too
costly to obtain. The two strategies, model-based and data-
driven, are complementary in sense that they do not address
the same categories of problem.

A. The data-driven model-reference problem

Numerous direct methods have been proposed to try to
achieve the best possible performance without using any plant
model. Among them, some methods, like Correlation-based-
Tuning (CbT, [1]), Virtual Reference Feedback Tuning (VRFT,
[2]) or Loewner Data-Driven Control (L-DDC, [3]), can be
designated as model-reference techniques. The principle of the
model-reference problem is recalled on Figure 1. These ap-
proaches only require data from the plant P , {ωi, P (ıωi)}Ni=1,
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Fig. 1: Problem formulation: M is the desired closed-loop, P
is the plant and K the controller to be designed.

and the desired closed-loop behaviour, given as a reference
model transfer function M ∈ RH∞. The objective is to design
a controller that minimizes the error ε between the resulting
closed-loop and the desired one M . These three techniques
rely on the concept of ideal controller K?: the controller
that would give exactly the desired closed-loop behaviour. By
definition, in the frequency-domain, it is given by (1).

K?(ıωi) = (P (ıωi)− P (ıωi)M(ıωi))
−1M(ıωi). (1)

The obtained controller K is then supposed to be as close
as possible to this ideal controller K?. To this aim, the
CbT and the VRFT minimize a reference tracking control
objective over a set K of linearly parametrized controllers.
The problem is made convex by assuming K? ∈ K. This is
a strong assumption and makes the choice of the structure
of the controller a critical step. The L-DDC algorithm avoids
this step by identifying a linear rational and time invariant
controller model K of the ideal controller K?.

However, as explained in [4], whenever the plant is Non-
Minimum Phase (NMP), the ideal controller might compensate
the Right-Half-Plane (RHP) zeros of the plant. According to
(1), this is determined by the choice of the reference model
M . This is why, despite the apparent simplicity of this type of
techniques, the choice of the model-reference M is a critical
step, as it is pointed out in [4], [5] and [6]. The difficulty
of choosing the reference model resides in the fact that it
should not only represent a desired closed-loop behaviour,
but also an achievable one, given the plant to be controlled.
The behaviours that a plant can reach are determined by its
instabilities.

Different ways to choose a reference model have been
proposed. In the case of the VRFT, [4] and [6] have proposed
to parametrize the reference model function and to find a good
one along with the design of the controller. However, the case
of unstable plants is not tackled by this technique. In [7], it
is proposed to define the reference model M according to
the nature of the system and through a stable filter that will
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determine the performances. The filter is applied to functions
that are already known to be achievable.It should be noted
that no solution has been proposed for plants that are both
non-minimum phase and unstable.

B. Overview of the contributions and structure of the paper

The objective of this paper is to propose a technique to
construct an achievable reference model M that can be used
for data-driven control purposes. The proposed method is
based on frequency-domain data. It relies on a data-driven
instability detection technique introduced in [8]. Then, once
the instabilities of the plant are detected, it is possible to build
an achievable reference model. The L-DDC method can then
be applied. Finally, the data-driven validation of the controller,
based on [7], is applied in order to check that the obtained
controller stabilizes the plant internally.

This article is organized in seven sections. Section II il-
lustrates the impact of the choice of the reference model by
applying the L-DDC method on a NMP plant. The conditions
for a reference model to be reachable by a SISO (Single
Input - Single Output) plant will also be expressed. In Section
III, the data-driven instabilities estimation introduced in [8] is
recalled. The contribution of this paper, which is the choice
of an achievable reference model M , is exposed in Section
IV. The data-driven controller validation introduced in [7] is
recalled in Section V. The proposed technique is applied in
Section VI on the same numerical example than in Section
II, in order to analyze the impact of the proposed reference
model choice. Finally, conclusions and outlooks are given in
Section VII.

C. Notations

ı denotes the complex variable, (.)T is the transpose of a
matrix and (.)† its pseudo-inverse. L∞ is the set of functions
bounded on the imaginary axis, H∞ is the subset of L∞
containing the functions with an analytic continuation in the
RHP. RH∞ is the real rational subset of H∞. L2 is the set of
square integrable functions. H2 is the subspace of L2 of stable
functions while H2, the orthogonal of H2, is the subspace of
L2 of anti-stable functions.

II. PROBLEM FORMULATION

A. Preliminary results: Loewner Data-Driven Control

The L-DDC algorithm, introduced in [3], is based on
frequency-domain data {ωi, P (ıωi)}Ni=1 collected from the
plant. It is a one shot technique. The order of the controller
is a tunable parameter. It only requires a reference model M .
The L-DDC algorithm is recalled in Algorithm 1.

The Loewner framework allows to identify an interpolating
model K of the ideal controller K? in the second step, see
[9]. In order to avoid the compensation of the plant’s RHP
zeros, the L-DDC alorithm has been modified in [10]: the
interpolating model K is projected on RH∞, using the tech-
nique presented in [11]. It corresponds to step 3 of Algorithm
1. The reduction has also been modified in order to be more
robust to noisy data. This is possible through a residue-based

implementation instead of the classic SVD approach, see [12]
for more information.

The identification of the ideal controller in the second step
makes it unnecessary to choose a structure a priori for the
controller, contrary to CbT or VRFT. Despite this strength, the
L-DDC technique, as the CbT and the VRFT, is confronted
to the problem of choosing an achievable reference model for
an unknown plant.

Algorithm 1: L-DDC algorithm
Data:
• Samples of the frequency response of the plant
{ωi, P (ıωi)}, i = 1 . . . N .

• Objective order n for the controller.
• Reference transfer function M .

Solution:
1) Compute the samples of the frequency response of

the ideal controller according to (1).
2) Using the Loewner framework, compute the

interpolating descriptor controller model K.
3) Compute its projection Ks on RH∞.
4) Reduce Ks to a stable nth order controller Ks

n.

B. Application to a non-minimum phase plant

In order to illustrate the difficulty of choosing M , the L-
DDC algorithm is applied on a non-minimum phase plant.
The system is a flexible transmission benchmark introduced
in [13]. Here, the unloaded case is considered. The system is
described by the following transfer function:

P (s) =
0.03616(s− 140.5)(s− 40)3

(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)
. (2)

This continuous-time model is obtained by applying a bilinear
transform on the original discrete-time one given in [13].

Remark 1: This simple LTI plant is not representative of
the class of the systems for which it would be preferable to
use a data-driven control technique. It is used along this paper
for mere illustation purposes. This example has been used as
a benchmark for various control techniques, model-based or
data-driven. Other examples are available in [14].

The plant has four RHP zeros that will limit the perfor-
mances of the controlled system. The data is noise-free and
N = 200 points {ωi, P (ıωi)}i=1...N , logspaced between 1
and 103 rad.s−1 are used. The reference model M is a second
order stable transfer function:

M(s) =
k

1
ω2

0
s2 + 2ξ

ω0
s+ 1

(3)

with ω0 = 10rad.s−1, ξ = 1 and k = 1. The exact expression
of K? is given by (4) and can be obtained through an exact
Loewner based interpolation:

K?(s) = k
(s2 + 1.071s+ 157.9)(s2 + 3.172s+ 1936)

s(s+ 20)(s− 140.5)(s− 40)3
,

(4)
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with k = 2.7655 × 105. Since the controller compensates
the RHP zeros of the plant, the resulting closed-loop is
internally unstable. It should be noted that this problem is
almost impossible to detect in a data-driven framework since
the model of the plant, given in (2) here, is supposed to be
unknown.

To avoid the compensation of instabilities in the open-
loop, a stable controller Ks ∈ RH∞ is obtained in [10],
see Algorithm 1. In this case, enforcing the stability of the
controller degrades the closed-loop performances. This is due
to the fact that a stable controller model cannot reflect the
behaviour of K?. This is called the mismatched case [4]: K?

does not belong to the chosen class of controllers, which is
RH∞ here. The same issue exists when using CbT or VRFT.

C. Finding an achievable reference model

For this reason, choosing an appropriate reference model M
is a critical step for all data-driven techniques based on this
paradigm. Indeed, the associated ideal controller K? should
stabilize the plant internally. This is the case if and only if
S = (1 +K?P )

−1 is stable and if there are no compensation
of instabilities between the ideal controller K? and the plant
P , see [15]. Since S = 1 −M , S ∈ RH∞ is equivalent to
M ∈ RH∞. The absence of instabilities compensation in the
open-loop can be expressed as interpolatory conditions on S,
and consequently on the reference model M . Therefore, when
P is a SISO plant, the closed-loop on Figure 1 is internally
stable if and only if M ∈ RH∞ and satisfies:{

∀i = 1 . . . nz, M(zi) = 0
∀j = 1 . . . np, M(pj) = 1

, (5)

where {zi}nz

i=1 and {pj}np

j=1 are respectively the unstable zeros
and poles of the plant, which are assumed to be distinct.
For MIMO (Multi-Inputs Multi-Outputs) plants, (5) becomes
a tangential interpolation problem, see [16], which could be
dealt with using the Loewner framework for example.

Remark 2: When the plant has multiple RHP poles or zeros,
derivative constraints must be added. Any transfer function
M ∈ RH∞ that satisfies (6) is achievable by the plant:{

M(zi) = M (1)(zi) = · · · = M (mzi
−1)(zi) = 0

M(pj) = M (1)(pj) = · · · = M (mpj
−1)(pj) = 1

, (6)

where mzi and mpj denote the multiplicity of zi and pj
respectively.

To sum up, the plant’s instabilities, its RHP poles and zeros,
are the main limitations of the possible control performances.
Therefore, it is not possible for a plant to achieve a reference
model that does not take them into account. In this case,
the ideal controller K? destabilizes the plant internally and
represents a bad behaviour that should not be identified. In
this paper, we propose to build a stable reference model that
satisfies (5). First, the plant’s instabilities are estimated using
the method proposed in [8], recalled in the next section. Then
the construction of the reference model is proposed in Section
IV and applied on the example of the flexible transmission in
Section VI.

III. DATA-DRIVEN DETECTION OF INSTABILITIES

The method proposed in [17] allows to detect and to esti-
mate instabilities of a system on the basis of frequency-domain
data only. It is then perfectly adapted to find a good reference
M for data-driven control purposes. It is implemented in the
PISA toolbox [18]. This technique is recalled in Algorithm 2.

Algorithm 2: Data-driven stability analysis
Data:
• Samples of the frequency response of the plant
{ωi, P (ıωi)}, i = 1 . . . N .

Solution:
1) Project the frequency-response of the plant on the

Hardy spaces H2 and H2 and determine whether the
plant is stable or not, see Section III-A. If the plant

is stable, stop, otherwise go to step 2.
2) Construct the truncated Hankel matrix, determine the

number of instabilities from its rank and estimate the
instabilites, see Section III-B.

Remark 3: By applying this technique on the frequency
response P (ıω)−1, one can determine if the plant is NMP
and estimate the eventual RHP zeros of the plant P .

Remark 4: One could argue that interpolating the frequency-
response of the plant would be much more straightforward to
determine the poles and zeros of the plant, including the RHP
ones. As explained in [17], over or undermodelling can lead
to the idendification of non-physical instabilities. Therefore,
it would consists not only in an interpolation of the data, but
in a plant identification step, and the method would not be
data-driven anymore. Indeed, data-driven control addresses the
cases where model order selection is complicated for control
purposes, but also for stability analysis.

A. Stable and unstable projection of frequency-domain data

In the first place, it is necessary to project the given
frequency-response in order to detect the presence of insta-
bilities. It is assumed that P (ıω) ∈ L2, meaning that it can
be written as follows: P (ıω) = P s(ıω) + P as(ıω). P s is its
stable projection and belongs to the Hardy space H2, while
P as is its anti-stable part, belonging to the orthogonal H2.

First, the frequency response of the plant is moved to the
unit circle so the projection boils down to a Fourier transform.
The obtained frequency response is filtered to avoid edge effect
during the projection: the sudden ending of the data would
appear in the unstable part. These two steps are technical and
the reader should refer to [17] for more insights. The stable
and anti-stable projections of the plant’s data are then obtained
by computing the Fourier coefficients {ck}k∈Z:

P s(z) =
∞∑
k=0

ckz
k and P as(z) =

∞∑
k=1

c−kz
−k. (7)

A numerically efficient way to compute a given number NF of
Fourier coefficients is the Fast Fourier Transform. To this aim,
the plant’s data is interpolated using a basic linear interpolation
technique.
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If P s fits the frequency response measurements of the plant,
it can be assumed that the plant is stable. Otherwise, the plant
is unstable.

B. Estimation of the location of the unstable poles

The estimation of instabilities proposed in [8] is based on
the Principal Hankel Components (PHC) method.It relies on
the Hankel matrix containing the Fourier coefficients cor-
responding to the anti-stable projection P as. In practice, a
truncation ΦnF

of the infinite dimensionnal matrix Φ is used,
see (8).

∀i, j = 1 . . . nF , [ΦnF
]i,j = c−(i+j−1) (8)

For a rational system with np poles, the Hankel matrix
ΦnF

is of rank np. In order to find the number of poles of
P as, which correspond to the unstable poles of P , a SVD is
performed on the truncated Hankel matrix ΦnF

:

ΦnF
=
(
UP UR

)(SP 0
0 SR

)(
V TP
V TR

)
, (9)

with SP ∈ Rnp×np containing the np largest singular values,
UP ∈ RnF×np and VP ∈ RnF×np . The number of poles np is
the number of non-zero singular values in (9). The value of the
corresponding RHP poles can be deduced from the truncated
Hankel matrix, see [8].

IV. CONSTRUCTION OF THE REFERENCE MODEL

Now that the instabilities of the plant are estimated, it is
possible to build a stable reference model that gives the desired
performances and satisfies (5). In order for the proposed
method to stay user-friendly, the achievable reference model
Mf is obtained by filtering the initial one M . As a matter
of fact, the easiest way for the user to express closed-loop
performance specifications is to define a stable second-order
model-reference through three parameters {ω0, ξ, k}, as in (3).

First, let us introduce the Blaschke products Bz and Bp
defined respectively by the estimated RHP zeros {zi}i=1...nz

and poles {pj}j=1...np
of the plant:

Bz(s) =

nz∏
i=1

s− zi
s+ zi

and Bp(s) =

np∏
j=1

s− pj
s+ pj

. (10)

These two functions, Bz and Bp, are stable. The choice of
a stable reference model Mf that satisfies the interpolatory
conditons (5) is done as follows:

1) If the plant is stable and minimum phase: any
stable and minimum-phase M specified by the user is
achievable by the plant.

2) If the plant is stable and non-minimum phase: Mf =
MBz with M stable is achievable by the plant.

3) If the plant is unstable and minimum phase: Mf =
1−(1−M)Bp with M stable is achievable by the plant.

4) If the plant is unstable and non-minimum phase:
Mf = MBzF with M stable is achievable by the
plant, where the filter F is defined as follows: F (s) =∑np

k=1 γklk(s)∏np
j=1(s+pj)

, with γk =
∏np

j=1(pk+pj)

M(pk)Bz(pk)
and lk(s) =∏np

j=1,j 6=k
s−pj
pk−pj , for k = 1 . . . np.

Proof 1: In case 1, for a stable and minimum phase plant P
and a stable model reference M , the functions (1 −M) and
P (1−M) are also stable. Finally, according to the definition
of the ideal controller, K?(1 −M) = MP−1 is also stable.
Therefore, K? stabilizes the plant internally.

For other cases, K? stabilizes the plant internally if and
only if Mf is stable and satisfies (5). In case 2 and 3, this is
obviously the case since, by definition, Bz and Bp are stable
and satisfy ∀i, Bz(zi) = 0 and ∀j, Bp(pj) = 0.

In case 4, the use of Bz ensures that, for any RHP zeros zi,
Mf (zi) = 0. The additional filter F is stable and is supposed
to ensure that, for any RHP poles pj , Mf (pj) = 1. It is defined
using Lagrange polynomials which satisfies lk(pj) = δk,j .
Consequently, Mf satisfies (5).

Remark 5: Concerning the application of the proposed
method to unstable plants, it should be noted that measure-
ments from such plants are only accessible through simula-
tions, as in [14], or by performing an experiment with an
initial stabilizing controller.

Remark 6: In case 2 or 3, the multiplicity of the instabilities
can be taken into account to satisfy the derivative constraints
of (6) by taking:

Bz(s) =

nz∏
i=1

(
s− zi
s+ zi

)mzi

and Bp(s) =

np∏
j=1

(
s− pj
s+ pj

)mpj

.

Solving (6) is more complicated in case 4, where the Loewner
framework could be used with derivative constraints in order
to find an achievable reference model.

V. DATA-DRIVEN CONTROLLER VALIDATION

Now that an achievable reference model Mf is built, the
controller K can be designed using the L-DDC algorithm [10].
Since the identified model may be a reduced-order one of the
ideal controller K?, there is no guarantee in the design process
that K actually stabilizes the plant internally. In [7], a stability
test was introduced, giving a sufficient condition for the final
controller K to stabilize the plant internally. It relies on the
controller error K −K?. This validation technique has been
applied to controllers obtained with the VRFT in [7]. It has
been used as a stability constraint in the non-iterative CbT
algorithm to enforce closed-loop stability in [19].

The trick to analyze closed-loop stability is to re-write the
closed-loop according to the controller error K−K? as shown
on Figure 3. This scheme makes the controller error appear as
a perturbation. It is then possible to obtain (11) as a sufficient
closed-loop stability condition.

K?

K −K?

P
+ − +

+

Mf

Uncertainty ∆

Fig. 3: Closed-loop interconnection scheme using the con-
troller error.
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Fig. 2: Data-driven stability analysis of the flexible transmission example.

λ0 =

∥∥∥∥ (K −K?)P

1 +K?P

∥∥∥∥
∞

= ‖KP (1−Mf )−Mf‖∞ < 1.

(11)
The conditions to apply the small-gain theorem are the fol-
lowing: i) ∆ = K −K? and ii) P (1−Mf ) should be stable.
Thanks to the design of the reference model Mf in Section
IV, K? stabilizes the plant internally, so P (1−Mf ) is stable.
By construction of Mf , the ideal controller itself is also stable,
see (1). Finally, since the L-DDC algorithm [10] enforces
the stability of the identified controller K, ∆ is stable. The
sufficient condition (11) is obtained by applying the small-gain
theorem, see [15].

Considering the dynamical system Λ = KP (1−Mf )−Mf ,
the stability test consists in estimating its H∞-norm. Since the
frequency response of P is only known on a discrete frequency
grid, so is the frequency response of Λ. The sufficient condi-
tion of (11) can be adapted as follows:

λ̂0 = max
i=1...N

|Λ(ıωi)| < 1− ε, (12)

where ε > 0 is a tolerance set by the user to avoid false
positive results.

VI. APPLICATION

Let us come back to the application of the flexible trans-
mission introduced in Section II. The first step to design an
achievable reference model Mf is to conduct a data-driven
stability analysis as explained in Section III-A. The results
are visible on Figures 2a and 2b.

From Figure 2a, it is clear that the plant is stable since the
frequency response of P sf fits the frequency response of the
plant. According to Figure 2b, it seems that P−1 is unstable
for two reasons: its stable projection does not fit the data of
P−1 and its anti-stable projection contributes to the frequency
response of P−1. Therefore the plant P is non-minimum
phase.

The next step then consists in looking for the plant’s
RHP zeros by estimating the unstable poles of the frequency
response

{
ωi, P

−1(ıωi)
}N
i=1

as explained in Section III-B.

The SVD of the Hankel matrix Φ defined in (8) is visible on
Figure 2c. There are four singular values before the sharp drop,
so it is chosen to estimate four instabilities. The estimated RHP
zeros of the plant along with its real RHP zeros are given in
Table I.

Real RHP zeros of system (2) 140.5 40 40 40
Estimated RHP zeros 140.58 41.3-2ı 41.3+2ı 37.4

TABLE I: Estimation of the RHP zeros of the plant.

Since the plant is stable but non-minimum phase, this
application enters in case 2 from Section IV. Bz is defined
as in (10) and an achievable reference model is therefore
Mf = MBz . The identification of the controller is shown
on Figure 4a.

Since the instabilities are not estimated exactly, the Loewner
interpolation gives an unstable minimal realisation of order 10
of the ideal controller K?. However, by projecting the obtained
controller model on RH∞, we obtain K?

s with almost the
same frequency response than K?. It means that the unstable
poles of the minimal realisation K? of the controller, which
compensates the real unstable zeros of the plant, are almost
equal to the estimated RHP zeros of the system. It is then
possible to assimilate the minimal realisation K? of the ideal
controller to its stable projection K?

s since ‖K? −K?
s ‖∞ =

8.10−4. Then the controller is reduced to a sixth-order model
K6, see (13).

Finally, the stability analysis detailed in Section V is ap-
plied. The H∞-norm of Λ is estimated through (12): λ̂0 =
0.0087. Therefore, since λ̂0 < 1 and according to (11), the
obtained controller K stabilizes the plant internally. The step
response of the resulting closed-loop is visible on Figure 4b.
We can see that the designed reference model Mf reproduces
the undershoot which is characteristic of the non-minimum
phase behaviour of the plant: it means that the RHP zeros
cannot be compensated and shows the intrinsic limitations of
performances due to the plant’s instabilities.

Remark 7: To illustrate the impact of the reference model
selection on data-driven control techniques, the controller was
only reduced to an order 6 to fit the ideal controller’s data. For
information, the reduced-order controller K2 of order n = 2
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K6(s) =
0.0423(s+ 6.604.104)(s2 + 1.418s+ 160.8)(s2 + 3.606s+ 1954)

s(s+ 148.9)(s2 + 19.98s+ 485.7)(s2 + 112s+ 4538)
K2(s) =

−0.2911s+ 199.6

s(s+ 328.2)
(13)
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Fig. 4: Results of the L-DDC algorithm when using an achievable reference model on the flexible transmission benchmark.

is given in (13). Its frequency response is given on Figure 4a
and the closed-loop performances are shown on Figure 4b.

VII. CONCLUSIONS

In this paper, a novel approach to design an achievable
model-reference for data-driven control techniques such as
the VRFT, CbT or L-DDC, has been proposed. It relies on
a data-driven estimation of the plant’s instabilities. They are
then used as interpolatory conditions to define the behaviors
that the plant can reach. This technique is applicable to LTI
SISO plants. The preliminary analysis of the plant’s frequency
response allows to design the specifications according to the
nature of the system in a data-driven way. The proposed choice
of reference model allows to meet the assumptions needed to
use the stability criterion introduced in [7] based on the small-
gain theorem. Therefore, it is possible to validate the obtained
controller in terms of internal stability thanks to this sufficient
condition.

The future of this work is to extend the choice of an
achievable reference model to MIMO plants. To that extent,
the framework developed in [16] to resolve the sensitivity
minimization problem can be used. It would allow to give the
interpolatory conditions defining an achievable multivariable
model-reference. Another outlook would be to improve the
design of Mf when the system is both unstable and non-
minimum phase in order to have a better control on the desired
closed-loop performances.
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